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Abstract

This paper examines the spatial resolution properties of

penalized-likelihood image reconstruction methods by analyz-

ing the local impulse response. The analysis shows that stan-

dard regularization penalties induce space-variant local impulse

response functions, even for space-invariant tomographic sys-

tems. Paradoxically, for emission image reconstruction the local

resolution is generally poorest in high-count regions. We show

that the linearized local impulse response induced by quadratic

roughness penalties depends on the object only through its pro-

jections. This analysis leads naturally to a modified regulariza-

tion penalty that yields reconstructed images with nearly uni-

form resolution. The modified penalty also provides a very prac-

tical method for choosing the regularization parameter to ob-

tain a specified resolution in images reconstructed by penalized-

likelihood methods.

Keywords: emission tomography, local impulse response,

iterative reconstruction

1 Introduction

Statistical methods for image reconstruction can provide im-

proved spatial resolution and noise properties over conventional

filtered backprojection (FBP) methods. However, iterative meth-

ods based solely on maximum-likelihood criteria produce im-

ages that become unacceptably noisy as the iterations proceed.

Methods for reducing this noise include: stopping the iteration

before the images become too noisy (long before convergence)

[1], iterating until convergence and then post-smoothing the im-

age [2], using smooth basis functions [3] [4], and replacing the

maximum-likelihood criterion with a penalized-likelihood (or

This work was supported in part by NIH grants CA-60711 and CA-54362

and DOE grant DE-FG02-87ER60561.

maximum a posteriori) objective function that includes a rough-

ness penalty to encourage image smoothness [5].

Penalized-likelihood approaches for reducing noise have two

important advantages over alternatives such as stopping rules

and sieves. First, the penalty function improves the condition-

ing of the problem, so certain iterative algorithms converge very

quickly. Second, one can choose penalty functions that control

desired properties of the reconstructed images, such as preserv-

ing edges [5] or incorporating anatomical side information [6,7].

In contrast, the smoothness that one obtains through stopping

rules is limited by the characteristics of the iterative algorithm.

A possible disadvantage of penalized-likelihood methods has

been the absence of an intuitive method for choosing the value

of the regularization parameter, even for simple quadratic penal-

ties. One contribution of this paper is a new object-independent

method for specifying the regularization parameter in terms of

the desired resolution of the reconstructed image.

This paper describes another possibly undesirable property of

penalized-likelihood image reconstruction methods that has not

been previously documented (except in [8] to our knowledge),

and then proposes a solution to the problem. Through analysis

and empirical results we demonstrate that when one uses stan-

dard space-invariant roughness penalties, the reconstructed im-

ages have object-dependent nonuniform spatial resolution, even

for space-invariant tomographic systems. For emission imaging

the resolution is generally poorest in high-count regions, which

is opposite to what one might expect or prefer. In Section 5

we propose a new modified space-variant roughness penalty that

yields images with nearly uniform resolution. Based on our

analysis, one could extend the method to provide other reso-

lution characteristics, such as “higher resolution in high count

regions” etc., in a manner similar to methods for space-varying

regularization [9, 10], but in this paper we focus on the goal of

providing uniform resolution.

This paper is somewhat in the spirit of previous studies that

used the local impulse response [11–15] or an effective lo-

cal Gaussian resolution [16] to quantify the resolution prop-

erties of the unregularized maximum-likelihood expectation-
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maximization (ML-EM) algorithm for emission tomography.

However, there is an important difference in our approach: since

the ML-EM algorithm is rarely iterated until convergence, pre-

vious studies examined the spatial resolution properties of ML-

EM as a function of iteration. In contrast, since there are

now fast and globally convergent algorithms for maximizing

both penalized-likelihood [17–20] and penalized weighted least

squares [21–23] objective functions, rather than studying the

properties of the algorithms as a function of iteration, we study

directly the properties of the estimator as specified by the objec-

tive function (Sections II and III). This simplifies the practical

use and interpretation of our analysis since the specifics of the

iterative algorithm are unimportant (provided one uses a glob-

ally convergent method). Our main results (14) and (16) should

therefore be applicable to a broad range of inverse problems.

(Although we focus on image reconstruction, most of the issues

also pertain to quantum-limited image restoration.)

In conventional FBP image reconstruction, one controls the

tradeoff between resolution and noise by adjusting the cutoff fre-

quency fc of a filter. Because fc has units of inverse length, there

is an intuitive (and object-independent) relationship between fc
and the spatial resolution of the reconstructed image. For ideal-

ized tomographs, one can use the Hankel transform to compute

the point spread function (PSF) as a function of fc [24]. todo:

BETTER HANKEL for FBP REFERENCE? But for real sys-

tems, one usually determines the (monotonic) relationship be-

tween fc and the full-width half-maximum (FWHM) of the PSF

through the following empirical approach. First, acquire a sino-

gram using a point or line source, possibly at several locations

within the scanner. Then pick a filter type (e.g., Hanning) and

reconstruct images for several different values of fc. Finally,

compute the FWHM of the PSF for each case, and record a table

of (fc, FWHM) value pairs. In subsequent studies, one typically

chooses the desired resolution (FWHM) by experience or by vi-

sually observing the resolution-noise tradeoff, and then obtains

the appropriate fc from the table. One needs to perform this tab-

ulation only once for a given scanner, since FBP is linear (and

hence its resolution properties are object-independent).

In contrast, in penalized-likelihood image reconstruction, a

regularization parameter β controls the tradeoff between res-

olution and noise, but the units of β are at best opaquely re-

lated to spatial resolution. Therefore it is not obvious how to

specify the regularization parameter. As a further complication,

one finds that for a fixed β, the reconstructed spatial resolution

varies between subjects, and even within the same subject (Sec-

tion IV). One could choose β using statistical criteria such as

minimum mean-squared error [25, 26]. However, mean-squared

error is composed equally of both bias (resolution) and variance

(noise), whereas those two contributions usually have unequal

importance in medical imaging, particularly when images are to

be interpreted visually. Furthermore, data-driven methods for

choosing β can be unstable in imaging problems [27]. Many

other alternatives have been proposed, e.g. [28, 29], most of

which have again been assessed with respect to mean-squared

error. One practical contribution of this paper is that we de-

velop a method for normalizing the penalty function such that

the object-dependent component of β is nearly eliminated. This

allows one to build an object-independent table relating β to

spatial resolution (FWHM) for a given tomographic system, so

that one can select β to achieve a consistent specified resolution

within planes, between planes, and even between subjects. The

task of choosing the “optimal” resolution is left to the user, just

as the “optimal” cutoff frequency (and filter) for FBP are deter-

mined by different criteria in different contexts.

Nonuniform resolution properties are not unique to penalized-

likelihood methods. The ML-EM algorithm for emission to-

mography also exhibits resolution variation and asymmetry [12]

[30]. An advantage of the penalized-likelihood approach is that

one can modify the penalty to overcome the resolution nonuni-

formity (Sections 5, 6, and 7), whereas it is not obvious how to

modify ML-EM to achieve uniform resolution.

PET and SPECT systems usually have intrinsically nonuni-

form spatial resolution [31] (although PET systems are usually

nearly space invariant near the center of the scanner [31]). In this

paper our simulations focus on an idealized PET system that is

essentially space invariant, except perhaps for the effects of dis-

cretizing the Radon transform. Thus, the resolution nonunifor-

mities we report are due solely to the interaction between the

log-likelihood and the penalty terms of the objective function,

and not due to the system response. We hope to study the effects

of penalty functions in systems with intrinsically space-variant

resolution in future work.

In Section 9 we also analyze a continuous idealization of pe-

nalized least-squares image reconstruction. Some readers may

prefer to skim that section first.

