LPs
Standard Form
$\min c^{T} x$ s.t. $A x=b, x \geq 0, b \geq 0$.
Getting it to standard form:
Getting rid of \geq, \leq :
$x_{1} \leq 4 \rightarrow x_{1}+x_{2}=4, x_{2} \geq 0$
Getting rid of - vars:
$x \in \mathbb{R} \rightarrow x=u-v, u, v \in \mathbb{R}^{+}$
Bounded vars:
$x \in[2,5] \rightarrow 2 \leq x, x \leq 5$.

Simplex algorithm:

(1) Take cost function, turn into $\min z$ s.t. $c^{T} x=z$, remainder in standard LP form.
(2) Pivoting: do Gaussian Elimination to get rid of as many variables as possible, without distributing the z around.
(3) Variables that have been eliminated except in one equation are dependent/basic; others independent/non-basic. Can always get a feasible point by setting non-basic variables to zero, and reading out basic variables.

$$
\left[\begin{array}{ccc}
1 & 0 & C \\
0 & I_{m} & A
\end{array}\right]\left[-z, x_{B}, x_{N}\right]^{T}=\left[-z_{0}, b\right]^{T}
$$

(4) Improve solutions: find smallest reduced cost C_{j}. If $C_{J} \geq 0$, optimality reached, quit. Else, J is incoming.
(5) Find as far as we can go by picking outgoing variable:
$r=\operatorname{argmin}_{i \mid A_{i, j}>0} b_{i} / A_{i, j}$
(6) Perform elimination to get rid of J, using equation that makes the outgoing variable a basic one. That is, take the only equation in which the outgoing variable is non-zero, and eliminate the incoming variable with it.
(7) Repeat from 4 until optimality reached.

Convex sets,fcns:
 Defns:

A set is is X if for any weighted sum of data points satisfying Y, the weighted sum is in the set.
Convex: $\sum_{i} \theta_{i}=1, \theta_{i} \geq 0$
Affine: $\sum_{i} \theta_{i}=1$.
Conic: $\theta_{i} \geq 0$.
Examples:
Lines, line segments, hyperplanes, halfspaces, L_{p} balls for $p \geq 1$, polyhedrons, polytopes.
Preserving operations:
Translation, scaling, intersection, Affine functions (e.g., projection, coordinate dropping), set sum $\left\{c_{1}+c_{2} \mid c_{1} \in C_{1}, c_{2} \in C_{2}\right\}$, direct sum $\left\{\left(c_{1}, c_{2}\right) \mid c_{1} \in C_{1}, c_{2} \in C_{2}\right\}$, perspective projection.
Conv. Fcn. Defn:
$f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$
$f(y) \geq f(x)+\nabla f(x)^{T}(y-x)$
Preserving operations, functions:
Non-negative weighted sum, pointwisemax, affine map $f(A x+b)$, composition, perspective map.

Strict, Strong Convexity
 Defns:

Strict convexity:
$f(\theta x+(1-\theta) y)<\theta f(x)+(1-\theta) f(y)$ (basically, not linear).
m-Strong convexity:
$f(\theta x+(1-\theta) y) \leq \theta f(x)+(1-\theta) f(y)$

$$
-\frac{1}{2} m \theta(1-\theta)\|x-y\|_{2}^{2}
$$

Better strong convexity defns:
$(\nabla f(x)-\nabla f(y))^{T}(x-y) \geq m\|x-y\|_{2}^{2}$
$f(y) \geq f(x)+\nabla f(x)^{T}(y-x)+\frac{m}{2}\|y-x\|_{2}^{2}$
$\nabla^{2} f(x) \geq m I$.
Gradient Descent
Given x^{0}, repeat $x^{k}=x^{k-1}-t_{k} \nabla f\left(x^{k-1}\right)$.
Picking t : can diverge if t too big, too slow if t too small.
Backtracing line search: start with $t=1$,
while $f(x-t \nabla f(x))>f(x)-\alpha t\|\nabla f(x)\|_{2}^{2}$,
update $t=\beta t$ with $0<\alpha<1 / 2,0<\beta<1$.

