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I. PET MEASUREMENT STATISTICS

The previous sections have outlined the physics of PET. Now we describe the statistics. This summary is condensed
from [1]. The measurement statistics are actually quite complex, so any treatment (including ours) must make simpli-
fying assumptions. However, many papers in the signal processing and statistics literature considerably over-simplify
the problem, e.g. [2], so we attempt to be somewhat more complete here.

Since PET measurements are based on a counting process, a reasonable statistical model is that the measurements
have independent Poisson distributions:

Yi ∼ Poisson
{
Ȳi(λ)

}
, i = 1, . . . , n,

wheren is the number of coincident detector pairs,λ(x) is the spatial distribution of radiotracer (typical units are
counts/s/cm3), andȲi is the mean of theith measurement. (Note that eachi corresponds to a uniquedθ pair in the
notation used above.) The measurement means depend on the radiotracer distributionλ(x) through the physical model
described above; for low to moderate counting rates, the dependence is predominantly linear inλ:

Ȳi(λ) = T

(∫
pi(x)λ(x) dx+ si(λ) + ri(λ)

)
, (17)

whereT is the scan time,pi(x) is the (scatter-free) point-response function (unitless) of theith detector pairsi(λ) is
mean rate of scattered events for theith detector pair,ri(λ) is the mean rate of random coincidences for theith detector
pair, and the integral is over the scanner field of view. Although the scatter contributionsi(λ) is linear inλ, the random
coincidencesri(λ) depend nonlinearly onλ (roughly related to the square ofλ, as described above. [4]). This nonlinear
dependence is is not easily modeled directly. Thus, rather using modeling, most PET centers use the separate “delayed
coincidence window” measurements [4] to obtain information aboutri as described above.

For moderate counting rates, the linearity inλ implied by the first term in (17) is reasonable. However, for high
count rates, the measurement means are highly nonlinear functions (in fact nonmonotonic functions) of the activity in
the patient due to scanner deadtime [5]. Specificallypi(x) should be replaced by something likepi(x;λ), since asλ
increases, the detection probability will decrease since there will be increasing probability of multiple events within the
coincidence timing window (as well as other factors). In routine practice, the effect of this nonlinearity is reduced to
a single global “deadtime correction factor”, based on the sum of theYi’s, or, more accurately, by different correction
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If a deterministic finite number of nuclei are injected into the patient, then strictly speaking a multinomial distribution would be more precise

than the Poisson assumption. However, in practice the exact number of nuclei is unknown and may well be considered a random variable with
a Poisson distribution. In this case the radioactive decay will be a Poisson process; furthermore, a Poisson process “thinned” by Bernoulli trials
remains Poisson [3], all of which leads to the Poisson model.
pi(x) is probability that a positron emitted from a nuclei at positionx will produce a pair of annihilation photons that are detected by theith

detector pair without scattering (including geometric effects, attenuation, and detector efficiencies).
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2 II PET RECONSTRUCTION PITFALLS

factors for different detector pairs or detector blocks. This type of correction implicitly separates the nonlinear deadtime
loss from the ideal linear relationship betweenλ and{Ȳi}. Thus a representation of the spirit of this post-correction
method in model form would be as follows:

Ȳi(λ) = di(λ)T

(∫
pi(x)λ(x) dx+ si(λ) + ri(λ) + bi

)
,

wheredi(λ) is a positive, unitless deadtime loss function that monotonically decreases away from unity as its argument
increases. We are unaware of any attempts to estimateλ directly from such a model; most model-based methods
have ignored this nonlinearity term completely without comment, or have included a single data-based correction term
(di = d̂i(λ)) in thepi’s. We also take the latter approach here.

II. PET RECONSTRUCTIONPITFALLS

The goal of image reconstruction is to recover the radiotracer concentrationλ from the measurements{Yi}. This
inverse problem is not unlike the classical signal processing problem ofdeconvolution[6]. However, we believe that
straightforward application of “off-the-shelf” signal processing and image restoration methods yield suboptimal results
for PET image reconstruction.

