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LPs
Standard Form:
min cTx s.t. Ax = b, x ≥ 0, b ≥ 0.
Getting it to standard form:
Getting rid of ≥,≤:
x1 ≤ 4→ x1 + x2 = 4, x2 ≥ 0
Getting rid of − vars:
x ∈ R→ x = u− v, u, v ∈ R+

Bounded vars:
x ∈ [2, 5]→ 2 ≤ x, x ≤ 5.

Simplex algorithm:
(1) Take cost function, turn into min z s.t.
cTx = z, remainder in standard LP form.
(2) Pivoting: do Gaussian Elimination to
get rid of as many variables as possible,
without distributing the z around.
(3) Variables that have been eliminated ex-
cept in one equation are dependent/basic;
others independent/non-basic. Can always
get a feasible point by setting non-basic
variables to zero, and reading out basic
variables.[

1 0 C
0 Im A

]
[−z, xB , xN ]T = [−z0, b]T

(4) Improve solutions: find smallest reduced
cost Cj . If CJ ≥ 0, optimality reached,
quit. Else, J is incoming.
(5) Find as far as we can go by picking out-
going variable:
r = argmini|Ai,j>0 bi/Ai,j
(6) Perform elimination to get rid of J , us-
ing equation that makes the outgoing vari-
able a basic one. That is, take the only
equation in which the outgoing variable is
non-zero, and eliminate the incoming vari-
able with it.
(7) Repeat from 4 until optimality reached.

Convex sets,fcns:
Defns:
A set is is X if for any weighted sum of data
points satisfying Y, the weighted sum is in
the set.
Convex:

∑
i θi = 1, θi ≥ 0

Affine:
∑
i θi = 1.

Conic: θi ≥ 0.
Examples:
Lines, line segments, hyperplanes, halfs-
paces, Lp balls for p ≥ 1, polyhedrons,
polytopes.
Preserving operations:
Translation, scaling, intersection, Affine
functions (e.g., projection, coordinate drop-
ping), set sum {c1 + c2|c1 ∈ C1, c2 ∈ C2},
direct sum {(c1, c2)|c1 ∈ C1, c2 ∈ C2}, per-
spective projection.
Conv. Fcn. Defn:
f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)
f(y) ≥ f(x) +∇f(x)T (y − x)
Preserving operations, functions:
Non-negative weighted sum, pointwise-
max, affine map f(Ax + b), composition,
perspective map.

Strict, Strong Convexity
Defns:
Strict convexity:
f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y) (ba-
sically, not linear).
m-Strong convexity:
f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y)

−1

2
mθ(1− θ)||x− y||22

Better strong convexity defns:
(∇f(x)−∇f(y))T (x− y) ≥ m||x− y||22
f(y) ≥ f(x) +∇f(x)T (y − x) + m

2
||y − x||22

∇2f(x) ≥ mI.
Gradient Descent
Given x0, repeat xk = xk−1 − tk∇f(xk−1).
Picking t: can diverge if t too big, too slow
if t too small.
Backtracing line search: start with t = 1,
while f(x− t∇f(x)) > f(x)−αt||∇f(x)||22,
update t = βt with 0 < α < 1/2, 0 < β < 1.

Subgradients
Defn.:
Subgradient of convex f is g s.t.
f(y) ≥ f(x) + gT (y − x)
Subdifferential ∂f(X): set of all g.
SG calculus:
∂(af) = a∂f ; ∂(f1 + f2) = ∂f1 + ∂f2;
∂f(Ax+ b) = AT ∂f(Ax+ b).
Finite-pointwise max: ∂maxf∈F f(x) is
the convex hull of the active (achieving
max functions at x).
Norms: if f(x) = ||x||p and 1/p + 1/q = 1,
then ||x||p = max||z||q≤1 z

Tx; thus

∂||x||p = {y : ||y||q ≤ 1, yTx =
max||z||q≤1 z

Tx}.
Optimality: f(x∗) = min f(x) ↔ 0 ∈
∂f(x∗)
Remember that sgs may not exist for non-
convex functions!
Subgradient Method
Given x0, repeat xk = xk−1 − tkgk−1

SG method not descent method; keep track
of best so far.
Picking t: square summable but not
summable (e.g., 1/t). Polyak steps:
(f(xk−1)− f(x∗))/||gk−1||22.
Projected sg method: Project after taking a
step.