Subgradients
 Defn.:

Subgradient of convex f is g s.t.
$f(y) \geq f(x)+g^{T}(y-x)$
Subdifferential $\partial f(X)$: set of all g.
SG calculus:
$\partial(a f)=a \partial f ; \partial\left(f_{1}+f_{2}\right)=\partial f_{1}+\partial f_{2} ;$ $\partial f(A x+b)=A^{T} \partial f(A x+b)$.
Finite-pointwise max: $\partial \max _{f \in F} f(x)$ is the convex hull of the active (achieving max functions at x).
Norms: if $f(x)=\|x\|_{p}$ and $1 / p+1 / q=1$, then $\|x\|_{p}=\max _{\|z\|_{q} \leq 1} z^{T} x$; thus
$\partial\|x\|_{p}=\left\{y:\|y\|_{q} \leq 1, y^{T} x=\right.$ $\left.\max _{\|z\|_{q} \leq 1} z^{T} x\right\}$.
Optimality: $\quad f\left(x^{*}\right)=\min f(x) \leftrightarrow 0 \in$ $\partial f\left(x^{*}\right)$
Remember that sgs may not exist for nonconvex functions!

Subgradient Method

Given x^{0}, repeat $x^{k}=x^{k-1}-t_{k} g^{k-1}$
SG method not descent method; keep track of best so far.
Picking t: square summable but not summable (e.g., $1 / t$). Polyak steps: $\left(f\left(x^{k-1}\right)-f\left(x^{*}\right)\right) /\left\|g^{k-1}\right\|_{2}^{2}$.
Projected sg method: Project after taking a step.

Generalized GD

Suppose $f(x)=g(x)+h(x)$ with g convex, diff, h convex, not necessarily diff.
Define $\operatorname{prox}_{t}(x)=\operatorname{argmin}_{z} \frac{1}{2 t}\|x-z\|_{2}^{2}+$ $h(z)$; GGD is:
$x^{k}=\operatorname{prox}_{t}\left(x^{k-1}-t_{k} \nabla g\left(x^{k-1}\right)\right)$
Generalized gradient since if
$G_{t}(x)=(1 / t)\left(x-\operatorname{prox}_{t}(x-t \nabla g(x))\right)$
then update is
$x^{k}=x^{k-1}-t_{k} G_{t}\left(x^{k-1}\right)$
With backtracking: While $g\left(x-t G_{t}(x)\right)>$
$g(x)-t \nabla g(x)^{T} G_{t}(x)+\frac{t}{2}\left\|G_{t}(x)\right\|_{2}^{2}$ (maybe
with α in last term?) update $t=\beta t$.
Example (Lasso): Prox is $\operatorname{argmin}_{z} \frac{1}{2 t} \| \beta-$ $z\left\|_{2}^{2}+\lambda\right\| z \|_{1}=S_{\lambda t}(\beta) . \quad S_{\lambda}(\beta)$ is the softthreshold operator,

$$
\left[S_{\lambda}(\beta)\right]_{i}=\left\{\begin{aligned}
\beta_{i}-\lambda & : \beta_{i}>\lambda \\
0 & :-\lambda \leq \beta_{i} \leq \lambda \\
\beta_{i}+\lambda & : \beta_{i}<-\lambda
\end{aligned}\right.
$$

Example (Matrix Completion): Objective: $\frac{1}{2} \sum_{(i, j)} \stackrel{\text { observ }}{ }\left(Y_{i, j}-B_{i, j}\right)^{2}+\lambda\|B\|_{*}$ with $\|B\|_{*}=\sum_{i=1}^{r} \sigma_{i}(B)$.

Prox function: $\operatorname{argmin}_{Z} \frac{1}{2 t}\|B-Z\|_{F}^{2}+$ $\lambda\left||Z|_{*}\right.$.

Solution: matrix soft-thresholding; $U \Sigma_{\lambda} V^{T}$ where $B=U \Sigma V^{T}$ and $\left(\Sigma_{\lambda}\right)_{i i}=$ $\max \left\{\Sigma_{i i}-\lambda, 0\right\}$.