2 Local Impulse Response

Let Y = [Y1, . . . , YN ]′ denote a random measurement vector

(e.g., a noisy sinogram) with density function f(y; θ), where

θ = [θ1, . . . , θp]
′ is an unknown parameter in a p-dimensional

parameter space Θ, and ′ denotes vector transpose. In imag-

ing problems, θ typically denotes image pixel values in lexico-

graphic ordering and Θ = {θ : θj ≥ 0, j = 1, . . . , p}. Given a

particular realization Y = y, an estimator of the form θ̂ = θ̂(y)
has mean:

µ(θ) = Eθ[θ̂(Y )] =

∫
θ̂(y)f(y; θ) dy. (1)

For linear and space-invariant problems, one can characterize

the properties of µ either in the spatial domain by specifying the

(global) impulse response, or in the spectral domain by speci-

fying the frequency response (Fourier transform of the impulse

response), as in Section 9.

Spectral methods are generally inapplicable to nonlinear es-

timators for which the impulse response is space variant. For

nonlinear estimators one can analyze the local impulse response

(cf [12]). For an estimator with mean µ(θ), we define the local

2



impulse response of the jth parameter (pixel) to be:2

lj(θ) = lim
δ→0

µ(θ + δej)− µ(θ)

δ

=
∂

∂θj
µ(θ), j = 1, . . . , p, (2)

where ej is the jth unit vector of length p. This impulse re-

sponse is local in two different senses. First, it is a function of

the index j, reflecting the space-variant nature of nonlinear es-

timation. Second, it depends on the location in the parameter

space Θ through the argument θ, reflecting the nonlinear ob-

ject dependence. The local impulse response also depends on

the measurement distribution through (1). Thus, the local im-

pulse response characterizes the object, system, and estimator

dependent properties. The local impulse response measures the

change in the mean reconstructed image due to perturbation of

a particular pixel in the noiseless object3.

To confirm that (2) is a natural generalization of the usual def-

inition of impulse response, consider an estimator whose mean

is linear in θ: µ(θ) = Lθ. Then the conventional definition of

impulse response is µ(ej), which is the jth column of L. Eval-

uating (2), one finds that lj is also the jth column of L. (If

in addition L is a circulant matrix, then the impulse response

is space-invariant, and L corresponds to a convolution [33].)

Also note that µ(θ) = θ for unbiased estimators, in which case

lj = ej . Penalized-likelihood estimators are always biased, so

local impulse responses will typically be bump-like functions,

rather than the ideal impulse ej (e.g. Fig. 1).

As a specific example, consider the penalized weighted least-

squares estimator [22]:

θ̂ = θ̂(y) = argmin
θ

(y −Aθ)′W (y −Aθ) + βθ′Rθ,

where W and R are symmetric nonnegative definite matrices

for which the null spaces of R and WA are disjoint. For a fixed

W , this estimator is linear in y:

θ̂(y) = [A′
WA+ βR]−1A′

W y,

and assuming Eθ[Y ] = Aθ, one can evaluate (2) to show

lj = [A′
WA+ βR]−1A′

WAej . (3)

For such linear estimators, the local impulse response is inde-

pendent of θ. As we show in Section 3, the local impulse re-

sponses of the nonlinear penalized-likelihood estimators for im-

age reconstruction have approximately the same form as (3), ex-

cept that W and R may depend on θ.

There are at least three reasons to study the local impulse re-

sponse. The first reason is simply to understand the resolution

2We restrict our discussion to estimators where the above limit is well de-

fined. The reader is cautioned that non-convex penalties can lead to estimates

that are discontinuous functions of the data [32]. We focus here on well-behaved

convex penalties.
3Because of this interpretation, we use the term point spread function (PSF)

synonymously with local impulse response, even though this stretches the usual

meaning of PSF.

properties of penalized-likelihood estimators. The second rea-

son is that the local impulse response allows one to quantify lo-

cal resolution, which in turn allows one to choose the smoothing

parameter β sensibly. The third reason is that comprehension

of the resolution properties enables the design of better penalty

functions. In particular, we show how to modify the standard

regularization penalty to achieve nearly uniform resolution.

2.1 Brute Force Evaluation of Local Impulse Re-

sponse

Unlike the simple penalized weighted least squares estimator de-

scribed above, most estimators θ̂(y) do not have an explicit an-

alytical form. When there is no explicit form for θ̂(y), there

is usually no explicit form for the estimator mean µ(θ) either.

Thus it would at first appear that to investigate the local impulse

response of a nonlinear estimator of interest, one must resort to

a numerical approach based on (1) and (2), replacing the expec-

tation in (2) by the sample mean in a computer simulation. The

following recipe illustrates this brute-force approach.

• Select an object θ of interest and generate multiple realiza-

tions {y(m)}Mm=1 of noisy measurements according to the

density f(y; θ).

• Apply the estimator of interest to each of the measurement

realizations to obtain estimates {θ̂(y(m))}Mm=1.

• Estimate the estimator mean using the sample mean:

µ̂(θ) =
1

M

M∑

m=1

θ̂(y(m)). (4)

• Choose a pixel j of interest and small value δ, and gen-

erate a second set of noisy measurements according to the

density f(y; θ + δej).

• Apply the estimator to the second set of noisy measure-

ments, and compute the sample mean to obtain an estimate

µ̂(θ + δej).

• Estimate the local impulse response:

lj(θ) ≈ µ̂(θ + δej)− µ̂(θ)

δ
. (5)

By taking δ sufficiently small and M sufficiently large, one

can obtain arbitrarily accurate estimates of the local impulse re-

sponse.

2.2 Unbiased Estimator for Local Impulse Re-

sponse

If one wants to evaluate the local impulse response for pixels

j1, . . . , jL of interest, the above procedure requires (L + 1)M
image reconstructions. The following method [34–36] reduces

the computation to only M image reconstructions. Note that

from (2),

lj(θ) =
∂

∂θj
µ(θ) =

∂

∂θj
Eθ[θ̂(Y )] =

∂

∂θj

∫
θ̂(y)f(y; θ) dy
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= Eθ[θ̂(Y )
∂

∂θj
log f(Y ; θ)].

Thus one can show [35, 36] that

l̂j(θ) =
1

M − 1

M∑

m=1

(θ̂(y(m))− µ̂(θ))
∂ log f(y(m); θ)

∂θj
(6)

is an unbiased estimator for lj(θ), where µ̂(θ) was defined in

(4). Once one performs the M reconstructions {θ̂(y(m))}Mm=1,

then one can estimate the local impulse response l̂j(θ) for many

pixels with little additional effort.

By taking M sufficiently large, one can obtain arbitrarily ac-

curate estimates of the local impulse response. Unfortunately,

M may need to be very large for sufficient accuracy. Often we

would gladly accept an approximation to the local impulse re-

sponse if we could avoid performing extensive numerical sim-

ulations. The remainder of this paper is devoted to approxima-

tions suitable for likelihood-based estimators in tomography.

2.3 Linearized Local Impulse Response

In the context of emission tomography, several investigators

have observed [14, 15, 37, 38] that the ensemble mean of a

likelihood-based estimator is approximately equal to the value

that one obtains by applying the estimator to noiseless data:

µ(θ) = Eθ[θ̂(Y )] ≈ θ̂(Ȳ (θ)) , θ̌. (7)

Here

Ȳ (θ) = Eθ[Y ] =

∫
yf(y; θ) dy (8)

denotes the mean of the measurement vector, and θ̌ denotes the

value of the estimator when given noiseless data Ȳ (θ). This

approximation is equivalent to assuming that the estimator is lo-

cally linear. Let ∇y = [ ∂
∂y1

. . . ∂
∂yN

] and consider the first-

order Taylor expansion of θ̂(Y ) about Ȳ (θ):

θ̂(Y ) ≈ θ̂(Ȳ (θ)) +∇y θ̂(Ȳ (θ)) · (Y − Ȳ (θ));

taking the expectation of both sides yields (7). The remainder of

this paper uses this local linearity approximation.

Substituting (7) into (2) yields the following definition of the

linearized local impulse response:

lj(θ) = lim
δ→0

θ̂(Ȳ (θ + δej))− θ̂(Ȳ (θ))

δ

=
∂

∂θj
θ̂(Ȳ (θ)). (9)

Since we focus on this form in the remainder of this paper, for

brevity we usually omit the adjective “linearized.”

The form of (9) leads to a much simpler recipe for numerically

evaluating the local impulse response.