Generalized GD
Suppose f(x) = g(x) + h(x) with g convex,
diff, h convex, not necessarily diff.
Define proxt(x) = argminz

1
2t
||x − z||22 +

h(z); GGD is:
xk = proxt(x

k−1 − tk∇g(xk−1))
Generalized gradient since if
Gt(x) = (1/t)(x− proxt(x− t∇g(x)))
then update is
xk = xk−1 − tkGt(xk−1)
With backtracking: While g(x − tGt(x)) >
g(x)− t∇g(x)TGt(x) + t

2
||Gt(x)||22 (maybe

with α in last term?) update t = βt.

Example (Lasso): Prox is argminz
1
2t
||β −

z||22 + λ||z||1 = Sλt(β). Sλ(β) is the soft-
threshold operator,

[Sλ(β)]i =

{
βi − λ : βi > λ

0 : −λ ≤ βi ≤ λ
βi + λ : βi < −λ

Example (Matrix Completion): Objective:
1
2

∑
(i,j) observ(Yi,j − Bi,j)

2 + λ||B||∗ with

||B||∗ =
∑r
i=1 σi(B).

Prox function: argminZ
1
2t
||B − Z||2F +

λ||Z|∗.
Solution: matrix soft-thresholding;

UΣλV
T where B = UΣV T and (Σλ)ii =

max{Σii − λ, 0}.

Newton’s Method: Originally devel-
oped for finding roots; use it to find roots
of gradient. Want ∇f(x) +∇2f(x)∆x = 0;
solution is ∆x = −[∇2f(x)]−1∇f(x).
Damped Newton method:
xk+1 = xk − hk[∇2f(x)]−1∇f(x).

Conjugate Direction methods: Want
to solve min 1

2
xTQx − bTx with Q > 0.

Define Q-orthogonality as dTi Qdj = 0.
Exp. subspace thm.:
Let {di}n−1

i=0 be Q-conjugate.
(for method) gk = Qxk − b
xk+1 = xk + αdk
αk = −gTk dk/(dTkQdk)
Proof sketch (gk ⊥ Bk) by ind.:
gk+1 = Qxk+1 − b = Q(xk + αkdk)− b
(Qxk − b) + αQdk = gk + αQdk
From here, by defn of α, dTk gk+1 =
dTk (gk + αQdk) = dTk gk − αdTkQdk = 0
Algorithm:
Arbitrary x0, repeat d0 = −g0 = b−Qx0
αk = −gTk dk/dTkQdk; xk+1 = xk + αkdk
gk = Qxk − b; dk+1 = −gk+1 + βkdk
βk = gTk+1Qdk/(dkQdk)

Quasi-Newton Methods:
Gist: approximate Hessian/inverse Hes-
sian.
Symmetric rank-one correction:
Update: xk+1 = xk − αHkgk
αk = argminα f(xk − αHkgk) (LS)
gk = ∇fk
Hk+1 = Hk + (pk−Hkqk)(pk−Hkqk)

T

qT
k
(pk−Hkqk)

pk = xk+1 − xk; qk = gk+1 − gk
Might not be PSD!
DFP (Rank 2)

Hk+1 = Hk +
pkp

T
k

pTk qk
− Hkqkq

T
kHk

qTkHkqk

BFGS
Update inverse of Hessian via Sherman-
Morrison).
Let qk = gk+1 − gk

Hk+1 =Hk + (1 +
qTkHkqk
pTk qk

)
pkp

T
k

pTk qk

− pkq
T
kHk +Hkqkp

T
k

qkpk

LP Duality
Let cn, Am×n, bm, Gr×n, hr.
(P) min cTx s.t.
Ax = b, Gx ≤ h
(D) max−bTu− hT v s.t.
−ATu−GT v = c, v ≥ 0.