In this section we summarize some of the methods that have been proposed for PET image reconstruction, with a
particular emphasis on those with origins in signal and image processing. This review is by no means complete, and
is primarily intended to describe the potential “pitfalls” of each approach, in the hope of steering newcomers to PET
away from over-simplified methods that are unlikely to lead to significant improvements. Most of the discussion also
applies to SPECT image reconstruction.

A. Deterministic Measurement Models

One way to greatly (over)simplify the problem is to ignore the measurement noise altogether, and to approxi-
mate the detector point-response functionspi(x) by equally-spaced parallel lines. This leads to the classical filtered-
backprojection (FBP) method for tomographic image reconstruction [7]. The FBP method is used routinely for X-ray
CT, as well as for PET and SPECT, for historical reasons of computational simplicity. Since the FBP method is derived
without any statistical information, it is unsurprising that a “pure” use of the FBP method leads to unacceptable noise
amplification (due to the ramp filter) in PET.

B. Sinogram Preprocessing

To remedy this problem, one usually apodizes the ramp filter by a classical window such as the Hanning or Parzen
window. Such apodization is equivalent to space-invariant smoothing of the sinogram data. Although this smoothing
does reduce the noise variance, it is suboptimal since PET measurement statistics are verynonstationarydue the
Poisson distribution. There have been a few attempts to improve the sinogram smoothing using both iterative [8–12]
and noniterative [13] nonstationary methods. While requiring less computation than the iterative methods described
below, these preprocessing methods are still suboptimal since object constraints such as nonnegativity and piecewise
smoothness are not naturally expressed in the sinogram domain.

C. Tomogram Post-processing

The radiotracer distribution estimate computed by any reconstruction method is typically represented by a discrete
image. This certainly invites the application of many an image processing method, both those classical (such as Wiener
filtering) as well as those trendy (such as wavelets, neural nets, etc.). Unfortunately, most image processing methods
are based on the (often implicit) assumption that the noise is Gaussian, or at least independent from pixel to pixel. The
noise in tomographic images is generally highly correlated between neighboring pixels (since each measurement “ray”
transects many pixels). For the (linear) FBP method the correlation function can be calculated [14–16]. In principle the
noise correlation function can also be determined for some statistical image reconstruction methods [17–19], although
the correlation functions may be expensive to compute. In our experience, classical image processing methods perform

The reason for the prevalence of use of FBP is certainly not due to any widely accepted advantage in image quality.
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poorly for images with such correlated noise. Furthermore, the correlation structure is often nonstationary, so noise
prewhitening is usually impractical. On the other hand, post-processing methods that specifically account for the
correlation structure have shown some promise, e.g. [20].

D. Classical Estimation Methods

Since a PET scanner collects only a finite number of measurements, it is essentially inevitable that one must also
represent the radiotracer distributionλ(x) by a finite parameterization, e.g. in terms of a set of basis functions:

λ(x) ≈
p∑
j=1

θjbj(x),

whereθ = [θ1 . . . θp]′ is the vector of unknown coefficients that must be computed from theYi’s. (Typically bj(x)
is just the indicator function for thejth voxel, so we will refer toθj as thejth pixel value hereafter.) With such a
discretization, the reconstruction problem is equivalent to a parameter estimation problem. If one assumes the scatter
and random contributions are assumed to be “predetermined” valuessi andri respectively (i.e. if they are determined
separately), and if the deadtime nonlinearity is approximated by a single “known” loss factordi, then the measurement
mean is linear inθ:

Ȳi(θ) =
p∑
j=1

aijθj + si + ri

where

aij = diT

∫
pi(x)bj(x) dx.

Dozens of papers have been published based on this model, most of which have ignored thedi, ri, andsi terms, and have
used very simple approximations forpi(x). The linear form above invites application of the two most common tools
from statistical signal processing: maximum likelihood estimation and linear least-squares estimation. The linear-least
squares estimate is easily written on paper:

θ̂LS = (A
′A)−1A′(Y − s− r),

but this expression is impractical for computation due to the large size of the matrixA ={aij}. Furthermore, the
conventional linear least-squares estimate produces negative pixel values, which are physically impossible. Both the
size ofA and incorporation of the nonnegativity constraint necessitate iterative algorithms.

