$\begin{array}{c} \mathbf{LPs} \\ Standard \ Form: \\ T \sim s \ t \ Ax \end{array}$ $\min c^T x \text{ s.t. } Ax = b, x \ge 0, b \ge 0.$ Getting rid of \geq,\leq : $x_1 \leq 4 \rightarrow x_1 + x_2 = 4, x_2 \geq 0$ Getting rid of - vars: $x \in \mathbb{R} \to x = u - v, u, v \in \mathbb{R}^+$ Bounded vars: $x \in [2,5] \to 2 \le x, x \le 5.$

Simplex algorithm:

(1) Take cost function, turn into $\min z$ s.t. $c^T x = z$, remainder in standard LP form. (2) Pivoting: do Gaussian Elimination to get rid of as many variables as possible, without distributing the z around.

(3) Variables that have been eliminated except in one equation are dependent/basic; others independent/non-basic. Can always get a feasible point by setting non-basic variables to zero, and reading out basic variables.

$$\begin{bmatrix} 1 & 0 & C \\ 0 & I_m & A \end{bmatrix} \begin{bmatrix} -z, x_B, x_N \end{bmatrix}^T = \begin{bmatrix} -z_0, b \end{bmatrix}^T$$

(4) Improve solutions: find smallest reduced cost C_i . If $C_J \geq 0$, optimality reached, quit. Else, J is incoming.

(5) Find as far as we can go by picking outgoing variable:

 $r = \operatorname{argmin}_{i|A_{i,j}>0} b_i / A_{i,j}$

(6) Perform elimination to get rid of J, using equation that makes the outgoing variable a basic one. That is, take the only equation in which the outgoing variable is non-zero, and eliminate the incoming variable with it.

(7) Repeat from 4 until optimality reached.

Convex sets, fcns:

Defns:

A set is is X if for any weighted sum of data points satisfying Y, the weighted sum is in the set.

Convex: $\sum_{i} \theta_{i} = 1, \ \theta_{i} \ge 0$ Affine: $\sum_{i} \theta_{i} = 1.$ Conic: $\theta_{i} \ge 0.$

Examples:

Lines, line segments, hyperplanes, halfspaces, L_p balls for $p \geq 1$, polyhedrons, polytopes.

Preserving operations:

Translation, scaling, intersection, Affine functions (e.g., projection, coordinate dropping), set sum $\{c_1 + c_2 | c_1 \in C_1, c_2 \in C_2\},\$ direct sum $\{(c_1, c_2) | c_1 \in C_1, c_2 \in C_2\}$, perspective projection.

Conv. F.ch. Defn.

$$f(\theta x + (1 - \theta)y) \le \theta f(x) + (1 - \theta)f(y)$$

$$f(y) > f(y) + \nabla f(y)^T(y - y)$$

$$J(y) \ge J(x) + \sqrt{J(x)} \quad (y - x)$$

Preserving operations, functions: Non-negative weighted sum, pointwisemax, affine map f(Ax + b), composition, perspective map.

Strict, Strong Convexity

Defns:

Strict convexity: $f(\theta x + (1 - \theta)y) < \theta f(x) + (1 - \theta)f(y)$ (basically, not linear). *m*-Strong convexity

$$\begin{split} \widetilde{f}(\widetilde{\theta}x + (1 - \widetilde{\theta})y) &\leq \theta f(x) + (1 - \theta)f(y) \\ &- \frac{1}{2}m\theta(1 - \theta)||x - y||_2^2 \end{split}$$

Better strong convexity defns: $(\nabla f(x) - \nabla f(y))^T (x - y) \ge m ||x - y||_2^2$ $f(y) \ge f(x) + \nabla f(x)^T (y - x) + \frac{m}{2} ||y - x||_2^2$ $\nabla^2 f(x) \ge mI.$ Gradient Descent Given x^0 , repeat $x^k = x^{k-1} - t_k \nabla f(x^{k-1})$. Picking t: can diverge if t too big, too slow if t too small. Backtracing line search: start with t = 1, while $f(x - t\nabla f(x)) > f(x) - \alpha t ||\nabla f(x)||_2^2$, update $t = \beta t$ with $0 < \alpha < 1/2, 0 < \beta < 1$.