Duality:
Consider min f(x) s.t.
hi(x) ≤ 0, i = 1, . . . ,m
lj(x) = 0 j = 1, . . . , r
Lagrangian:
L(x, u, v) = f(x) +

∑m
i=1 uihi(x) +∑r

j=1 vj lj(x) with u ∈ Rm, v ∈ Rr and
u ≥ 0.
Note: f(x) ≥ L(x, u, v) at feasible x.
Dual problem:
Let g(u, v) = minx L(x, u, v). La-
grange dual function is g. Dual problem
maxu≥0,v g(u, v).
Note: dual problem always concave.
Strong duality:
Always have f∗ ≥ g∗ where f∗, g∗ primal
and dual objectives. When f∗ = g∗, have
strong duality. If primal is a convex prob-
lem (f, hi convex, lj affine) and exists a
strictly feasible x, then strong duality.

Dual example (lasso):
Have primal:
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minβ
1
2
||y −Xβ||22 + λ||β||1;

Introduce dummy z and solve:
minβ,z

1
2
||y − z||22 + λ||β||1 s.t. z = Xβ.

Dual is then:
minβ,z

1
2
||y − z||22 + λ||β||1 + uT (z −Xβ)

1
2
||y||22 − 1

2
||y − u||22 − Iv:||v||∞≤1(XTu/λ)

Or minu
1
2

(
||y||22 − ||y − u||22

)
s.t.

||XTu||∞ ≤ λ.

KKT Conditions:
Stationarity:
0 ∈ ∂f(x) +

∑m
i=1 ui∂hi(x) +

∑r
j=1 ∂lj(x)

Complementary slackness:
ui · hi(x) = 0 for all i
P feas.: hi(x) ≤ 0, lj(x) = 0 for all i, j
D feas.: ui ≥ 0 for all i Necessary: if strong
duality, then if x∗, u∗, v∗ solutions, then
they satisfy KKT conditions.
Sufficient: always, if x∗, u∗, v∗ satisfy KKT,
then primal dual solutions.
Correspondence Under strong duality, x∗

achieves the minimum in L(x, u∗, v∗); if
L(x, u∗, v∗) has a unique minimum, then
the corresponding point is the primal solu-
tion.

Correspondence, Conjugates:
Defn. convex conjugate: Given f , f∗(y) =
maxx y

Tx− f(x).
Implies f(x) + f∗(y) ≥ xT y. If f closed
and convex, ∗∗ = f .

Example, norm:
If f(x) = ||x||, f∗(y) = Iz:||z|∗≤1(y)

Ellipsoid method for LP: Solves feasi-
bility problems, but any LP can be turned
into a feasibility problem. Setup: Let Ω be
the set satisfying the constraints. Assume
Ω ⊆ R-radius ball centered at y0, and there
is a ball with radius r centered at y∗ inside
Ω. We know R, r, y0, but not y∗. Iterations:
Can check if center of ellipsoid εk is in Ω;
if so, done. Else: find a constraint that is
violated, find side that is not violated, fit
ellipsoid to that half.
Convergence:

Vol(εk)

Vol(ε0)
≤
( τ
R

)m
≤
(

1

2

)k/m
which implies k ≤ O(m2 logR/τ) where
τ = 1/(m+ 1).

Penalty Methods:
Original constrained problem (P),
minx∈S f(x), replace with unconstrained

problem min f(x) + cp(x). p satisfies: p
continuous, p(x) ≥ 0, p(x) = 0 iff x ∈ S.
Idea: find some solution, increasingly pe-
nalize outside S by increasing c→∞:
Penalty functions:
p(x) = 1

2

∑p
i=1 max([0, gi(x)])2

Barrier Methods:
Replace original problem with minx f(x) +
1
c
B(x) where B is continuous; B(x) ≥ 0

for all x ∈ int(S); B(x) → ∞ as x → ∂S.
Idea: start out in interior, don’t let the al-
gorithm leave S. Increase c → ∞. Barrier
functions:
Suppose gi(x) ≤ 0:
B(x) = −

∑m
i=1

1
gi(x)

B(x) = −
∑m
i=1 log(−gi(x))

SDP: Inner product: tr(A · B) =∑∑
Ai,jBi,j

ICA: Step 1: whiten. Step 2: want to mini-
mize gaussian-likeness. But non-convex and
lots of local minima. Assume additive lin-
ear model.