Many PET centers use the delayed-window method for correcting for random coincidences, which destroys the
Poisson statistics. For such measurements, estimates based on (weighted) least-squares may be suitable [21]. (Also
see [22] for more accurate approaches.) For scans that are not precorrected for randoms, the least-squares methods
are suboptimal since they do not fully accommodate the Poisson distribution. (Often the number of counts per ray is
sufficiently low that the central-limit theorem based Gaussian approximation to the Poisson distribution is inapplicable.)
Furthermore, data-based weighted least-squares methods lead to systematic biases for low-count Poisson measurements
[19,23]. The use of the measurement log-likelihoodL(θ) rather than the weighted least-squares criterion avoids these
problems, where

L(θ) =
n∑
i=1

(
Yi log Ȳi(θ)− Ȳi(θ)− log Yi!

)
.

Unfortunately, there is no closed-form expression for the estimateθ̂ML that maximizes the likelihood, which again
necessitates iterative algorithms. (Unfortunately, such algorithms require computation roughly comparable to the FBP
method foreach iteration, which has hampered their clinical acceptance.) The oldest of these algorithms (for PET)
is an expectation-maximization (EM) algorithm [24], which converges very slowly toθ̂ML. This slow convergence
has not greatly diminished the popularity of the EM algorithm, however, because usually a few of the intermediate
images generated during the iterations towardθ̂ML are more appealing then̂θML itself. (Determining which of the
many iterates is the best one is nontrivial however.) The problem of determiningλ(x) from {Yi} is inherently ill-posed,
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so, after parameterization, the problem of estimatingθ from {Yi} is generally very ill-conditioned. ThuŝθML is usually
extremely noisy [25].

Naturally, one simple way to reduce this noise is to post-smoothθ̂ML. Such post-smoothing is a special case of
the more generalmethod of sieves[25]. Nevertheless, simple post-smoothing is by far the most popular version of
sieves. Although post-smoothing reduces noise, the problem of slow convergence of the EM algorithm remains, and
hundreds to thousands of EM iterations may be required for the post-smoothed images to converge [26]. (This problem
has spawned a variety of methods for accelerating the EM algorithm, which vary in the extent to which convergence
is guaranteed, see [27, 28].) Another disadvantage of the usual form of space-invariant post-smoothing is that the
nonstationary measurement statistics are not incorporated.

E. Classical Regularization Methods

Another way to overcome the problems of slow convergence and to reduce the image noise is to replace the log-
likelihood criterion by a penalized-likelihood objective function:

θ̂PL = argmax
θ
Φ(θ) where Φ(θ) = L(θ)− βR(θ),

whereR(θ) is a measure of image roughness. Larger values ofβ encourage smoother images with less noise. When
first investigated for PET, the penalty function posed a computational challenge since the M-step of the EM algorithm
has no closed form [29–31]. However, now there are a variety of fast algorithms (compared to EM) available for
maximizing such objective functions, e.g. [21, 27, 28, 32, 33]. These algorithms converge rapidly in part because the
penalty function greatly improves the conditioning of the reconstruction problem.

In the context of least-squares problems, such regularization methods date at least to the early 70’s [34], so now may
well be considered “classical.” The most classical penalty function simply measures the norm of the image:

R(θ) = ‖θ‖2 =
p∑
j=1

θ2j ,

which has its origins in ridge-regression. This simple penalty leads to images that are “squashed down” since even
the DC component is penalized. For reducing noise, a more suitable penalty is to discourage neighboring pixels from
having disparate values:

R(θ) =
p∑
j=1

∑
k∈Nj

ψ(θj − θk),

whereNj is the set of pixel indices in the neighborhood of pixelj, andψ(t) is a symmetric function typically chosen
to be nondecreasing fort ≥ 0. Such penalty functions (or “priors” in the Bayesian terminology) have yielded good
results in image restoration and image segmentation problems. However, in PET the nonstationary noise statistics
again complicate the problem. AlthoughR(θ) above is a shift-invariant function, recent analysis shows that images
reconstructed by maximizingΦ(θ) have nonuniform spatial resolution, due to interactions between the log-likelihood
and penalty terms [35,36]. (Such effects are absent in image restoration problems with white Gaussian noise.) Although
modified penalty functions have been proposed that reduce the resolution nonuniformity, these modifications cause
more nonuniform noise variance [36,37].

