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Abstract

Birds have well-known distributions, phylogenetic rela-
tionships, and life histories, making them a powerful model
system for understanding biotic responses to global envi-
ronmental change. However, there are hundreds of thou-
sands of museum skeletal specimens that could be analyzed
to further our understanding of avian responses to climate
change, but remain under-utilized due to the practical con-
straints of measuring elements of skeletons by hand. We
introduce a dataset and system for measuring skeletal traits
from museum specimens that reduces capture time by 15x
for an initial effort to measure 10 traits per skeleton, al-
lows for post hoc addition of trait data orders of magnitude
faster than traditional methods, and shows high accuracy
even when trained with limited data.

1. Introduction and Related Work

Climate change is predicted to result in changes in ani-
mal body size, with warming temperatures expected to re-
sult in size reductions broadly across the tree of life [8]. Size
impacts nearly every aspect of an organism’s ecology, thus
understanding how species compensate for warming-driven
size reductions is key to understanding and predicting the
impacts of climate change on the world’s ecosystems.

In birds, recent warming has driven consistent reductions
in body size, with contemporaneous changes in body shape
[19]. While it is generally known that morphology is pre-
dictive of ecology [16], key to understanding the impacts
of climate change on animal ecology and fitness is the col-
lection of extensive and detailed functional trait data from
a large number of individuals within species through time.
Museum skeletal specimens could fill this data gap: over
500,000 bird skeletal specimens are held in natural history
museums. However, measuring only a limited number of
traits from a specimen can take a well-trained technician
15-30 minutes; as a result, collecting only a small number
of species by hand at the timescales necessary to understand
biotic responses to climate change can take decades [19].

We aim to automate the measurement of bone lengths
from a single, casually arranged, top-down image of a bird
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Figure 1. Overview of the system: the imaging setup, an instance
segmentation output, and processed bone measurements.

skeleton specimen. This casual capture (Figure 1) enables
rapid digitization (taking 1 minute), but introduces chal-
lenges: bones intersect and appear in arbitrary rotations, and
bone categories must be recognized across varying species.
As a step towards to digitizing a larger ≈25K skeleton col-
lection, we introduce an annotated dataset in Section 2 that
includes both pixel annotations and hand-measurements.
We describe a measurement system based on Mask-RCNN
[9] and synthetic augmentation [7] in Section 3, which we
train on our preliminary data.

Our experiments ( Section 4) show that our system, when
trained on 150 preliminary specimens, automatically mea-
sures 60% of bones within 5% relative error. Some types
(e.g., Humerus) are measured with 90% within 5% relative
error and many bones are measured to sub-mm precision.
We hope our method will enable large-scale ecological stud-
ies and contribute to our understanding of the links between
climate change and ecology.

Related Work: Our work is part of a broader trend of us-
ing deep-learning based tools to solve research questions in
the sciences. This has been applied to topics ranging from
botany [15, 5, 18] to keypoint detection [14, 12] and or 3D
reconstruction [4, 2, 3, 21]. While our animal specimens
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Figure 2. Visualization of original specimen image (left), annotated specimen image (middle), and synthetic specimen image (right).

do not move, making measurement easier, our measure-
ments need high precision, which leads to a special cap-
ture setup. Our annotations require extensive expert time,
which shapes data collection and leads to heterogeneously-
annotated data, which we handle by self-training.

We frame our problem via instance segmentation to take
advantage of the well-developed segmentation tools in the
community [9, 20, 11]. In our work, we use Mask R-CNN
[9] for our method, and the Toronto Annotation Suite [1]
to accelerate our annotation. We similarly take inspiration
from improvements to instance segmentation using syn-
thetic data [7]. Building on this well-developed toolchain
enables our approach to obtain promising performance with
a fairly small amount of annotation.

2. Dataset

We evaluate methods on a 376 annotated image sub-
set out of a larger in-progress effort that has captured over
10,000 bird skeleton images. Of the 376 images, 250 are
annotated with pixel annotations. We hold out another 126
that are separately hand-measured with bone lengths; the
non-unified set stems from Covid-19 restrictions. For now,
we focus on 10 Bones of Interest, labeling other bones as
other. We collect our dataset in four stages. All images are
Captured in a process that is rapid and does not require spe-
cialized placement. Our annotated data is then processed
with multiple stages to maximize use of experts’ time, con-
sisting of a Bone Spotting done by a trained technician, and
Pixel Annotation that can often done by a non-trained ex-
pert. Finally, for empirical validation, we also do Physical
measurement annotation of a small number of specimens.

Image Capture: Capturing a top-down image of a speci-
men entails retrieving the specimen and spreading the bones
onto the capture surface. This is done casually to ensure the
process takes only around a minute. These bones are im-
aged with a FLIR Blackfly S camera with a SONY IMX183

sensor ≈400mm above the center of the capture surface. In
setup, 1px error corresponds to ≈0:07mm error.
Bone Spotting: Pixel-annotation of all bones of interest
takes a long time, so to enable parallelizability and effi-
ciently use expert time, we first complete a bone spotting
step. In this step, the expert provides a rough bounding
polygon and name of all bones. This enables parallelizing
the slower segmentation task. We use the VGG Image An-
notator [6] to annotate bounding polygons.
Pixel Annotations: Once bones of interest have been sep-
arated, we annotate cropped images around the bounding
polygons. Easy bones (e.g., humerus) can be annotated
by non-experts. We use the Toronto Annotation Suite [1],
powered by human-in-the-loop AI, which substantially ac-
celerates annotation. While all bones have a bounding
polygon from the expert annotation stage, “other” and bro-
ken ones do not have pixel segmentations. This creates a
mixed dataset of bounding polygons and pixel-wise seg-
mentations, shown in Figure 2. We describe our approach
to handle the mixed annotations in Section 3.
Physical Measurement: To provide end-to-end validation
of the full system in terms of measurement in physical quan-
tities, we hand-measure a held-out test set of 126 speci-
mens. We hand measure the length of each bone of the
specimen and record it to the nearest hundredth of a mm.

3. Method
We build a skeleton measurement system to compute

physical measurements of the bones of interest from an im-
age. Our core system is built on MaskRCNN [9]. We per-
form additional steps to enable best use of the data that is
available: there are many “other” bones without pixel an-
notation, and the number of bones of interest with pixel
segmentation is small. We produce a homogeneous dataset
by using noisy self-training to annotate the other bones and
synthetic data to expand our dataset.
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