• Select an object θ of interest, a pixel j of interest, and a

small value δ. Generate two noiseless measurements vec-

tors: Ȳ (θ) and Ȳ (θ + δej).

• Apply the estimator of interest to each of the two noiseless

measurements, obtaining estimates θ̂(Ȳ (θ)) and θ̂(Ȳ (θ +
δej)).

• Estimate the local impulse response:

lj(θ) ≈ θ̂(Ȳ (θ + δej)) − θ̂(Ȳ (θ))

δ
. (10)

By taking δ sufficiently small, one can obtain very accurate es-

timates of the linearized local impulse response. If θ̂ is linear in

y, then (10) is exact of course.

To illustrate this method, Fig. 1 shows a profile through sev-

eral local impulse response functions of FBP and of the emis-

sion ML-EM algorithm [39] (stopped at 30 iterations, well be-

fore convergence). The object θ was a uniform ellipse of activity

within a uniform elliptical attenuator4. Despite the fact that the

elliptical object has uniform activity, the resolution of the non-

linear ML-EM estimator is clearly nonuniform, whereas the FBP

resolution is uniform since the smoothing provided by the Han-

ning window is space-invariant. Using a similar perturbation

approach applied to both the noiseless mean of the data Ȳ (θ)
and to a single noisy realization Y , Stamos et al. [11] reported

strongly object-dependent point response functions for the ART

and ML-EM algorithms.

Several investigators have used this easily implemented em-

pirical approach to study the properties of maximum-likelihood

estimators in emission tomography. However, being empirical,

it fails to reveal general estimator properties. An analytical ex-

pression for the linearized local impulse response would facil-

itate understanding general properties of image reconstruction

methods. The next section derives an analytical expression for

the local impulse response of implicitly defined estimators.

3 Implicitly Defined Estimators

Many estimators in tomography are defined implicitly as the

maximizer of some objective function:

θ̂ = θ̂(y) = argmax
θ∈Θ

Φ(θ, y). (11)

We assume Φ has a unique global maximum, so that θ̂(y) is well

defined. There is often no analytical form for such estimators;

hence the ubiquitous use of iterative algorithms for perform-

ing the required maximization. Fortunately, the linearized lo-

cal impulse response (9) depends only on the partial derivatives

of the implicitly defined estimator θ̂(y). As discussed in [38],

even though θ̂(y) itself is unknown, one can determine its par-

tial derivatives using the implicit function theorem and the chain

rule. Disregarding the nonnegativity constraint5, the maximizer

4Image size 128 × 64 at 3mm pixels, 128 radial bins, 110 angles, 3mm ray

spacing, 6mm strip width, ellipse radii 58,26 pixels, attenuator radii 180,84 mm,

with µ = 0.0095/mm.
5Although it appears we are assuming that (12) holds for any y, from (9) one

sees we really only need (12) to hold near the case y = Ȳ (θ), i.e. the noiseless

case. The nonnegativity constraint is often largely inactive for noiseless data,

so (12) is a reasonable assumption.

4



60 70

0

1

2

3

2
0
 x

 r
e
s
p

o
n

s
e

80 90

0

1

2

3
ML−EM (30 Iterations)

110 120

0

1

2

3

Horizontal Pixel

60 70

0

1

2

3
2
0
 x

 r
e
s
p

o
n

s
e

80 90

0

1

2

3
FBP (Hanning Window)

110 120

0

1

2

3

Figure 1: Horizontal profiles through the local impulse response

functions of FBP with a Hanning window (top) and of the ML-

EM algorithm at 30 iterations (bottom), for three pixels lo-

cated along the horizontal midline of an elliptical object. Solid

line: computed using the linearized approximation (10); Circles:

computed using the unbiased estimator (6) from M = 2000 re-

alizations.

of Φ satisfies:

∂

∂θj
Φ(θ, y)

∣∣∣∣
θ=θ̂(y)

= 0, j = 1, . . . , p, (12)

for any y. In vector notation:

∇10Φ(θ̂(y), y) = 0 ∀y,
where ∇10 = [ ∂

∂θ1
. . . ∂

∂θp
] is the row gradient operator (with

respect to the first argument of Φ). Now differentiate again with

respect to y using the chain rule:

∇20Φ(θ̂(y), y)∇y θ̂(y) +∇11Φ(θ̂(y), y) = 0, (13)

where the (j, k)th element of ∇20 is ∂2

∂θj ∂θk
and the (j, i)th

element of ∇11 is ∂2

∂θj ∂yi
. For simplicity we drop the depen-

dence of Ȳ on θ except where explicitly needed. Assuming that

−∇20Φ(θ̌, Ȳ ) is positive definite, substitute y = Ȳ into (13)

and solve for the partial derivatives of θ̂(Ȳ (θ)):

∇y θ̂(Ȳ (θ)) = [−∇20Φ(θ̌, Ȳ )]−1∇11Φ(θ̌, Ȳ ).

Combining with the chain rule applied to (9):

lj(θ) =
∂

∂θj
θ̂(Ȳ (θ)) = ∇y θ̂(Ȳ (θ))

∂

∂θj
Ȳ (θ)

= [−∇20Φ(θ̌, Ȳ )]−1∇11Φ(θ̌, Ȳ )
∂

∂θj
Ȳ (θ). (14)

This equality expresses the local impulse response solely in

terms of the partial derivatives of the objective function and the

measurement mean, i.e., we have eliminated the dependence on

the implicitly defined estimator θ̂(y).

3.1 Penalized-Likelihood Estimators

In the remainder of this paper, we focus on penalized-likelihood

objective functions Φ of the form:

Φ(θ, y) = L(θ, y)− βR(θ), (15)

where L(θ, y) = log f(y; θ) denotes the log-likelihood, R(θ)
is a roughness penalty function, and β is a nonnegative regular-

ization parameter that controls the influence of the penalty, and

hence the tradeoff between resolution and noise.

Define R(θ) = ∇2R(θ) to be the Hessian of the penalty, and

note that ∇11R = 0. For penalized-likelihood estimators of the

form (15) we have from (14) the following expression for the

local impulse response6:

lj(θ) = [−∇20L(θ̌, Ȳ ) + βR(θ̌)]−1∇11L(θ̌, Ȳ )
∂

∂θj
Ȳ (θ).

(16)

This expression should be useful for investigating estimators in a

variety of imaging problems. Next we evaluate expression (16)

for Poisson distributed measurements, which will be the focus

of the remainder of this paper.

3.2 Poisson Statistics

Both emission and transmission tomographic systems yield in-

dependent measurements with Poisson statistics; the primary

difference is in the form of their assumed measurement means

Ȳ (θ). In both cases the assumed log-likelihood has the form:

L(θ, y) =
∑

i

yi log Ȳi(θ)− Ȳi(θ),

neglecting constants independent of θ. Thus

∂

∂θj
L(θ, y) =

∑

i

(
yi

Ȳi(θ)
− 1

)
∂

∂θj
Ȳi(θ)

∂2

∂θj ∂yi
L(θ, y) =

1

Ȳi(θ)

∂

∂θj
Ȳi(θ) (17)

− ∂2

∂θj ∂θk
L(θ, y) =

∑

i

(
yi

Ȳ 2
i (θ)

)
∂

∂θj
Ȳi(θ)

∂

∂θk
Ȳi(θ)

−
∑

i

(
yi

Ȳi(θ)
− 1

)
∂2

∂θj ∂θk
Ȳi(θ).(18)

3.3 Emission Tomography

For emission tomography [39], θj denotes the radioisotope con-

centration in the jth voxel, and the measurement mean is linear

in θ:

Ȳi(θ) =

p∑

j=1

aijθj + ri. (19)

6We consider the class of objectives Φ for which the Hessian

−∇20L(θ̌, Ȳ ) + βR(θ̌) is positive definite; i.e., Φ(θ, y) is at least locally

strictly concave near the noiseless case (θ̌, Ȳ (θ)).
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The {aij} are nonnegative constants that characterize the tomo-

graphic system, and the {ri} are nonnegative constants that rep-

resent the mean contribution of background events (random co-

incidences, scatter, etc.). Substituting (19) into (17) and (18):

−∇20L(θ, y) = A
′D

[
yi

Ȳ 2
i (θ)

]
A

∇11L(θ, y) = A
′D

[
1

Ȳi(θ)

]
,

where A = {aij} is anN×p sparse matrix andD[ui] denotes a

N ×N diagonal matrix with diagonal entries u1, . . . , uN . Not-

ing that ∂
∂θj

Ȳ (θ) = Aej and substituting into (16) yields the

local impulse response:

lj(θ) = [A′D

[
Ȳi(θ)

Ȳ 2
i (θ̌)

]
A+ βR(θ̌)]−1A′D

[
1

Ȳi(θ̌)

]
Aej .