Newton's Method: Originally developed for finding roots; use it to find roots of gradient. Want $\nabla f(x)+\nabla^{2} f(x) \Delta_{x}=0$; solution is $\Delta_{x}=-\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)$.
Damped Newton method:
$x^{k+1}=x^{k}-h_{k}\left[\nabla^{2} f(x)\right]^{-1} \nabla f(x)$.

Conjugate Direction methods: Want to solve $\min \frac{1}{2} x^{T} Q x-b^{T} x$ with $Q>0$.
Define Q-orthogonality as $d_{i}^{T} Q d_{j}=0$.
Exp. subspace thm.:
Let $\left\{d_{i}\right\}_{i=0}^{n-1}$ be Q-conjugate.
(for method) $g_{k}=Q x_{k}-b$
$x_{k+1}=x_{k}+\alpha d_{k}$
$\alpha_{k}=-g_{k}^{T} d_{k} /\left(d_{k}^{T} Q d_{k}\right)$
Proof sketch $\left(g_{k} \perp B_{k}\right)$ by ind.:
$g_{k+1}=Q x_{k+1}-b=Q\left(x_{k}+\alpha_{k} d_{k}\right)-b$
$\left(Q x_{k}-b\right)+\alpha Q d_{k}=g_{k}+\alpha Q d_{k}$
From here, by defn of $\alpha, d_{k}^{T} g_{k+1}=$ $d_{k}^{T}\left(g_{k}+\alpha Q d_{k}\right)=d_{k}^{T} g_{k}-\alpha d_{k}^{T} Q d_{k}=0$
Algorithm:
Arbitrary x_{0}, repeat $d_{0}=-g_{0}=b-Q x_{0}$
$\alpha_{k}=-g_{k}^{T} d_{k} / d_{k}^{T} Q d_{k} ; x_{k+1}=x_{k}+\alpha_{k} d_{k}$
$g_{k}=Q x_{k}-b ; d_{k+1}=-g_{k+1}+\beta_{k} d_{k}$
$\beta_{k}=g_{k+1}^{T} Q d_{k} /\left(d_{k} Q d_{k}\right)$

Quasi-Newton Methods:

Gist: approximate Hessian/inverse Hessian.
Symmetric rank-one correction:
Update: $x_{k+1}=x_{k}-\alpha H_{k} g_{k}$
$\alpha_{k}=\operatorname{argmin}_{\alpha} f\left(x_{k}-\alpha H_{k} g_{k}\right)(\mathrm{LS})$
$g_{k}=\nabla f_{k}$
$H_{k+1}=H_{k}+\frac{\left(p_{k}-H_{k} q_{k}\right)\left(p_{k}-H_{k} q_{k}\right)^{T}}{q_{k}^{T}\left(p_{k}-H_{k} q_{k}\right)}$
$p_{k}=x_{k+1}-x_{k} ; q_{k}=g_{k+1}-g_{k}$
Might not be PSD!
DFP (Rank 2)

$$
H_{k+1}=H_{k}+\frac{p_{k} p_{k}^{T}}{p_{k}^{T} q_{k}}-\frac{H_{k} q_{k} q_{k}^{T} H_{k}}{q_{k}^{T} H_{k} q_{k}}
$$

BFGS

Update inverse of Hessian via ShermanMorrison).
Let $q_{k}=g_{k+1}-g_{k}$

$$
\begin{aligned}
H_{k+1}= & H_{k}+\left(1+\frac{q_{k}^{T} H_{k} q_{k}}{p_{k}^{T} q_{k}}\right) \frac{p_{k} p_{k}^{T}}{p_{k}^{T} q_{k}} \\
& -\frac{p_{k} q_{k}^{T} H_{k}+H_{k} q_{k} p_{k}^{T}}{q_{k} p_{k}}
\end{aligned}
$$

LP Duality

Let $c_{n}, A_{m \times n}, b_{m}, G_{r \times n}, h_{r}$.
(P) $\min c^{T} x$ s.t.
$A x=b, G x \leq h$
(D) $\max -b^{\bar{T}} u-h^{T} v$ s.t.
$-A^{T} u-G^{T} v=c, v \geq 0$.

