Goal

How big is this image as a vector?
389x600 = 233,400 dimensions (big)
Applications To Have In Mind

Part of the same photo?

Same computer from another angle?
Applications To Have In Mind

Building a 3D Reconstruction Out Of Images

Slide Credit: N. Seitz
Applications To Have In Mind

Stitching photos taken at different angles
One Familiar Example

Given two images: how do you align them?
One (Hopefully Familiar) Solution

for y in range(-ySearch,ySearch+1):
 for x in range(-xSearch,xSearch+1):
 # Touches all HxW pixels!
 check_alignment_with_images()
One Motivating Example

Given these images: how do you align them?

These aren’t off by a small 2D translation but instead by a 3D rotation + translation of the camera.

Photo credit: M. Brown, D. Lowe
One (Hopefully Familiar) Solution

for y in yRange:
 for x in xRange:
 for z in zRange:
 for xRot in xRotVals:
 for yRot in yRotVals:
 for zRot in zRotVals:
 # touches all HxW pixels!
 check_alignment_with_images()

This code should make you really unhappy

Note: this actually isn't even the full number of parameters; it's actually 8 for loops.
An Alternate Approach

Given these images: how would you align them?

A mountain peak!

This dark spot

A mountain peak!

This dark spot
An Alternate Approach

Finding and Matching

1: find corners+features
2: match based on local image data

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe
What Now?

Given pairs p_1, p_2 of correspondence, how do I align?

Consider translation-only case from HW1.
An Alternate Approach

Solving for a Transformation

3: Solve for transformation T (e.g. such that \(p_1 = T \ p_2 \)) that fits the matches well

Note the homogeneous coordinates, you’ll see them again.

Slide Credit: S. Lazebnik, original figure: M. Brown, D. Lowe
An Alternate Approach

Blend Them Together

Key insight: we don’t work with full image. We work with only parts of the image.

Photo Credit: M. Brown, D. Lowe
Today

Finding edges (part 1) and corners (part 2) in images.
Where do Edges Come From?
Where do Edges Come From?

Depth / Distance
Discontinuity

Why?
Where do Edges Come From?

Surface Normal / Orientation
Discontinuity

Why?
Where do Edges Come From?

Surface Color / Reflectance Properties Discontinuity
Where do Edges Come From?

Illumination
Discontinuity
Last Time

\[
\begin{bmatrix}
-1 & 0 & 1 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
-1 & 0 & 1 \\
\end{bmatrix}^T
\]

\(\mathbf{l}_x\)

\(\mathbf{l}_y\)
Derivatives

Remember derivatives?

Derivative: rate at which a function $f(x)$ changes at a point as well as the direction that increases the function
Given quadratic function $f(x)$

$$f(x, y) = (x - 2)^2 + 5$$

$f(x)$ is function

$$g(x) = f'(x)$$

aka

$$g(x) = \frac{d}{dx} f(x)$$
Given quadratic function \(f(x) \)

\[
f(x, y) = (x - 2)^2 + 5
\]

What’s special about \(x=2 \)?

\(f(x) \) minim. at 2
\(g(x) = 0 \) at 2

\[
a = \text{minimum of } f \rightarrow g(a) = 0
\]

Reverse is **not true**
Rates of change

\[f(x, y) = (x - 2)^2 + 5 \]

Suppose I want to increase \(f(x) \) by changing \(x \):

Blue area: move left
Red area: move right

Derivative tells you direction of ascent and rate
What Calculus Should I Know

• Really need intuition
• Need chain rule
• Rest you should look up / use a computer algebra system / use a cookbook
• Partial derivatives (and that’s it from multivariable calculus)
Partial Derivatives

• Pretend other variables are constant, take a derivative. That’s it.