For moderate or small values of β, θ̌ is a slightly blurred version

of θ (see (7)). Since the projection operation Aθ is a smooth-

ing operator, the projections Ȳ (θ) and Ȳ (θ̌) are approximately

equal. Therefore7, we simplify the above expression to

lj(θ) ≈ [A′D
[
uemis
i (θ)

]
A+ βR(θ̌)]−1A′D

[
uemis
i (θ)

]
Aej ,

(20)

where

uemis
i (θ) =

1

Ȳi(θ)
(21)

is the reciprocal of the variance of Yi under the assumed Pois-

son model. For penalized-likelihood estimators in emission to-

mography, (20) is our final approximation to the local impulse

response.

3.4 Transmission Tomography

For transmission tomography [39], θj denotes the linear attenu-

ation coefficient of the jth pixel. The measurement means are

nonlinear functions of the attenuation coefficients:

Ȳi(θ) = bi exp


−

p∑

j=1

aijθj


+ ri. (22)

The {aij}, {bi}, and {ri} are nonnegative constants that charac-

terize the system, transmission source strength, and background

events respectively. From (17) and (18) one can show [38] that

−∇20L(θ, y) = A
′D

[
(Ȳi(θ) − ri)(1−

riyi

Ȳ 2
i (θ)

)

]
A

∇11L(θ, y) = −A
′D

[
1− ri

Ȳi(θ)

]
.

7The diagonal terms in (20) and the preceding equation are sandwiched be-

tween the backprojection and projection operators A′ and A, which smooth out

most differences between Ȳ (θ) and Ȳ (θ̌). In a sense, the heavy-tailed 1/r ker-

nel that makes tomography ill-posed works to our advantage when making the

above approximations.

Under the same assumptions about the similarity of Ȳ (θ̌) and

Ȳ (θ) used in the emission case, one can substitute the above for-

mulae into (16) to derive an approximate local impulse response

for transmission tomography:

lj(θ) ≈ [A′D
[
utrani (θ)

]
A+ βR(θ̌)]−1A′D

[
utrani (θ)

]
Aej ,

(23)

which is of the same form as (20). However, in this case

utrani (θ) =
(Ȳi(θ)− ri)

2

Ȳi(θ)
(24)

is approximately the reciprocal of the variance (cf [38]) of

log(bi/(Yi − ri)).
To summarize, we have derived a general local impulse re-

sponse expression (14) for penalized-likelihood estimators, and

specific expressions (20) and (23) for emission and transmission

tomography.

4 Resolution Properties

The local impulse response approximations for penalized-

likelihood image reconstruction in emission tomography (20)

and transmission tomography (23) differ only by the definitions

of the ui terms in the diagonal matrix. Thus, the local impulse

response has the following generic form:

lj(θ) ≈ [A′
DθA+ βR(θ̌)]−1A′

DθAe
j, (25)

where Dθ = D[ui(θ)] is an object-dependent diagonal matrix

with ui(θ) defined by (21) for emission tomography and (24)

for transmission tomography.

Many penalty functions used in tomography can be written in

the following form8:

R(θ) =

p∑

j=1

1

2

∑

k∈Nj

wjkψ(θj − θk), (26)

where Nj is a neighborhood of pixels near pixel j, ψ is a sym-

metric convex function, and wjk = wkj . For a “first-order”

neighborhood one chooses wjk to equal 1 for horizontal and

vertical neighboring pixels, and 0 otherwise; for a “second-

order” neighborhood one also includes wjk = 1/
√
2 for diag-

onal neighbors. With either of these standard choices for the

wjk’s, we refer to R(θ) as a uniform penalty, since it is shift-

invariant; i.e., translating the image yields an identical value of

R(θ).
One of the simplest uniform penalties is the uniform quadratic

penalty, which refers to the case where ψ(x) = x2/2. In this

case the penalty has a quadratic form:

R(θ) =
1

2
θ′Rθ,

8If ψ̈(x) > 0 for all x, then it is easily shown that the only vectors in the

null space of the matrix ∇2R(θ) are of the form v = 1pv1, where 1p is the

length-p vector of ones. For any tomographic system that satisfies DθA1p 6=
0 (i.e. the projection of a uniform image is nonzero), we can then conclude

that A′
DθA + βR(θ̌) is positive definite and therefore invertible, as required

by (16).
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where R is a θ-independent p× p matrix defined by:

Rjk =

{ ∑
l∈Nj

wjl, k = j

−wjk, k 6= j
.

In the quadratic case the local impulse response simplifies to:

lj(θ) ≈ [A′
DθA+ βR]−1A′

DθAe
j . (27)

4.1 Projection Dependence

When R(θ) is a quadratic form so that R is independent of θ,

then remarkably the local impulse response approximation lj(θ)
given by (27) depends on the object θ only through its projec-

tions Ȳ (θ) (see (21) and (24)). Even if the object is unknown,

its projections are approximately known through the noisy mea-

surements y. Thus, even for real noisy measurements, we can

predict the local impulse response simply by replacing Ȳ (θ)
with y in (20) or (23). This simple approach is effective primar-

ily because the diagonal terms in (20) and (23) are sandwiched

between the backprojection and projection operators A′ and A,

which greatly smooth out the noise in y, i.e.

A
′D

[
Ȳi(θ)

]−1
A ≈ A

′D[yi]
−1

A. (28)

4.2 Nonuniformity

One might expect that a uniform penalty such as (26) would

induce uniform spatial resolution, just as space-invariant sieves

do [2]. Using the preconditioned conjugate gradient [23, 40] or

Gauss-Siedel [21, 22] algorithms, one can evaluate (25) or (27)

and then display the local impulse response for several locations

within the object. Upon doing this, one immediately finds that

the local impulse response is very nonuniform, even for standard

uniform quadratic penalties. (See Section 6.)

The next section elaborates on this property, but one can par-

tially understand the source of the resolution nonuniformity by

considering (27). If the measurement noise was homoscedas-

tic with variance ν, then D would be simply a scaled identity

matrix: D = ν−1I , and from (27) the local impulse response

would be

lj(θ) = [ν−1A′
A+ βR]−1ν−1A′

Aej

= [A′
A+ νβR]−1A′

Aej . (29)

In other words, noise with variance ν leads to an impulse re-

sponse that corresponds to an “effective” smoothing parameter

νβ. Thus, the influence of the smoothing penalty is not invari-

ant to changes in the noise variance, which perhaps explains in

part why choosing β is considered by many investigators to be

a difficult process. The Poisson case is more complicated since

the values of Dθ vary along the diagonal. Since a given pixel is

primarily affected by the detectors whose rays intersect it, each

pixel sees a different “effective variance” and hence a different

effective smoothing parameter.

This resolution nonuniformity can also be explained from a

Bayesian perspective. The Fisher informationA′
DθA is a mea-

sure of the certainty in the data. For pixels where this data cer-

tainty is smaller (due to higher noise variance in the rays that

intersect that pixel), the posterior estimate will give more weight

to the prior, which (being a smoothness prior) will cause more

smoothing. In emission tomography, pixels with higher activity

yield rays with higher counts and hence higher absolute variance

or lower certainty. Paradoxically, penalized-likelihood methods

using the standard uniform penalty thus have lower spatial reso-

lution in high-count regions. This property is certainly undesir-

able, and may explain in part why many authors have character-

ized the uniform quadratic penalty as causing “oversmoothing,”

since the most prominent image features are generally smoothed

the most!