Duality:

Consider $\min f(x)$ s.t.
$h_{i}(x) \leq 0, i=1, \ldots, m$
$l_{j}(x)=0 j=1, \ldots, r$
Lagrangian:
$L(x, u, v)=f(x)+\sum_{i=1}^{m} u_{i} h_{i}(x)+$ $\sum_{j=1}^{r} v_{j} l_{j}(x)$ with $u \in \mathbb{R}^{m}, v \in \mathbb{R}^{r}$ and $u \geq 0$.
Note: $f(x) \geq L(x, u, v)$ at feasible x.
Dual problem:
Let $g(u, v)=\min _{x} L(x, u, v)$. Lagrange dual function is g. Dual problem $\max _{u \geq 0, v} g(u, v)$.
Note: dual problem always concave.

Strong duality:

Always have $f^{*} \geq g *$ where $f *, g *$ primal and dual objectives. When $f^{*}=g^{*}$, have strong duality. If primal is a convex problem (f, h_{i} convex, l_{j} affine) and exists a strictly feasible x, then strong duality.

Dual example (lasso):
 Have primal:

$\min _{\beta} \frac{1}{2}\|y-X \beta\|_{2}^{2}+\lambda\|\beta\|_{1} ;$
Introduce dummy z and solve:
$\min _{\beta, z} \frac{1}{2}\|y-z\|_{2}^{2}+\lambda\|\beta\|_{1}$ s.t. $z=X \beta$.
Dual is then:
$\min _{\beta, z} \frac{1}{2}\|y-z\|_{2}^{2}+\lambda\|\beta\|_{1}+u^{T}(z-X \beta)$
$\frac{1}{2}\|y\|_{2}^{2}-\frac{1}{2}\|y-u\|_{2}^{2}-I_{v:\|v\|_{\infty} \leq 1}\left(X^{T} u / \lambda\right)$
Or $\quad \min _{u} \frac{1}{2}\left(\|y\|_{2}^{2}-\|y-u\|_{2}^{2}\right)$
$\left\|X^{T} u\right\|_{\infty} \leq \lambda$.

KKT Conditions:

Stationarity:
$0 \in \partial f(x)+\sum_{i=1}^{m} u_{i} \partial h_{i}(x)+\sum_{j=1}^{r} \partial l_{j}(x)$
Complementary slackness:
$u_{i} \cdot h_{i}(x)=0$ for all i
P feas.: $h_{i}(x) \leq 0, l_{j}(x)=0$ for all i, j
D feas.: $u_{i} \geq 0$ for all i Necessary: if strong duality, then if x^{*}, u^{*}, v^{*} solutions, then they satisfy KKT conditions.
Sufficient: always, if x^{*}, u^{*}, v^{*} satisfy KKT, then primal dual solutions.
Correspondence Under strong duality, x^{*} achieves the minimum in $L\left(x, u^{*}, v^{*}\right)$; if $L\left(x, u^{*}, v^{*}\right)$ has a unique minimum, then the corresponding point is the primal solution.

Correspondence, Conjugates:

Defn. convex conjugate: Given $f, f^{*}(y)=$ $\max _{x} y^{T} x-f(x)$.
Implies $f(x)+f^{*}(y) \geq x^{T} y$. If f closed and convex, ${ }^{* *}=f$.

Example, norm:

If $f(x)=\|x\|, f^{*}(y)=I_{z: \|\left. z\right|_{*} \leq 1}(y)$
Ellipsoid method for LP: Solves feasibility problems, but any LP can be turned into a feasibility problem. Setup: Let Ω be the set satisfying the constraints. Assume $\Omega \subseteq R$-radius ball centered at y_{0}, and there is a ball with radius r centered at y^{*} inside Ω. We know R, r, y_{0}, but not y^{*}. Iterations: Can check if center of ellipsoid ϵ_{k} is in Ω; if so, done. Else: find a constraint that is violated, find side that is not violated, fit ellipsoid to that half.
Convergence:

$$
\frac{\operatorname{Vol}\left(\epsilon_{k}\right)}{\operatorname{Vol}\left(\epsilon_{0}\right)} \leq\left(\frac{\tau}{R}\right)^{m} \leq\left(\frac{1}{2}\right)^{k / m}
$$

which implies $k \leq O\left(m^{2} \log R / \tau\right)$ where $\tau=1 /(m+1)$.