Another challenge in penalized-likelihood methods is choosingβ. This problem is comparable to that of choosing the
width of the apodizing window in FBP or the resolution of the filter used when post-smoothing ML images. However,
in the latter two problems the parameter that one varies to tradeoff resolution and noise is one that is naturally related
to spatial resolution, whereasβ has essentially arbitrary units. Automatic or data-based methods for choosingβ,
e.g. [38,39] have shown some potential, but may also be unstable in imaging problems [40].

There is also no consensus on the best choice forψ. Quadratic penalties lead to oversmoothing, and nonquadratic
penalties require additional parameter(s) that must be chosen. Nonconvex penalties cause additional problems with
algorithm convergence, but have led to impressive results in image restoration problems in images with sharply defined
regions [41]. However, in medical images one must take care to avoid turning smooth transitions into stair steps [42].
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F. Model Errors

Nearly all papers on model-based methods for PET image reconstruction assume that the measurement model is
known, particularly the “system matrix”A. In practice this matrix occasionally measured, or more commonly simply
computed based on an approximate geometry. In either caseA contains errors, and the effect of this model mismatch on
θ̂ is poorly understood. The errors inAmight invite the application of thetotal least-squares(TLS) estimation method,
e.g. [43]. However, TLS essentially assumes that the errors inA are normally distributed, which is very questionable in
PET. Furthermore,A usually includes attenuation factors that are determined from separate noisy transmission scans.
Understanding the effects of both deterministic and random errors in the model remains an important problem.

G. Attenuation correction

As described above, the conventional attenuation correction method in PET uses the ratio of the measurements in the
blank and transmission scans. The transmission measurements can be very noisy, and with randoms subtraction can
even take negative or zero values. This noise is usually reduced by smoothing with a space-invariant filter. However,
such smoothing introduces bias and again ignores the nonstationary statistics. More accurate attenuation correction
factors can be computed by first using statistical methods to reconstruct an attenuation image, while incorporating
nonlinear constraints such as nonnegativity and piecewise smoothness, and then reprojecting this image along all of the
lines-of-response [23,44–46].

H. SPECT

Most of the above discussion also applies to SPECT imaging. Statistical methods are perhaps even more useful in
SPECT, because the SPECT physical model is considerably further away from the Radon idealization than in PET,
due to single-photon attenuation and the space-variant resolution of collimators, e.g. [47]. In fact, for SPECT car-
diac studies, statistical methods are now in routine use at some centers, e.g. [48], and the EM algorithm is available
commercially.

I. Computing Speed and the Future

Since computers are continually increasing in speed and memory, it might seem at first that it is only a matter of
time before iterative reconstruction methods become used routinely. However, the same advances in technology that
lead to faster computers also lead to bigger and harder problems! For example, although computing speed certainly has
reached the point where iterative methods are clinically feasible for 2D problems, the focus is now on 3D PET where
the size ofA is 11-15 times larger than in 2D (after exploiting symmetries). (Similar considerations apply to cone-beam
SPECT, or even to parallel collimator SPECT with 3D compensation for detector response.) Thus there is continuing
need for new ideas in image reconstruction algorithm development. Although some of those ideas will undoubtably
be borrowed from signal and image processing work, the physics and statistics of PET will need to be incorporated
for the methods to be fully effective. Convincingly demonstrating that new methods are truly more effective than
previous methods requires careful matching of the resolution or noise properties of the methods compared. The medical
imaging community is generally unconvinced by the type of anecdotal single-image comparisons often found in image
processing papers. There is increasing emphasis on formal statistical evaluations of different image reconstruction
methods [49–51], which are also being applied to image processing [52].

J. To do (for tech report)

bias-variance for ML-SAGE post-smoothed (ala sieves) vs PML-SAGE.
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