4.3 Choosing β for one pixel

Since (27) allows one to predict the local impulse response (and

hence the spatial resolution) at any pixel j as a function of β,

one could use (27) to choose a value for β that induces a desired

resolution at some pixel j of interest in the image. However, the

induced resolutions at other points in the image would still be

different, which motivates the modified penalty developed in the

next section.

5 Resolution Uniformity

This section analyzes the problem of resolution nonuniformity

more closely. This analysis leads to a natural modified penalty

function that induces more uniform resolution. For simplicity

we focus on emission tomography; parallel arguments apply to

transmission tomography.

5.1 Emission Tomography

In emission tomography, the Fisher information matrix A
′
DθA

is an operator that, due to the lexicographic ordering of pixels,

one can treat as a mapping from image space to image space.

The operator A′
DθA is shift-variant for emission tomography,

which is the crux of the problem of resolution nonuniformity.

The previous section noted that the nonuniform diagonal of the

Dθ term is partially responsible for the nonuniform local im-

pulse response. But even without that term, the spatial resolu-

tion would still be nonuniform because typically even A
′
A is

a shift-variant operator in PET and SPECT. However, one of-

ten models the system matrix A as a product of three factors:

aij = cigijsj , such that G′
G is approximately shift-invariant,

where G = {gij} represents the object-independent9 geometric

portion of the tomographic system response. The ci’s represent

ray-dependent factors that change between studies, including

detector efficiency factors, dead time, radioisotope decay, and

(in PET) attenuation factors. The sj’s represent pixel-dependent

factors such as spatial variations in sensitivity, and (in SPECT)

“first-order” attenuation correction factors (cf the image-space

Chang method [41] for SPECT attenuation correction). For our

PET work thus far, we have simply used sj = 1. In matrix

9In SPECT G will only be approximately object-independent due to attenu-

ation.
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notation:

A = D[ci]GD[sj ] . (30)

This factorization is not unique. If one desires resolution uni-

formity, then the analysis that follows suggests that one should

strive to choose {ci} and {sj} so that G′
G is “as shift-invariant

as possible” (cf (43) below). (See [42] for additional analyses of

shift-invariant and shift-variant imaging systems.)

Substituting (30) into (20) and simplifying:

lj(θ) ≈ [D[sj ]G
′D[qi(θ)]GD[sj ] + βR(θ̌)]−1

·D[sj]G
′D[qi(θ)]GD[sj] e

j , (31)

where

qi(θ) = c2i /Ȳi(θ). (32)

In PET, these qi’s are very nonuniform due to attenuation cor-

rection factors that range from 1 to 100, detector efficiencies

that vary over an order of magnitude in block crystal systems,

and the intrinsic count variations of Poisson measurements.

Figure 2: Illustration of the approximation (36). Upper left: the

matrix G
′
G which is approximately Toeplitz-block-Toeplitz.

Upper right: the Fisher information F = G
′D[qi(θ)]G in-

cluding Poisson noise covariance. The nonuniform diagonal

is caused by the nonuniform Poisson noise variance. Lower

right: the approximation ΛG′
GΛ; note the agreement with

the upper right matrix, i.e. F ≈ ΛG′
GΛ. Lower left:

Λ−1G
′D[qi(θ)]GΛ−1; note that this matrix is a reasonable ap-

proximation to G
′
G.

The Fisher information matrix for estimating θ is:

F (θ) = A
′D[ui(θ)]A = D[sj ]G

′D[qi(θ)]GD[sj ] . (33)

As a consequence of the nonuniformity of the qi’s, the diago-

nal of F (θ) is also nonuniform, which contributes greatly to the

shift-variance of the F (θ) operator in PET.

Understanding the structure of F (θ) is the key to correcting

the resolution nonuniformity. From (33) the diagonal elements

of F (θ) can be written:

F jj(θ) = s2j
∑

i

g2ijqi(θ) = κ2j(θ)
∑

i

g2ij , j = 1, . . . , p, (34)

where we define

κj(θ) = sj

√∑

i

g2ijqi(θ)/
∑

i

g2ij . (35)

Due to the 1/r response of tomographs, F (θ) is fairly concen-

trated about its diagonal, so (34) suggests the approximation:

F (θ) = D[sj ]G
′D[qi(θ)]GD[sj ] ≈ ΛθG

′
GΛθ, (36)

where

Λθ = D[κj(θ)] (37)

is a p × p diagonal matrix. From (34) one sees that approxi-

mation (36) is exact along the diagonal of F (θ), and would be

exact on the off-diagonal elements if the qi’s were equal. The

approximation (36) turns out to be reasonably accurate even for

very nonuniform qi’s because the κj’s vary slowly as a function

of j, due to the smoothing implicit in (35). This approximation

also reflects the fact that the local impulse response of pixel j de-

pends primarily on the qi’s that correspond to rays that intersect

pixel j.
To visualize (36), Fig. 2 shows the various matrices for a

toy PET problem10 (with sj = 1). The nearly Toeplitz-block-

Toeplitz structure of G′
G is apparent.

Substituting (36) into (31) and rearranging yields the follow-

ing approximation to the local impulse response:

lj(θ) ≈ [ΛθG
′
GΛθ + βR(θ̌)]−1ΛθG

′
GΛθe

j

= Λ−1
θ [G′

G+ βΛ−1
θ R(θ̌)Λ−1

θ ]−1G′
GΛθe

j

= κj(θ)Λ
−1
θ [G′

G+ βΛ−1
θ R(θ̌)Λ−1

θ ]−1G′
Gej , (38)

because Λθe
j = κj(θ)e

j .

What does Λθ represent statistically? From (35), we see that

κj(θ) is a normalized backprojection of {qi}, where qi is the

inverse of the variance of the ith corrected measurement yi/ci.
Thus κj(θ) represents an aggregate certainty of the measure-

ment rays that intersect the jth pixel. Since the local impulse

response lj is typically concentrated about pixel j, a somewhat

cruder but nevertheless very useful approximation that follows

from (38) is

lj(θ) ≈ [G′
G+ β/κ2j(θ) R(θ̌)]−1G′

Gej , (39)

(cf (29)). The accuracy of this approximation improves as β
decreases (and hence lj approaches the impulse ej). This ex-

pression again illustrates the property that the effective amount

of smoothing β/κ2j(θ) increases with decreasing measurement

certainty κj(θ).

10The object was a 6×2 uniform rectangle in a 8×6 image. We used ci = 1,

so the only nonuniformity in the qi’s was due to the 1/Ȳi(θ) contribution of

Poisson noise.
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Approximation (39) illuminates the paradoxical oversmooth-

ing of high-count regions with the uniform penalty. If pixel

j is transected by rays with high counts, then from (32) and

(35) we see that qi and hence κj(θ) will be small, so the effec-

tive smoothing parameter β/κj(θ)
2 above will be large, causing

lower resolution. As θj increases, the rays that intersect it will

also increase, so the local resolution decreases11.

5.2 A Modified Penalty

The form of (38) suggests several possible methods for modify-

ing the penalty function to improve resolution uniformity. We

focus on one approach that is easily implemented. Let R⋆(θ)
denote a “target” penalty function of the form (26) (presum-

ably shift-invariant) whose properties would be suitable if we

had Dθ = I . Suppose we have estimates {κ̂j} of {κj(θ)}, and

consider the modified penalty:

R(θ) =
1

2

∑

j

∑

k∈Nj

wjkκ̂j κ̂kψ(θj − θk). (40)

If R(θ) = ∇2R(θ) denotes the Hessian of this modified

penalty12, then one can show that

Rjk(θ) =

{ ∑
l 6=j wjlκ̂j κ̂lψ̈(θj − θk), j = k

−wjkκ̂jκ̂kψ̈(θj − θk), j 6= k
,

so that if D[κ̂j ] ≈ Λθ and we let R⋆(θ) = ∇2R⋆(θ), then

R(θ) ≈ ΛθR
⋆(θ)Λθ. (41)

This approximation relies on the fact that neighboring pixels

have very similar certainties, i.e. κk(θ) ≈ κj(θ) for k ∈ Nj ,

which again follows from the smoothing effect of (35). Sub-

stituting (41) into the expression for the local impulse response

(38) yields the new approximation

lj(θ) ≈ κj(θ)Λ
−1
θ [G′

G+ βR⋆(θ̌)]−1G′
Gej . (42)

If the geometric response G is nearly space invariant, then to

within our approximation accuracy, (42) corresponds to nearly

uniform resolution except for the following features.