Penalty Methods:

Original constrained problem (P), $\min _{x \in S} f(x)$, replace with unconstrained
problem $\min f(x)+c p(x) . \quad p$ satisfies: p continuous, $p(x) \geq 0, p(x)=0$ iff $x \in S$. Idea: find some solution, increasingly penalize outside S by increasing $c \rightarrow \infty$:
Penalty functions:
$p(x)=\frac{1}{2} \sum_{i=1}^{p} \max \left(\left[0, g_{i}(x)\right]\right)^{2}$
Barrier Methods:
Replace original problem with $\min _{x} f(x)+$ $\frac{1}{c} B(x)$ where B is continuous; $B(x) \geq 0$ for all $x \in \operatorname{int}(S) ; B(x) \rightarrow \infty$ as $x \rightarrow \partial S$. Idea: start out in interior, don't let the algorithm leave S. Increase $c \rightarrow \infty$. Barrier functions:
Suppose $g_{i}(x) \leq 0$:
$B(x)=-\sum_{i=1}^{m} \frac{1}{g_{i}(x)}$
$B(x)=-\sum_{i=1}^{m} \log \left(-g_{i}(x)\right)$
SDP: Inner product: $\operatorname{tr}(A \cdot B)=$

$$
\sum \sum A_{i, j} B_{i, j}
$$

ICA: Step 1: whiten. Step 2: want to minimize gaussian-likeness. But non-convex and lots of local minima. Assume additive linear model.

Whitening: $\Sigma=\operatorname{cov}(X)=U D U^{T}$, $A^{*}=D^{-1 / 2} U^{T} A$.
Coordinate descent: Do argmin on each dimension, updating one-by-one. When does coordinate descent work? $g(x)+$ $\sum_{i} h_{i}\left(x_{i}\right)$
Non-convex problems: Specialized approach for each.

Convex Conjugates:

$$
\begin{aligned}
& f^{*}(y)= \max _{x} x^{T} x^{*}-f(x) \\
&-\min _{f}(x)-x^{T} x^{*} \\
& f(a x) f^{*}\left(x^{*} / a\right) \\
& f(x+b) \quad f^{*}\left(x^{*}\right)-b^{T} x^{*} \\
& a f(x) \quad a f^{*}\left(x^{*} / a\right) \\
& e^{x} \quad x^{*} \log \left(x^{*}\right)-x * \\
&\|x\| \quad I_{\|z\| *} \leq 1\left(x^{*}\right) \\
& \text { Matrix derivatives: } \\
& \partial A=0 \\
& \partial(a X)=a \partial X \\
& \partial(\operatorname{tr}(X))= \\
& \partial(X Y)= \\
& \partial x^{T} a / \partial x= \\
&\partial X X) \\
& \partial x^{T} X b / \partial X=a b^{T}
\end{aligned}
$$

Suppose s, r are functions of x and A is constant,

Matrix properties:

$S V D: A=U \Sigma V^{T}$ where:
U are the eigenvectors of $A A^{T}$
$D=\sqrt{\operatorname{diag}\left(\operatorname{eig}\left(A A^{T}\right)\right)}$
V are the eigenvectors of $A^{T} A$.
Can also write A as the weighted sum of r rank-1 matrices. The rank-1 matrices are $\Sigma_{i i} U_{i} V_{i}^{T}$ for $1 \leq i \leq r$.
$E V D: X=V D V^{-1}$ with D diagonal. If X is symmetric, $V V^{T}=I$.
Traces: Linear.
$\operatorname{tr}(A)=\operatorname{tr}\left(A^{T}\right)$
$\operatorname{tr}\left(X^{T} Y\right)=\operatorname{tr}\left(X Y^{T}\right)$
$\operatorname{tr}\left(X^{T} Y\right)=\operatorname{vec}(X)^{T} \operatorname{vec}(Y)$
$\operatorname{tr}(A B C)=\operatorname{tr}(B C A)=\operatorname{tr}(C A B)$
P^{-1} exists, $\operatorname{tr}(A)=\operatorname{tr}\left(P^{-1} A P\right)$.
$\operatorname{tr}(A)=\sum_{i} \lambda_{i}$
Sherman-Morrison Mat. Inv.: Suppose
A^{-1} exists, $1+v^{T} A^{-1} u \neq 0$.
$\left(A+u v^{T}\right)^{-1}=A^{-1}-\frac{A^{-1} u v^{T} A^{-1}}{1+v^{T} A^{-1} u}$