Whitening: Σ = cov(X) = UDUT ,

A∗ = D−1/2UTA.
Coordinate descent: Do argmin on each
dimension, updating one-by-one. When
does coordinate descent work? g(x) +∑
i hi(xi)

Non-convex problems: Specialized ap-
proach for each.

Convex Conjugates:

f∗(y) = max
x

xTx∗ − f(x)

−min
f

(x)− xTx∗

f(ax) f∗(x∗/a)
f(x+ b) f∗(x∗)− bTx∗
af(x) af∗(x∗/a)
ex x∗ log(x∗)− x∗
||x|| I||z||∗≤1(x∗)

Matrix derivatives:
∂A = 0

∂(aX) = a∂X
∂(tr(X)) = tr(∂X)
∂(XY ) = (∂X)Y +X(∂Y )

∂xT a/∂x = a
∂xTXb/∂X = abT

Suppose s,r are functions of x and A is
constant,

∂sTAr

∂x
=
∂s

∂x

T

Ar +
∂r

∂x

T

AT s

Matrix properties:
SVD: A = UΣV T where:
U are the eigenvectors of AAT

D =
√

diag(eig(AAT ))

V are the eigenvectors of ATA.
Can also write A as the weighted sum of r
rank-1 matrices. The rank-1 matrices are
ΣiiUiV

T
i for 1 ≤ i ≤ r.

EVD: X = V DV −1 with D diagonal. If X
is symmetric, V V T = I.

Traces: Linear.
tr(A) = tr(AT )
tr(XTY ) = tr(XY T )
tr(XTY ) = vec(X)T vec(Y )
tr(ABC) = tr(BCA) = tr(CAB)
P−1 exists, tr(A) = tr(P−1AP ).
tr(A) =

∑
i λi

Sherman-Morrison Mat. Inv.: Suppose
A−1 exists, 1 + vTA−1u 6= 0.

(A+ uvT )−1 = A−1 − A−1uvTA−1

1+vTA−1u

Matrix norms:
Trace/Nuclear norm:
||A||∗ =

∑r
i=1 σi(a)

Spectral/Operator norm:
||A||op = σ1(A)
Frobenius norm:
||A||F = tr(ATA).

Derivatives:
f(x)g(x) f ′(x)g(x) + f(x)g′(x)
f(g(x)) f ′(g(x))g′(x)
xn nxn−1

1/f(x) −f−2f ′(x)
f(x)/g(x) (f ′(x)g(x)− g′(x)f(x))/(g(x)2)

ex ex

ln(x) 1/x
logc(x) 1/(x ln(c))

Miscellaneous math:
Lipschitz: A function f is Lipschitz contin-
uous if |f(x1)−f(x2)| ≤ L|x1−x2|; controls
how quickly the function changes.
Gradient Lipschtiz:
A differentiable function f has Lipschitz
continuous gradient ||∇f(y) − ∇f(x)|| ≤
L||y − x||; if it is twice-differentiable, LI ≥
∇2f(x).
Useful inequalities:
Cauchy-Schwarz: |xT y| ≤ ||x|| · ||y||.
Hölder: ||fg||1 ≤ ||f ||p||g||q for 1/p+ 1/q =
1.

Gr. SG. Prox. New. Conj. QN Bar. P/D IPM

Crit f sm any sm g + simple h 2× sm 2× 2× 2× 2×
Const. Proj. Proj. Const. Prox Equality None None 2× sm. ineq. 2× sm. ineq.
Param. fix t/LS t→ 0 fix t/LS fix t = 1/LS fix/LS LS in: fixed/LS; in:LS

out.: bar. →∞ out.: bar. →∞
Cost/It. chp chp ? prox Exp. (∇2) ≈ chp ≈ chp V.Exp ≈ Exp

+Storage
Rate O(1/ε) O(1/ε2) O(1/ε) O(log(log(1/ε))) super-lin. superlin. O(log(1/ε)) O(log(1/ε))

Gr. and Prox. Gr. are O(1/
√
ε) w/ accel., O(log(1/ε)) w/strong convexity.