• Unlike the uniform quadratic target penalty, for which R
⋆

is constant along its diagonal, nonquadratic penalties lead

to object-dependent Hessians R
⋆(θ̌). However, users of

nonquadratic penalties presumably desire certain nonuni-

formities, i.e. more smoothing in flat regions and less

smoothing near edges. Our modified penalty (40) preserves

this important characteristic of nonquadratic penalties. Our

modification only corrects for the resolution nonuniformi-

ties that are induced by the interaction between the nonuni-

form statistics and the penalty function. Essentially we are

correcting for the Λ−1
θ RΛ−1

θ term in (38).

11However, note that even uniform objects (e.g. θ = [1 . . . 1]) lead to

nonuniform resolution (i.e. to shift-variant local impulse response), since Ȳ (θ)
will be a nonuniform vector due to the different lengths of the line integrals

through the object.
12One can easily verify that this Hessian is nonnegative definite if ψ̈ > 0.

• Since κj(θ)/κk(θ) ≈ 1 for k ∈ Nj , the term κj(θ)Λ
−1
θ in

(42) effectively acts as an identity matrix for pixels near j,
so for local impulse responses that are fairly narrow we can

disregard the κj(θ)Λ
−1
θ term, leading to the approximation

lj(θ) ≈ [G′
G+ βR⋆(θ̌)]−1G′

Gej. (43)

By “narrow” we mean relative to the scale of the spatial

fluctuations in κj(θ). However, in regions where the cer-

tainty κj(θ) is more rapidly varying as a function of spa-

tial position (such as near the edge of an object), the pres-

ence of the term κj(θ)Λ
−1
θ indicates that there will be some

asymmetry in the local impulse response. As illustrated in

Section 6, such asymmetry can occur with or without our

modifications to the penalty. Further work is needed to cor-

rect these asymmetries.

5.3 Practical Implementation

In practice, the term κj(θ) is unknown, since it depends on the

noiseless measurement mean Ȳ (θ). Fortunately, we can manip-

ulate the noisy data to provide a reasonable estimate κ̂j of κj(θ).
We first compute from the measurements an estimate q̂i of the

term qi(θ) defined by (32):

q̂i =
c2i

max{yi, 10}
. (44)

The “10” factor ensures that the denominator is not too close to

zero, and hopefully provides a little robustness to model mis-

match by giving no rays an inordinate weighting. We then re-

place the qi(θ) term in (35) with q̂i to precompute κ̂j , which we

then use in (40). Thus, implementing the modified penalty (40)

simply requires one extra backprojection. (To save a little com-

putation, one could probably replace (35) with an approximate

backprojector.) The cost of multiplying by κ̂j κ̂k in (40) is neg-

ligible compared to the forward projections required by iterative

reconstruction algorithms.

Since the κ̂j’s depend on the data, our modified penalty (40) is

data-dependent! Bayesian-minded readers may find the idea of a

data-dependent “prior” to be somewhat disconcerting. We make

absolutely no pretense that this approach has any Bayesian inter-

pretation. The purpose of the penalty is solely to control noise,

and the purpose of our modification to the penalty is solely to

control the resolution properties. As an alternative to (44), one

could periodically update the κ̂j’s by substituting one’s current

estimate of θ̂ into (35) within an iterative algorithm. But the

extra effort is unlikely to change the final estimate very much,

since, as noted earlier, small changes in the qi’s have minor ef-

fects on the estimate due to the “sandwich” effect described in

footnote 7 and by (28).

Since (40) and (44) define the modified penalty R(θ) to be

a function that depends on y, the matrix ∇11R is no longer ex-

actly 0, so strictly speaking the steps between (14) and (16) need

modification. However, because of the effective smoothing in

the definition (35), the partial derivatives with respect to y of the

modified penalty are very small, so we ignore this second-order

effect.
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5.4 Transmission Tomography

For transmission tomography, we use a modified penalty similar

to (40). The only difference is that rather than using the {qi}
defined in (32), we use the {ui} defined by (24) for computing

{κ̂j} in (35). Without our modification to the penalty, it follows

from (39) and (24) (and from empirical experience) that attenu-

ation maps reconstructed with standard uniform penalties have

the poorest resolution in high density regions (through which

the fewest photons pass unabsorbed, so the corresponding rays

have fewer counts and thus the κjvalues are small). Again this

property is undesirable, particularly since mismatch between the

spatial resolution of attenuation maps and emission measure-

ments can cause image artifacts in PET [43]. With our modified

penalty, the resolution is nearly uniform. Furthermore, if one

uses the same geometric model G for both emission and trans-

mission reconstruction13, then one can use the same parameter β
for both cases, encouraging consistency between emission and

transmission spatial resolution.

5.5 Choosing β

For a quadratic target penalty R⋆(θ), the local impulse re-

sponse (43) induced by our modified penalty (40) is independent

of the object θ. Thus the process of choosing the smoothing pa-

rameter β is significantly simplified by the following approach.

Let j be a pixel in the center of the image, for example. For a

given system geometric response G, precompute the local im-

pulse response (43) for a range of values of β. For each β, tabu-

late some measure of resolution, such as the FWHM of lj . Then,

when presented with a new data set to be reconstructed at some

user-specified resolution, simply interpolate the table to deter-

mine the appropriate value for β. Finally, reconstruct the object

using the modified quadratic penalty. Section 6 presents results

that demonstrate the effectiveness of this approach. Analytical

results in Section 9 further simplify the process of building this

table for certain tomographs.

Many (but not all) nonquadratic penalties are locally quadratic

near 0, and it is this quadratic portion of the penalty that is active

within relatively flat regions in the image. For such penalties,

one could use the table approach described above to specify the

desired “resolution” in the flat parts of the image, and then ad-

just any remaining penalty parameters to control the influence of

edges etc. For penalties that are not even locally quadratic, such

as the generalized Gaussian Markov random field prior [32], fur-

ther investigation is needed.

6 Examples

This section demonstrates the improved resolution uniformity

induced by the modified penalty (40) within a penalized-

likelihood image reconstruction method for PET emission mea-

surements. For θ, we used the 128× 64 emission image shown

in Fig. 3, which has relative emission intensities of 1, 2, and 3

13For transmission imaging, the detector efficiences etc. are included in {bi},

so A = G, i.e., there are no ci’s.

in the cold disk (left), background ellipse, and hot disk (right)

respectively. We included the effects of nonuniform attenuation

in the ci’s by using an attenuation map qualitatively similar to

Fig. 3, but with attenuation coefficients 0.003/mm, 0.0096/mm,

and 0.013/mm for the cold disk, background ellipse, and hot disk

respectively. The pixel size was 3mm. Rather than being anthro-

pomorphic, this phantom was designed to demonstrate that the

modified penalty induces nearly uniform spatial resolution even

for problems where the standard penalty yields highly nonuni-

form spatial resolution.

We simulated a PET emission scan with 128 radial bins and

110 angles uniformly spaced over 180◦. The gij factors corre-

sponded to 6mm wide strip integrals with 3mm center-to-center

spacing. We set ri = 0.1 1
N

∑
i′
∑

j ai′jθj , which corresponds

to 10% random coincidences.

6.1 Resolution Uniformity

We computed local impulse response functions lj(θ) for three

pixels j, corresponding to the center of the cold disk, the cen-

ter of the image, and the center of the hot disk. We used the

recipe following (9) with δ = 0.01 to evaluate lj(θ), for both

the standard penalty (26) and the modified penalty (40) with

ψ(x) = x2/2. For both penalties we used a first-order neigh-

borhood. We used this recipe rather than any of the approxima-

tions that followed it (such as (20)) to provide a more convincing

demonstration; for routine work we usually just use (31). (The

results of (31) are not shown in Fig. 4 since they turn out to be

indistinguishable from the curves shown, which supports the ac-

curacy of the approximations leading to (31).) We maximized

the objective function (15) to compute θ̂ in (5) using 20 itera-

tions of the PML-SAGE-3 algorithm [19].

