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The original version of this was in 1994. The alProvided¢ is a strictly convex function, one sees that
gorithms described herein are obsolete and not recopt~) + 3P\ (1) > 0. This suggests using the follow-
mended. See the book chapter [3] for more contemporafy iteration:
methods and comprehensive references.
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This report describes slight extensions of the . . . .
expectation-maximization (EM) algorithm and the ; iLgﬂ(u) —ﬁPJ(+)(u) — Lg_) —ﬁPj(_)(u)
gradient algorithm [1] for penalized-likelihood trans-— Hj WA i (=) 5(=) (i
o . L7+ pP; (1)
mission reconstruction but that accommodates nonzero J J
additive background contamination in the Poisson model. i i i[',g.*)(ui) _ 51’3].(+)(ui)
For definitions of the notation, etc., see [1, 2]. = py | 1w W= e 2)
Ly +BP; (1)

SinceLgf)JrﬁPj(*)(ui) is positive, ify; > 0 thenp’ ™" >

0 providedw® < 1. Since this recursion does not guarantee
Lange [1, 4, 5] has proposed an iterative gradient ahonotone increases in the objecti®é.’), we begin each

gorithm that has the desirable property that it automatieration withw? = 1, and then if necessary halve it until

cally enforces nonnegativity. In this paper we presentd®u‘*!) > ®(u?). This has never been necessary in our

slightly modified version of this algorithm that accommoexperiments with this algorithm to date. We refer to (2) as

dates nonzerg, factors. First, observe that we can rewritéhe gradient algorithm

the partial derivatives ob as follows:

. GRADIENT ALGORITHM

[I. EM ALGORITHM

(%@(M) — L§-+)(M) _ ﬁp]&) () — L§_) _ gp](—)(ﬂ)7 Lange and Carson [6] proposed an EM algorithm for
J transmission tomography using a Taylor series approxi-

mation for the M-step. Ollinger [7] reported that the EM

where algorithm did not completely converge with this approx-
() ~ YnTn imation, and proposed a 1-D Newton’s method for the

L7 (p) = Z anj (yn(ﬂ) — Tt m) 1) M-step in the pure maximum likelihood case (no smooth-
- (0) " " ness penalty). When one includes a smoothness penalty,

L; = Z UnjYn the M-step of Ollinger’s (or Lange and Carson’s) method

) " . would require simultaneous solution pfcoupled equa-

P](+)(M) = Pj(p) — piPi(p) tions. Lange [1] has adapted a clever convexity method

p](—)(ﬂ) _ #jpj(u)' due to De Pierro [8, 9] to the M-step of [6]. We have

adapted this same convexity method to the M-step of
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Define the following function:

Qem(p; u') =
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The function Qg corresponds to the conditional log-
likelihood of a complete-data space for transmission to-

mography, and as such one can show [6, 10] that
L(p) — (") = Qem(ps ') — Qena(p's ).
Therefore, if we define
Opm(p; ') = Qum(ps p') — BP* (s 1)), (3)
then one can show that

D(p) — (p') > Prmlp; p') — Prm(p’s 1),

so by choosing:*! to maximize ®gy(-; ut) we ensure

2

where '’ is chosen using the halving search to assure
monotonicity, starting witho® = 1. The key difference
between the coordinate-ascent update in [2] and (4) is that
the latter uses aimultaneousupdate, and as such it is
more amenable to parallel implementations.
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so maximizing®g(-; ') requiresp separate 1-D maxi-
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Unfortunately, those maximizations do not have a[6]
closed form, so following Ollinger [7] we apply Newton'’s

method to each parameter. One can show
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Combine the above with (3) to yield the iteration:
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