• Make our function a function of two variables

\[f(x) = (x - 2)^2 + 5 \]
\[\frac{\partial}{\partial x} f(x) = 2(x - 2) * 1 = 2(x - 2) \]
\[f_2(x, y) = (x - 2)^2 + 5 + (y + 1)^2 \]
\[\frac{\partial}{\partial x} f_2(x) = 2(x - 2) \]

Pretend it’s constant → derivative = 0
Zooming Out

\[f_2(x, y) = (x - 2)^2 + 5 + (y + 1)^2 \]

Dark = \(f(x,y) \) low
Bright = \(f(x,y) \) high
Taking a slice of $f_2(x, y) = (x - 2)^2 + 5 + (y + 1)^2$

Slice of $y=0$ is the function from before:

$f(x) = (x - 2)^2 + 5$
$f'(x) = 2(x - 2)$
Taking a slice of $f_2(x, y) = (x - 2)^2 + 5 + (y + 1)^2$

$\frac{\partial}{\partial x} f_2(x, y)$ is rate of change & direction in x dimension
Zooming Out

\[f_2(x, y) = (x - 2)^2 + 5 + (y + 1)^2 \]

\[\frac{\partial}{\partial y} f_2(x, y) \text{ is } 2(y + 1) \]

and is the rate of change & direction in y dimension
Zooming Out

\[f_2(x, y) = (x - 2)^2 + 5 + (y + 1)^2 \]

Gradient/Jacobian:
Making a vector of
\[\nabla f = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{bmatrix} \]
gives rate and direction of change.

Arrows point OUT of minimum / basin.
What Should I Know?

• Gradients are simply partial derivatives per-dimension: if \(x \) in \(f(x) \) has n dimensions, \(\nabla_f(x) \) has n dimensions

• Gradients point in direction of ascent and tell the rate of ascent

• If a is minimum of \(f(x) \) \(\rightarrow \) \(\nabla_f(a) = 0 \)

• Reverse is not true, especially in high-dimensional spaces
Last Time

\((l_x^2 + l_y^2)^{1/2}\)
Why Does This Work?

Image is function $f(x, y)$

Remember:

$$\frac{\partial f(x, y)}{\partial x} = \lim_{\epsilon \to 0} \frac{f(x + \epsilon, y) - f(x, y)}{\epsilon}$$

Approximate:

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x + 1, y) - f(x, y)}{1}$$

Another one:

$$\frac{\partial f(x, y)}{\partial x} \approx \frac{f(x + 1, y) - f(x - 1, y)}{2}$$
Other Differentiation Operations

<table>
<thead>
<tr>
<th></th>
<th>Horizontal</th>
<th>Vertical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prewitt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sobel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Why might people use these compared to \([-1,0,1]\)?
Images as Functions or Points

Key idea: can treat image as a point in $\mathbb{R}^{(H \times W)}$ or as a function of x,y.

$$\nabla I(x, y) = \begin{bmatrix} \frac{\partial I}{\partial x}(x, y) \\ \frac{\partial I}{\partial y}(x, y) \end{bmatrix}$$

How much the intensity of the image changes as you go horizontally at (x,y) (Often called I_x)
Image Gradient Direction

Some gradients

\[\nabla f = \left[\frac{\partial f}{\partial x}, 0 \right] \]

\[\nabla f = \left[0, \frac{\partial f}{\partial y} \right] \]

\[\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right] \]

Figure Credit: S. Seitz
Image Gradient

Gradient: direction of maximum change. What’s the relationship to edge direction?

Ix

Ly
Image Gradient

\((lx^2 + ly^2)^{1/2} : \text{magnitude}\)
Image Gradient

atan2(ly, lx): orientation

I’m making the lightness equal to gradient magnitude
Image Gradient

atan2(ly, lx): orientation

Now I’m showing *all* the gradients
Image Gradient

$\text{atan2}(l_y,l_x)$: orientation

Why is there structure at 1 and not at 2?
Consider a row of $f(x,y)$ (i.e., fix y)
Conv. image + per-pixel noise with

\[
I_{i,j} = \text{True image} \quad \epsilon_{i,j} \sim N(0, \sigma^2)
\]

\[
D_{i,j} = (I_{i,j+1} + \epsilon_{i,j+1}) - (I_{i,j-1} + \epsilon_{i,j-1})
\]

\[
D_{i,j} = (I_{i,j+1} - I_{i,j-1}) + \epsilon_{i,j+1} - \epsilon_{i,j-1}
\]

True difference Sum of 2 Gaussians

\[
\epsilon_{i,j} - \epsilon_{k,l} \sim N(0, 2\sigma^2) \rightarrow \text{Variance doubles!}
\]
Noise

Consider a row of \(f(x,y) \) (i.e., make \(y \) constant)

\[
\begin{align*}
\frac{d}{dx} f(x) \\
\end{align*}
\]

How can we use the last class to fix this?