Fig. 4 displays horizontal and vertical profiles through the lo-

cal impulse responses for the estimators corresponding to the

two penalty functions. The circles in Fig. 4 are for the unbiased

estimator (6) for M = 2000 realizations. The standard penalty

has highly nonuniform spatial resolution, whereas the modified

penalty yields nearly uniform spatial resolution. These results

are typical.

6.2 Asymmetry

In part because of the large eccentricity of the ellipse in Fig. 3,

the local impulse responses of both penalties are asymmetric.

Fig. 5 displays contours at levels 25, 50, 75, and 99% of the

peak value for each PSF, computed using the contour func-

tion of Matlab. We hope to extend the analysis in this paper to

develop suitable modifications to the penalty that will reduce this

asymmetry. (The corresponding contours for FBP were virtually

circular.)

6.3 Choosing β

We now describe how we selected β for this simulation, which

illustrates the effectiveness of the table-based approach de-

scribed in Section 5.5. First, we decided for illustration purposes

to use a FWHM of 4 pixels. Since the strip width is twice the
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pixel size in this example, the detector response (as discussed

in Section 9) is a rectangular function with frequency response

Strue(u) = sinc(2u) From the analytical results shown in

Fig. 18 for that detector blur, we need log2 β0 ≈ 9.3. From (52)

in Section 9

log2 β = log2
β0∆θ∆b

4π4
= 9.3 + log2

π
110

3
3

4π4
≈ −4.44,

so we used β = 2−4.44 for the modified penalty14. Did this

choice of β actually give the desired 4 pixels FWHM resolution?

Since Fig. 5 shows that the local impulse response is asymmet-

ric, clearly the resolution is not exactly 4 pixels FWHM isotrop-

ically. In particular, for the same 3 pixels considered above, the

horizontal resolutions were 3.10, 3.38, and 3.34 pixels FWHM,

whereas the vertical resolutions were 5.28, 4.83, and 4.76 pix-

els FWHM. However, the averages of the horizontal and verti-

cal resolutions were 4.19, 4.10, and 4.05 pixels FWHM, all of

which are within 5% of the target resolution of 4 pixels FWHM.

Thus, although further work is needed to correct the asymme-

try in such eccentric objects, the proposed method for selecting

β appears to yield local impulse responses whose average reso-

lution is very close to the desired resolution. These results are

typical in our experience.

Figure 3: Digital phantom used to examine spatial resolution

properties.

7 What Happens to the Variance?

It is well known that the global smoothing parameter β controls

an overall tradeoff between resolution and noise: larger β’s lead

to coarser resolution but less noise, and vice-versa. The anal-

ysis in preceding sections shows that for the modified penalty

to induce uniform spatial resolution, the “local” smoothing pa-

rameter must effectively be larger in some areas, and smaller in

others. Thus, it is natural to expect that these changes in the

local resolution will also influence the noise—but is the influ-

ence global or local? I.e., if the modified penalty increases the

resolution (and hence the noise) at a given pixel, will that noise

14For the standard penalty, we used the above value of β scaled down by κ2j
for the single j corresponding to the pixel at the center of the image, as suggested

by (39) and described in Section 4.3. This choice matched the resolution at the

image center for the two penalties, as illustrated in the center plots of Figs. 4

and 5.
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Figure 4: Horizontal and vertical profiles (concatenated left

to right) through three local impulse response functions for a

penalized-likelihood estimate of the image shown in Fig. 3. The

standard quadratic penalty yields highly nonuniform resolution

(upper profiles), whereas the proposed modified penalty leads to

nearly uniform spatial resolution (lower profiles). Note that for

the standard penalty the resolution is poorest in the high-count

disk.

somehow propagate to distant pixels and lead to an overall worse

resolution/noise tradeoff?

To address this question, we generated 100 realizations of

Poisson distributed simulated PET measurements for the object

shown in Fig. 3, and for the system properties described in Sec-

tion 6. For each realization y(1), . . . , y(100), we used 20 itera-

tions of PML-SAGE-3 [19] to compute penalized-likelihood es-

timates {θ̂(y(m))}100m=1 for several values of β for both the stan-

dard and the modified quadratic penalties. For each value of β,

we computed the empirical standard deviation of θ̂j for the pix-

els at the centers of the two disks in Fig. 3. (The results were

similar for the pixel at the image center, so are not shown.)

7.1 Just What You Expected

Fig. 6 shows the tradeoff between resolution (measured by the

average FWHM of the local impulse response) and noise (mea-

sured by the empirical standard deviation) as β is varied. Fig. 6

also shows predicted standard deviations computing using the

variance approximations described in [38]. (The good agree-

ment between empirical and predicted results in Fig. 6 is further

confirmation of the utility of the approximations in [38].)

In Fig. 6, the resolution/noise data points follow an essentially

identical tradeoff curve for both the standard and the modified

penalty. This is true both for the analytically predicted tradeoff

(the solid line and the dashed line overlap almost perfectly) as

well as for the empirical results (the circle and the plus symbols

lie on the same curve). These results suggest that the effects of

the modified penalty are essentially local: a given pixel moves
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Figure 5: Contours of the local impulse response functions at 25,

50, 75, and 99% of each peak. Left: center of cold disk, middle:

center of image, right: center of hot disk.

up or down its own resolution/noise tradeoff curve to the spec-

ified resolution, and then has a variance that is the same value

as would be obtained if one were to use the standard penalty but

globally adjust β to enforce that specified resolution at the given

pixel. This property probably hinges on the fact that the κj fac-

tors are spatially smooth. If one were to artificially create an

κj map having discontinuities and then apply the modification

(40), then it is plausible that the results would be less regular

than indicated in Fig. 6. Readers who apply variations of (40)

to induce some type of data-based non-uniform resolution will

need to consider the resolution/noise tradeoff in more detail.

Fig. 25 shows central horizontal profiles through empirical

standard deviation maps of the penalized likelihood estimates

for both the modified and the standard quadratic penalties. Also

shown is a calculated prediction of the variance, an approxima-

tion developed in [44]. As noted in footnote 14, the penalties

were chosen to have matched resolution at the image center, and

in Fig. 25 the estimator variance is also matched at the image

center. Note however that whereas the variance for the standard

penalty is fairly uniform (at least for this object), the variance

for the modified penalty is nonuniform. (Of course as we have

shown it is the other way around for the spatial resolution.) This

nonuniformity is consistent with the results of Fig. 6.

7.2 Quadratic Penalties Are Useful

Fig. 7 compares the resolution/noise tradeoff of penalized likeli-

hood with that of images reconstructed by FBP with a Hamming

window and with a constrained least-squares (CLS) window cor-

responding to (50) of Section 9:

sinc(2u) / sinc(u)

sinc2(2u)+βu3
, u ∈ [0, 1

2
], (45)

(where u denotes spatial frequency: cycles per radial sample).

(Dividing by sinc(u) compensates for the linear interpolation

step of backprojection in the FBP algorithm. We found this cor-

rection improved the match between the PSF of FBP and the

PSF of penalized likelihood.) This window induces a PSF in-

distinguishable from that of penalized-likelihood estimates with

the first-order quadratic penalty . As shown by Fig. 7, at any

given resolution the empirical standard deviations for the FBP

images are higher than for the penalized-likelihood estimates.

This demonstrates that even using the oft-maligned quadratic

penalty, penalized-likelihood image reconstruction can outper-

form FBP in terms of the tradeoff between resolution and noise.

Of course nonquadratic prior models may give even better re-

sults for objects that are consistent with those models, but results

such as Fig. 7 show that quadratic penalties provide a useful re-

duction in image noise over a large range of spatial resolutions.

Standard Penalty: Predicted

Modified Penalty: Predicted

Standard Penalty: Empirical

Modified Penalty: Empirical
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Figure 6: Resolution/noise tradeoff for penalized-likelihood

emission image reconstruction with standard and modified

quadratic penalties. The two penalties induce virtually identical

tradeoff curves. (The dotted lines connect points that correspond

to the same β value.)