Subgradients

 $\overline{Defn.:}$ Subgradient of convex f is g s.t. $f(y) \ge f(x) + g^T(y - x)$ Subdifferential $\partial f(X)$: set of all g. $SG \ calculus: \\ \partial(af) = a\partial f; \ \partial(f_1 + f_2) = \partial f_1 + \partial f_2;$ $\partial f(Ax+b) = A^T \partial f(Ax+b).$ Finite-pointwise max: $\partial \max_{f \in F} f(x)$ is the convex hull of the active (achieving

max functions at x). *Norms:* if $f(x) = ||x||_p$ and 1/p + 1/q = 1, then $||x||_p = \max_{||z||_q \le 1} z^T x$; thus

 $\partial ||x||_p = \{y : ||y||_q \le 1, y^T x =$

 $\max_{||z||_q \le 1} z^T x \}.$ Optimality: $f(x^*) = \min f(x) \leftrightarrow 0 \in$

 $\partial f(x^*)$ Remember that sgs may not exist for nonconvex functions!

Subgradient Method

Given x^0 , repeat $x^k = x^{k-1} - t_k g^{k-1}$ SG method not descent method; keep track of best so far.

Picking t: square summable but not summable (e.g., 1/t). Polyak steps: $(f(x^{k-1}) - f(x^*))/||g^{k-1}||_2^2$. Projected sg method: Project after taking a

step.

Generalized GD

Suppose f(x) = g(x) + h(x) with g convex, diff, h convex, not necessarily diff. Define $\operatorname{prox}_t(x) = \operatorname{argmin}_z \frac{1}{2t} ||x - z||_2^2 +$ h(z); GGD is: $x^{k} = \operatorname{prox}_{t}(x^{k-1} - t_k \nabla g(x^{k-1}))$ Generalized gradient since if $G_t(x) = (1/t)(x - \operatorname{prox}_t(x - t\nabla g(x)))$ then update is $x^{k} = x^{k-1} - t_k G_t(x^{k-1})$ With backtracking: While $g(x - tG_t(x)) >$ $g(x) - t\nabla g(x)^T G_t(x) + \frac{t}{2} ||G_t(x)||_2^2$ (maybe) with α in last term?) update $t = \beta t$. Example (Lasso): Prox is $\operatorname{argmin}_{z} \frac{1}{2t} ||\beta|$

 $|z||_2^2 + \lambda ||z||_1 = S_{\lambda t}(\beta)$. $S_{\lambda}(\beta)$ is the softthreshold operator, $\beta_i - \lambda : \beta_i > \lambda$

$$[S_{\lambda}(\beta)]_{i} = \begin{cases} 0 & :-\lambda \leq \beta_{i} \leq \lambda \\ \beta_{i} + \lambda & :\beta_{i} < -\lambda \end{cases}$$

Example (Matrix Completion): Objective: $\frac{1}{2} \sum_{(i,j) \text{ observ}} (Y_{i,j} - B_{i,j})^2 + \lambda ||B||_* \text{ with } ||B||_* = \sum_{i=1}^r \sigma_i(B).$

Prox function: $\operatorname{argmin}_{Z} \frac{1}{2t} ||B - Z||_{F}^{2} +$ $\lambda ||Z|_*.$

Solution: matrix soft-thresholding; $U\Sigma_{\lambda}V^{T}$ where $B = U\Sigma V^{T}$ and $(\Sigma_{\lambda})_{ii} =$ $\max\{\Sigma_{ii} - \lambda, 0\}.$

Newton's Method: Originally developed for finding roots; use it to find roots of gradient. Want $\nabla f(x) + \nabla^2 f(x) \Delta_x = 0;$ solution is $\Delta_x = -[\nabla^2 f(x)]^{-1} \nabla f(x).$ Damped Newton method: $x^{k+1} = x^k - h_k [\nabla^2 f(x)]^{-1} \nabla f(x).$