Slide Credit: S. Seitz
Handling Noise

Sigma = 50

Slide Credit: S. Seitz
Noise in 2D

Noisy Input

Ix via [-1,01]

Zoom
Noise + Smoothing

Smoothed Input

Ix via [-1,01]

Zoom
Let’s Make It One Pass (1D)

\[\frac{d}{dx} (f \ast g) = f \ast \frac{d}{dx} g \]
Let’s Make It One Pass (2D)
Gaussian Derivative Filter

Which one finds the X direction?

Slide Credit: L. Lazebnik
Applying the Gaussian Derivative

Removes noise, but blurs edge

Slide Credit: D. Forsyth
Compared with the Past

Gaussian Derivative

\[
\begin{bmatrix}
1 & 0 & -1 \\
2 & 0 & -2 \\
1 & 0 & -1
\end{bmatrix}
\]

Sobel Filter

\[
\begin{bmatrix}
1 & 2 & 1 \\
0 & 0 & 0 \\
-1 & -2 & -1
\end{bmatrix}
\]

Why would anybody use the bottom filter?
Filters We’ve Seen

Example
Smoothing
Gaussian
Remove noise
Yes
Why sum to 1 or 0, intuitively?

Goal
Smoothing
Derivative
Deriv. of gauss
Find edges
No

Only +?
Sums to
1
0

Slide Credit: J. Deng
Problems

Still an active area of research
Desirables

• Repeatable: should find same things even with distortion
• Saliency: each feature should be distinctive
• Compactness: shouldn’t just be all the pixels
• Locality: should only depend on local image data
Example

Can you find the correspondences?

Slide credit: N. Snavely
Example Matches

Look for the colored squares

Slide credit: N. Snavely
Basic Idea

Should see where we are based on small window, or any shift → big intensity change.

“flat” region: no change in all directions

“edge”: no change along the edge direction

“corner”: significant change in all directions

Slide Credit: S. Lazebnik
Formalizing Corner Detection

Sum of squared differences between image and image shifted \(u,v \) pixels over.

\[
E(u, v) = \sum_{(x,y) \in W} (I[x + u, y + v] - I[x, y])^2
\]

Image \(I(x,y) \)

Plot of \(E(u,v) \)

Slide Credit: S. Lazebnik
Formalizing Corner Detection

Sum of squared differences between image and image shifted u,v pixels over.

$$E(u, v) = \sum_{(x,y) \in W} (I[x + u, y + v] - I[x, y])^2$$

What’s the value of $E(0,0)$?
Formalizing Corner Detection

Slide Credit: S. Lazebnik
Aside: Taylor Series for Images

Recall Taylor Series:

\[f(x + d) \approx f(x) + \frac{\partial f}{\partial x} d \]

Do the same with images, treating them as function of \(x, y \)

\[I(x + u, y + v) \approx I(x, y) + I_x u + I_y v \]
Formalizing Corner Detection

\[E(u, v) = \sum_{(x,y) \in W} (I[x + u, y + v] - I[x, y])^2 \]

≈ \[\sum_{(x,y) \in W} \left(I[x, y] + I_x[x, y]u + I_y[x, y]v - I[x, y] \right)^2 \]

Cancel \[= \sum_{(x,y) \in W} (I_x[x, y]u + I_y[x, y]v)^2 \]

Expand \[= \sum_{(x,y) \in W} I_xu^2 + 2I_xI_yuv + I_y^2v^2 \]

For brevity: \(I_x = I_x \) at point \((x,y)\), \(I_y = I_y \) at point \((x,y)\)
Formalizing corner Detection

By linearizing image, we can approximate $E(u,v)$ with quadratic function of u and v

$$E(u,v) \approx \sum_{(x,y) \in W} (I_x^2u^2 + 2I_xI_yuv + I_y^2v^2)$$

$$M = \begin{bmatrix}
\sum_{x,y \in W} I_x^2 & \sum_{x,y \in W} I_xI_y \\
\sum_{x,y \in W} I_xI_y & \sum_{x,y \in W} I_y^2
\end{bmatrix}$$

M is called the second moment matrix.
Intuitively what is M?

