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The original version of this was in 1994. The al-
gorithms described herein are obsolete and not recom-
mended. See the book chapter [3] for more contemporary
methods and comprehensive references.

ABSTRACT

This report describes slight extensions of the
expectation-maximization (EM) algorithm and the
gradient algorithm [1] for penalized-likelihood trans-
mission reconstruction but that accommodates nonzero
additive background contamination in the Poisson model.
For definitions of the notation, etc., see [1,2].

I. GRADIENT ALGORITHM

Lange [1, 4, 5] has proposed an iterative gradient al-
gorithm that has the desirable property that it automati-
cally enforces nonnegativity. In this paper we present a
slightly modified version of this algorithm that accommo-
dates nonzerorn factors. First, observe that we can rewrite
the partial derivatives ofΦ as follows:
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Providedφ is a strictly convex function, one sees that
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j (µ) > 0. This suggests using the follow-

ing iteration:
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SinceL̇(−)j +βṖ
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i) is positive, ifµij > 0 thenµi+1j >

0 providedωi ≤ 1. Since this recursion does not guarantee
monotone increases in the objectiveΦ(µi), we begin each
iteration withωi = 1, and then if necessary halve it until
Φ(µi+1) > Φ(µi). This has never been necessary in our
experiments with this algorithm to date. We refer to (2) as
thegradient algorithm.

II. EM A LGORITHM

Lange and Carson [6] proposed an EM algorithm for
transmission tomography using a Taylor series approxi-
mation for the M-step. Ollinger [7] reported that the EM
algorithm did not completely converge with this approx-
imation, and proposed a 1-D Newton’s method for the
M-step in the pure maximum likelihood case (no smooth-
ness penalty). When one includes a smoothness penalty,
the M-step of Ollinger’s (or Lange and Carson’s) method
would require simultaneous solution ofp coupled equa-
tions. Lange [1] has adapted a clever convexity method
due to De Pierro [8, 9] to the M-step of [6]. We have
adapted this same convexity method to the M-step of
Ollinger [7]. For completeness we summarize the ap-
proach here; see [6,7] for additional details.
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Define the following function:
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The functionQEM corresponds to the conditional log-
likelihood of a complete-data space for transmission to-
mography, and as such one can show [6,10] that

L(µ)− L(µi) ≥ QEM(µ;µ
i)−QEM(µ

i;µi).

Therefore, if we define

ΦEM(µ;µ
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then one can show that

Φ(µ)− Φ(µi) ≥ ΦEM(µ;µ
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so by choosingµi+1 to maximizeΦEM(·;µi) we ensure
monotonic increases inΦ. The convenient aspect of
ΦEM(·;µi) is that it is a separable function ofµ1, . . . , µp,
so maximizingΦEM(·;µi) requiresp separate 1-D maxi-
mizations.

Unfortunately, those maximizations do not have a
closed form, so following Ollinger [7] we apply Newton’s
method to each parameter. One can show
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Combine the above with (3) to yield the iteration:
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whereωi is chosen using the halving search to assure
monotonicity, starting withωi = 1. The key difference
between the coordinate-ascent update in [2] and (4) is that
the latter uses asimultaneousupdate, and as such it is
more amenable to parallel implementations.
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