Conjugate Direction methods: Want to solve $\min \frac{1}{2}x^T Q x - b^T x$ with Q > 0. Define Q-orthogonality as $d_i^T Q d_j = 0$. Exp. subspace thm.: Let $\{d_i\}_{i=0}^{n-1}$ be Q-conjugate. (for method) $g_k = Qx_k - b$ $x_{k+1} = x_k + \alpha d_k$ $\alpha_k = -g_k^T d_k / (d_k^T Q d_k)$ Proof sketch $(g_k \perp B_k)$ by ind.: $g_{k+1} = Qx_{k+1} - b = Q(x_k + \alpha_k d_k) - b$ $(Qx_k - b) + \alpha Qd_k = g_k + \alpha Qd_k$ From here, by define of α , $d_k^T g_{k+1}$ _ $d_k^T(g_k + \alpha Q d_k) = d_k^T g_k - \alpha d_k^T Q d_k = 0$ Algorithm: Arbitrary x_0 , repeat $d_0 = -g_0 = b - Qx_0$ $\begin{aligned} &\alpha_k = -g_k^T d_k / d_k^T Q d_k; \, x_{k+1} = x_k + \alpha_k d_k \\ &g_k = Q x_k - b; \ d_{k+1} = -g_{k+1} + \beta_k d_k \\ &\beta_k = g_{k+1}^T Q d_k / (d_k Q d_k) \end{aligned}$

Quasi-Newton Methods:

Gist: approximate Hessian/inverse Hessian. Symmetric rank-one correction: Update: $x_{k+1} = x_k - \alpha H_k g_k$ $\alpha_k = \operatorname{argmin}_{\alpha} f(x_k - \alpha H_k g_k)$ (LS)

 $g_k = \nabla \breve{f}_k$ $\begin{array}{l} H_{k+1} = H_k + \frac{(p_k - H_k q_k)(p_k - H_k q_k)^T}{q_k^T (p_k - H_k q_k)} \\ p_k = x_{k+1} - x_k; q_k = g_{k+1} - g_k \\ \text{Might not be PSD!} \\ \end{array}$

DFP (Rank 2)

$$H_{k+1} = H_k + \frac{p_k p_k^T}{p_k^T q_k} - \frac{H_k q_k q_k^T H_k}{q_k^T H_k q_k}$$

BFGSUpdate inverse of Hessian via Sherman-Morrison).

Let $q_k = g_{k+1} - g_k$

$$H_{k+1} = H_k + \left(1 + \frac{q_k^T H_k q_k}{p_k^T q_k}\right) \frac{p_k p_k^T}{p_k^T q_k} - \frac{p_k q_k^T H_k + H_k q_k p_k^T}{q_k p_k}$$

LP Duality

Let $c_n, A_{m \times n}, b_m, G_{r \times n}, h_r$. (P) $\min c^T x$ s.t. $Ax = b, Gx \le h$ (D) $\max -b^T u - h^T v$ s.t. $-A^T u - G^T v = c, v > 0.$

Duality:

Consider $\min f(x)$ s.t. $h_i(x) \le 0, \ i = 1, \dots, m$ $l_{i}(x) = 0 \ j = 1, \dots, r$ Lagrangian: Note: $f(x) \ge L(x, u, v)$ at feasible x. Dual problem:

Let $g(u, v) = \min_x L(x, u, v).$ Lagrange dual function is g. Dual problem $\max_{u\geq 0,v} g(u,v).$

Note: dual problem always concave.

Strong duality:

Always have $f^* \ge g^*$ where f^*, g^* primal and dual objectives. When $f^* = g^*$, have strong duality. If primal is a convex problem $(f, h_i \text{ convex}, l_j \text{ affine})$ and exists a strictly feasible x, then strong duality.

Dual example (lasso): Have primal:

 $\min_{\beta} \frac{1}{2} ||y - X\beta||_{2}^{2} + \lambda ||\beta||_{1};$ Introduce dummy z and solve: $\min_{\beta, z} \frac{1}{2} ||y - z||_2^2 + \lambda ||\beta||_1$ s.t. $z = X\beta$. Dual is then: $\min_{\beta, z} \frac{1}{2} ||y - z||_2^2 + \lambda ||\beta||_1 + u^T (z - X\beta)$ $\begin{array}{c} \frac{1}{2} ||y||_2^2 - \frac{1}{2} ||y - u||_2^2 - I_{v:||v||_{\infty} \le 1}(X^T u/\lambda) \\ \text{Or} \quad \min_u \frac{1}{2} \left(||y||_2^2 - ||y - u||_2^2 \right) \quad \text{s.} \end{array}$ s.t. $||X^T u||_{\infty} \le \lambda.$

KKT Conditions:

Stationarity: $0 \in \partial f(x) + \sum_{i=1}^{m} u_i \partial h_i(x) + \sum_{j=1}^{r} \partial l_j(x)$ Complementary slackness:

 $u_i \cdot h_i(x) = 0$ for all i

P feas: $h_i(x) \leq 0, l_j(x) = 0$ for all i, jD feas:: $u_i \geq 0$ for all i Necessary: if strong duality, then if x^*, u^*, v^* solutions, then they satisfy KKT conditions.