Matrix norms:

Trace/Nuclear norm:
$\|A\|_{*}=\sum_{i=1}^{r} \sigma_{i}(a)$
Spectral/Operator norm:
$\|A\|_{o p}=\sigma_{1}(A)$
Frobenius norm:
$\|A\|_{F}=\operatorname{tr}\left(A^{T} \dot{A}\right)$.

$$
\begin{array}{cc}
\text { Derivatives: } & f^{\prime}(x) g(x)+f(x) g^{\prime}(x) \\
f(x) g(x) & f^{\prime}(g(x)) g^{\prime}(x) \\
f(g(x)) & n x^{n-1} \\
x^{n} & -f^{-2} f^{\prime}(x) \\
1 / f(x) & e^{x} \\
f(x) / g(x) & \left(f^{\prime}(x) g(x)-g^{\prime}(x) f(x)\right) /\left(g(x)^{2}\right) \\
e^{x} & e^{x} \\
\ln (x) & 1 / x \\
\log _{c}(x) & 1 /(x \ln (c))
\end{array}
$$

Miscellaneous math:
Lipschitz: A function f is Lipschitz continuous if $\left|f\left(x_{1}\right)-f\left(x_{2}\right)\right| \leq L\left|x_{1}-x_{2}\right|$; controls how quickly the function changes.
Gradient Lipschtiz:
A differentiable function f has Lipschitz continuous gradient $\|\nabla f(y)-\nabla f(x)\| \leq$ $L\|y-x\|$; if it is twice-differentiable, $L I \geq$ $\nabla^{2} f(x)$.

Useful inequalities:

Cauchy-Schwarz: $\quad\left|x^{T} y\right| \leq\|x\| \cdot\|y\|$. Hölder: $\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}$ for $1 / p+1 / q=$ 1.

$$
\frac{\partial s^{T} A r}{\partial x}=\frac{\partial s}{\partial x}^{T} A r+\frac{\partial r}{\partial x}^{T} A^{T} s
$$

	Gr.	SG.	Prox.	New.	Conj.	QN	Bar.	P/D IPM
Crit	f sm	any	sm $g+$ simple h	$2 \times \mathrm{sm}$	$2 \times$	$2 \times$	$2 \times$	$2 \times$
Const.	Proj.	Proj.	Const. Prox	Equality	None	None	$2 \times \mathrm{sm}$. ineq.	$2 \times \mathrm{sm}$. ineq.
Param.	fix t / LS	$t \rightarrow 0$	fix t / LS	fix $t=1 / \mathrm{LS}$	fix/LS	LS	in: fixed/LS;	in:LS
Cost/It.	chp	chp	? prox	$\operatorname{Exp} .\left(\nabla^{2}\right)$	$\approx \operatorname{chp}$	$\approx \operatorname{chp}$	$\begin{aligned} & \text { out.: bar. } \rightarrow \infty \\ & \text { V.Exp } \end{aligned}$	$\begin{aligned} & \text { out.: bar. } \rightarrow \infty \\ & \quad \approx \operatorname{Exp} \end{aligned}$
Rate	$O(1 / \epsilon)$	$O\left(1 / \epsilon^{2}\right)$	$O(1 / \epsilon)$	$O(\log (\log (1 / \epsilon))$)	super-lin.	+ Storage superlin.	$O(\log (1 / \epsilon))$	$O(\log (1 / \epsilon))$

Gr. and Prox. Gr. are $O(1 / \sqrt{\epsilon})$ w/ accel., $O(\log (1 / \epsilon)) \mathrm{w} /$ strong convexity.