Pretend for now gradients are either vertical or horizontal at a pixel (so $l_x l_y = 0$)

Obviously Wrong!

$$M = \begin{bmatrix} \sum_{x,y \in W} I_x^2 & \sum_{x,y \in W} I_x I_y \\ \sum_{x,y \in W} I_x I_y & \sum_{x,y \in W} I_y^2 \end{bmatrix} = \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix}$$

If a,b are both small: flat

If one is big, one is small: edge

If a,b both big: corner
Review: Quadratic Forms

Suppose have symmetric matrix \mathbf{M}, scalar a, vector $[u,v]$:

$$E([u, v]) = [u, v]\mathbf{M}[u, v]^T$$

Then the isocontour / slice-through of F, i.e.

$$E([u, v]) = a$$

is an ellipse.
Review: Quadratic Forms

We can look at the shape of this ellipse by decomposing M into a rotation + scaling.

$$M = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R$$

What are λ_1 and λ_2?

Slide credit: S. Lazebnik
Interpreting The Matrix M

The second moment matrix tells us how quickly the image changes and in which directions.

Can compute at each pixel

$$ M = \begin{bmatrix} \sum_{x,y \in W} I_x^2 & \sum_{x,y \in W} I_x I_y \\ \sum_{x,y \in W} I_x I_y & \sum_{x,y \in W} I_y^2 \end{bmatrix} = R^{-1} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} R $$

Directions

Amounts
Visualizing M

Slide credit: S. Lazebnik
Visualizing M

Technical note: M is often best visualized by first taking inverse, so long edge of ellipse goes along edge.

Slide credit: S. Lazebnik
Interpreting Eigenvalues of M

- **“Corner”**
 - λ_1 and λ_2 are large,
 - $\lambda_1 \sim \lambda_2$;
 - E increases in all directions

- **“Edge”**
 - $\lambda_1 \gg \lambda_2$

- **“Flat”**
 - λ_1 and λ_2 are small;
 - E is almost constant in all directions

Slide credit: S. Lazebnik; Note: this refers to previous ellipses, not original M ellipse. Other slides on the internet may vary.
Putting Together The Eigenvalues

\[R = \det(M) - \alpha \text{trace}(M)^2 \]
\[= \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2 \]

\(\alpha\): constant (0.04 to 0.06)
In Practice

1. Compute partial derivatives I_x, I_y per pixel
2. Compute M at each pixel, using Gaussian weighting w

$$M = \begin{bmatrix}
\sum_{x,y \in W} w(x, y) I_x^2 & \sum_{x,y \in W} w(x, y) I_x I_y \\
\sum_{x,y \in W} w(x, y) I_x I_y & \sum_{x,y \in W} w(x, y) I_y^2
\end{bmatrix}$$

Slide credit: S. Lazebnik
In Practice

1. Compute partial derivatives I_x, I_y per pixel
2. Compute M at each pixel, using Gaussian weighting w
3. Compute response function R

$$R = \det(M) - \alpha \text{trace}(M)^2$$

$$= \lambda_1 \lambda_2 - \alpha (\lambda_1 + \lambda_2)^2$$

Slide credit: S. Lazebnik
Computing R

Slide credit: S. Lazebnik
Computing R
In Practice

1. Compute partial derivatives I_x, I_y per pixel
2. Compute M at each pixel, using Gaussian weighting w
3. Compute response function R
4. Threshold R

Thresholded R

Slide credit: S. Lazebnik
In Practice

1. Compute partial derivatives I_x, I_y per pixel
2. Compute M at each pixel, using Gaussian weighting w
3. Compute response function R
4. Threshold R
5. Take only local maxima (called non-maxima suppression)

Slide credit: S. Lazebnik
Thresholded, NMS R

Slide credit: S. Lazebnik
Final Results
Desirable Properties

If our detectors are repeatable, they should be:

- **Invariant** to some things: image is transformed and corners remain the same

- **Covariant/equivariant** with some things: image is transformed and corners transform with it.

Slide credit: S. Lazebnik
Recall Motivating Problem

Images may be different in lighting and geometry
Affine Intensity Change

\[I_{\text{new}} = aI_{\text{old}} + b \]

M only depends on derivatives, so \(b \) is irrelevant

But \(a \) scales derivatives and there’s a threshold

Partially invariant to affine intensity changes

Slide credit: S. Lazebnik
All done with convolution. Convolution is translation invariant.

Equivariant with translation
Rotations just cause the corner rotation to change. Eigenvalues remain the same.

Equivariant with rotation
One pixel can become many pixels and vice-versa.

Not equivariant with scaling