Sufficient: always, if x^*, u^*, v^* satisfy KKT, then primal dual solutions. Correspondence Under strong duality, x^*

achieves the minimum in $L(x, u^*, v^*)$; if $L(x, u^*, v^*)$ has a unique minimum, then the corresponding point is the primal solution.

Correspondence, Conjugates:

Defn. convex conjugate: Given $f, f^*(y) =$ $\max_x y^T x - f(x).$

Implies $f(x) + f^*(y) \ge x^T y$. If f closed and convex, ** = f.

Example, norm:
If
$$f(x) = ||x||, f^*(y) = I_{z:||z|_* \le 1}(y)$$

Ellipsoid method for LP: Solves feasibility problems, but any LP can be turned into a feasibility problem. Setup: Let Ω be the set satisfying the constraints. Assume $\Omega \subseteq R$ -radius ball centered at y_0 , and there is a ball with radius r centered at y^* inside Ω . We know R, r, y_0 , but not y^* . Iterations: Can check if center of ellipsoid ϵ_k is in Ω ; if so, done. Else: find a constraint that is violated, find side that is not violated, fit ellipsoid to that half. *Convergence:*

$$\frac{\operatorname{Vol}(\epsilon_k)}{\operatorname{Vol}(\epsilon_0)} \le \left(\frac{\tau}{R}\right)^m \le \left(\frac{1}{2}\right)^{k/m}$$

which implies $k \leq O(m^2 \log R/\tau)$ where $\tau = 1/(m+1).$

Penalty Methods:

Original constrained problem (P), $\min_{x \in S} f(x)$, replace with unconstrained

problem $\min f(x) + cp(x)$. p satisfies: p continuous, $p(x) \ge 0$, p(x) = 0 iff $x \in S$. Idea: find some solution, increasingly penalize outside S by increasing $c \to \infty$: Penalty functions: $p(x) = \frac{1}{2} \sum_{i=1}^{p} \max([0, g_i(x)])^2$

Barrier Methods:

Replace original problem with $\min_x f(x) +$ $\frac{1}{2}B(x)$ where B is continuous; $B(x) \geq 0$ for all $x \in int(S)$; $B(x) \to \infty$ as $x \to \partial S$. Idea: start out in interior, don't let the algorithm leave S. Increase $c \to \infty$. Barrier functions: Suppose $g_i(x) \le 0$: $B(x) = -\sum_{i=1}^m \frac{1}{g_i(x)}$ $B(x) = -\sum_{i=1}^m \log(-g_i(x))$

SDP: Inner product: $tr(A \cdot B) =$ $\sum \sum A_{i,j} B_{i,j}$

ICA: Step 1: whiten. Step 2: want to minimize gaussian-likeness. But non-convex and lots of local minima. Assume additive linear model.

Whitening: $\Sigma = cov(X) = UDU^T$, $A^* = D^{-1/2} \bar{U^T} A.$

Coordinate descent: Do argmin on each dimension, updating one-by-one. When does coordinate descent work? g(x) + $\sum_i h_i(x_i)$

Non-convex problems: Specialized approach for each.

Convex Conjugates:

$$f^{*}(y) = \max_{x} x^{T} x^{*} - f(x)$$

$$- \min_{f}(x) - x^{T} x^{*}$$

$$f(ax) \qquad f^{*}(x^{*}/a)$$

$$f(x+b) \qquad f^{*}(x^{*}) - b^{T} x^{*}$$

$$af(x) \qquad af^{*}(x^{*}/a)$$

$$e^{x} \qquad x^{*} \log(x^{*}) - x^{*}$$

$$||x|| \qquad I_{||z||_{*} \leq 1}(x^{*})$$
Matrix derivatives:

$$\partial A = 0$$

$$\partial(aX) = a \partial X$$

$$\partial(tr(X)) = tr(\partial X)$$

$$\partial(XY) = (\partial X)Y + X(\partial Y)$$

$$\partial x^{T} a/\partial x = a$$

$$\partial x^{T} X b/\partial X = a b^{T}$$

Suppose s,r are functions of x and A is constant,

$$\frac{\partial s^{^{T}}Ar}{\partial x} = \frac{\partial s}{\partial x}^{^{T}}Ar + \frac{\partial r}{\partial x}^{^{T}}A^{^{T}}s$$

Matrix properties:

SVD: $A = U\Sigma V^T$ where: U are the eigenvectors of AA^T $D = \sqrt{\text{diag}(\text{eig}(AA^T))}$ V are the eigenvectors of $A^T A$. Can also write A as the weighted sum of r rank-1 matrices. The rank-1 matrices are $\Sigma_{ii}U_iV_i^T$ for $1 \le i \le r$.

EVD: $X = VDV^{-1}$ with D diagonal. If X is symmetric, $VV^T = I$.

Traces: Linear. $\operatorname{tr}(A) = \operatorname{tr}(A^T)$ tr(X^TY) = tr(XY^T)tr(X^TY) = vec(X)^T vec(Y)tr(ABC) = tr(BCA) = tr(CAB) P^{-1} exists, $\operatorname{tr}(A) = \operatorname{tr}(P^{-1}AP)$. $\operatorname{tr}(A) = \sum_{i} \lambda_{i}$ Sherman-Morrison Mat. Inv.: Suppose $\begin{aligned} A^{-1} \text{ exists, } 1 + v^T A^{-1} u \neq 0. \\ (A + uv^T)^{-1} = A^{-1} - \frac{A^{-1} uv^T A^{-1}}{1 + v^T A^{-1} u} \end{aligned}$ Matrix norms: Trace/Nuclear norm: $||A||_* = \sum_{i=1}^{r} \sigma_i(a)$ Spectral/Operator norm: $||A||_{op} = \sigma_1(A)$ Frobenius norm: $||A||_F = \operatorname{tr}(A^T A).$

Derivatives:

 $\begin{array}{c}f'(x)g(x)+f(x)g'(x)\\f'(g(x))g'(x)\\nx^{n-1}\end{array}$ f(x)g(x)f(g(x)) $\frac{f^{-2}f'(x)}{(f'(x)g(x) - g'(x)f(x))/(g(x)^2)}$ $x^{\dot{n}}$ 1/f(x)f(x)/g(x)1/x $\ln(x)$ $1/(x \ln(c))$ $\log_c(x)$ Miscellaneous math:

Lipschitz: A function f is Lipschitz continuous if $|f(x_1) - f(x_2)| \le L|x_1 - x_2|$; controls how quickly the function changes. Gradient Lipschtiz:

A differentiable function f has Lipschitz continuous gradient $||\nabla f(y) - \nabla f(x)|| \leq$ L||y-x||; if it is twice-differentiable, $LI \ge$ $\nabla^2 f(x).$

Useful inequalities:

Cauchy-Schwarz: $|x^Ty| \leq ||x|| \cdot ||y||$. Hölder: $||fg||_1 \leq ||f||_p ||g||_q$ for 1/p + 1/q =1.

	Gr.	SG.	Prox.	New.	Conj.	QN	Bar.	P/D IPM
Crit	$f \mathrm{sm}$	any	$\operatorname{sm} g + \operatorname{simple} h$	$2 \times \mathrm{sm}$	$2 \times$	$2 \times$	$2 \times$	$2 \times$
Const.	Proj.	Proj.	Const. Prox	Equality	None	None	$2 \times \text{ sm. ineq.}$	$2 \times \text{ sm. ineq.}$
Param.	fix t/LS	$t \rightarrow 0$	fix t/LS	fix $t = 1/LS$	fix/LS	LS	in: fixed/ $L\bar{S}$;	in:LS
	'		7	,	,		out.: bar. $\rightarrow \infty$	out.: bar. $\rightarrow \infty$
Cost/It.	chp	chp	? prox	Exp. (∇^2)	$\approx chp$	$\approx chp$	V.Exp	$\approx Exp$
,	-	•	-	- ()	-	+Storage	-	-
Rate	$O(1/\epsilon)$	$O(1/\epsilon^2)$	$O(1/\epsilon)$	$O(\log(\log(1/\epsilon)))$	super-lin.	superlin.	$O(\log(1/\epsilon))$	$O(\log(1/\epsilon))$
Gr. and Prox. Gr. are $O(1/\sqrt{\epsilon})$ w/ accel., $O(\log(1/\epsilon))$ w/strong convexity.								