8 Discussion

We have analyzed the local impulse response of implicitly de-

fined estimators (14) and of penalized-likelihood estimators for

emission tomography (20) and transmission tomography (23).

The analysis and empirical results show that the local impulse

response is asymmetric and has nonuniform resolution for Pois-

son distributed measurements. We proposed a modified regular-

ization penalty (40) that improved the spatial resolution unifor-

mity but not the asymmetry.

For the space-invariant tomographs considered here, the res-

olution nonuniformity arises from the nonuniform diagonal of

the Fisher information matrix, which in turn is a consequence

of the nonuniform variance of Poisson noise. In principle one

could “avoid” this problem altogether by using an unweighted

least-squares estimator. We have shown qualitatively in [22] that

nonuniform weighting is essential to achieve the desirable noise

properties of statistical methods. In Section 10, we provide ad-

ditional analyses and quantitative results that demonstrate the
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Figure 7: Resolution/noise tradeoff of FBP with Hamming win-

dow and the constrained least-squares (CLS) window (45). At

any given resolution, the variances of the penalized-likelihood

estimates are smaller than those of FBP.

importance of weighting. Therefore we advocate retaining the

nonuniform weighting that is natural for Poisson statistics, but

modifying the penalty to compensate for the undesirable spatial

resolution properties. Fortunately this modification does not de-

stroy the benefits of the weighting, as shown in Section 10 and in

Fig. 7, apparently because the nonuniform weighting is applied

in sinogram space, whereas the penalty acts on the image space.

It is an open question as to whether the modified penalty would

be effective for problems such as restoration of quantum-limited

image measurements, where both the unknown parameters and

the data are images.

Some colleagues have argued that nonuniform resolution is

desirable and expected. This opinion is presumably based on

the idea that statistical methods can make better use of the mea-

surement information and thus provide higher resolution in high-

count regions. Ironically, our analysis shows that the effect of

uniform penalties is just the opposite: more smoothing occurs in

high-count regions. Although we have emphasized methods for

achieving resolution uniformity, one could apply our analysis to

develop alternative modified penalties that yield higher resolu-

tion in high-count regions according to some user-specified cri-

terion. Since we now see that the statistics of the data themselves

do not automatically provide a natural resolution-noise tradeoff

in penalized-likelihood estimators (contrary to what may have

been a widely held misconception), any such user-specified cri-

teria will probably be considered somewhat arbitrary.

We have shown the somewhat remarkable result that the local

impulse response induced by quadratic penalties depends on the

object only through its projections. Thus, one does not need

to know the object to predict the reconstructed resolution, since

the noisy measurements serve as an adequate approximation to

the object’s projections. In contrast, the local impulse response

for nonquadratic penalties depends explicitly on the (unknown)

object (cf (25)) through the Hessian of the penalty. Being able

to predict and control the resolution properties induced by such

penalty functions remains an important challenge.

For nonquadratic edge-preserving potential functions ψ, the

nonuniform diagonal in (25) may induce additional types of

nonuniformities beyond the resolution effects reported here.

Specifically, we conjecture that the “propensity to retain edges”

(as opposed to smoothing them out) will be space-variant, again

due to coupling between the Hessian of the log-likelihood and

the Hessian of the penalty in (25). If so, then modified penalties

such as (40) may be useful for restoring the (presumably desir-

able) space invariance of the effects of edge-preserving penal-

ties. The importance of such modifications is more likely to ap-

pear in rigorous studies of the ensemble characteristics of edge-

preserving methods, rather than in anecdotal examples.

This paper has emphasized space-invariant tomographs. Fur-

ther investigation is needed for space-variant systems such as

SPECT emission measurements and truncated data such as fan-

beam transmission SPECT and 3D cylindrical PET.
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Part II: Resolution and Noise Properties of
Penalized Least-Squares Image

Reconstruction

9 PSF of Idealized Tomograph

Although the discrete formulation used in Section 3 is appro-

priate for computer implementation, it lacks the insight one can

obtain from analytical methods. This section derives the PSF of

one form of penalized-likelihood tomography by analyzing an

idealized tomograph having a continuum of detectors and an-

gles. The model is partially realistic, however, since we account

for a radial detector blur. The analytical form we derive for this

continuous tomograph shows remarkable agreement with simu-

lations using discrete sampled systems.

Let f(x1, x2) denote an object defined on R2. Let P denote

the continuous Radon transform operator. If p = Pf , then

pφ(r) =

∫
f(l cosφ+ r sinφ, l sinφ− r cosφ) dl.

Let Strue denote a space-invariant radial sinogram blurring op-

erator with symmetric kernel strue(r). If y = Struep, then

yφ(r) = strue(r) ⋆ pφ(r)

where ⋆ denotes 1D convolution.

Define Gtrue = StrueP to be the blurred Radon transform

operator, which is analogous to the matrix G in Section 5. Given

measurements with additive zero-mean noise:

y = Gtruef + noise,

we would like to recover f from y. We may not know the blur

function Strue exactly, but rather may only have an approxima-

tion Smodel with kernel smodel(r). A penalized least squares

(PLS) approach to this problem is:

f̂ = argmin
f

‖y − Gmodelf‖2 + α〈f,Rf〉, (46)

where Gmodel = SmodelP and where the norms and inner prod-

ucts are the standard L2 functionals onR2.

If we desire smooth solutions f̂ , then we would like 〈f,Rf〉
to be a measure of roughness. Therefore we define Dj to be the

differentiation operator with respect to the jth spatial coordinate:

Djf =
∂

∂xj
f(x1, x2), j = 1, 2.

Thus

‖Djf‖2 =

∫∫ (
∂

∂xj
f(x1, x2)

)2

dx1 dx2.

By defining

R =
m∑

k=0

(
m
k

)
(D′

1D1)
k(D′

2D2)
m−k,

we have specified 〈f,Rf〉 to be an isotropic measure of the

roughness of f . (Note that operators D1 and D2 commute.) In

particular, for the usual choice m = 1, we have

R = D′
1D1 +D′

2D2,

which is analogous to the matrix R in Section 3.

Assuming smodel(r) is a low-pass filter whose transfer func-

tion Smodel(u) is nonzero at u = 0, one can easily show that the

null spaces of Gmodel and R are disjoint, so the solution to (46)

is

f̂ = [G′
modelGmodel + αR]−1G′

modely,

and the estimator mean is:

µ(f) = E{f̂} = [G′
modelGmodel + αR]−1G′

modelGtruef. (47)

This is a space-invariant mean response, i.e. µ(f) corresponds

to a filtered version of f . We now use Fourier methods to derive

the frequency response of that filter.

9.1 Frequency Response

It is well known [45] that

P ′Pf = f ∗ ∗1
r
,

where ∗∗ denotes 2D convolution. If we let u1 and u2 denote the

2D spatial frequency coordinates, and define ρ =
√
u21 + u22,

then since the 2D Fourier transform of 1/r is 1/ρ, we have

P ′P = F ′
2 ·

1

ρ
· F2,

where F2 denotes the 2D Fourier operator.

Since the blur operator Smodel acts radially, by the Fourier-

slice theorem:

G′
modelGmodel = F ′

2 ·
|Smodel(u)|2

ρ
· F2. (48)

Similarly

G′
modelGtrue = F ′

2 ·
S⋆
model(u)Strue(u)

ρ
· F2.

From the differentiation property of Fourier transforms:

D′
jDj = F ′

2 · (2πuj)2 · F2,

so

R = F ′
2 ·

[
m∑

k=0

(
m
k

)
(2πu1)

2k(2πu2)
2(m−k)

]
· F2

= F ′
2 · [(2πu1)2 + (2πu2)

2]m · F2

= F ′
2 · (2πρ)2m · F2. (49)

Combining (47), (48), and (49) shows that

µ(f) = F ′
2 · L0(ρ) · F2f,
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where the radially-symmetric frequency response L0(ρ) of the

PLS estimator is therefore:

L0(ρ) =

S⋆
model

(u)Strue(u)
ρ

|Smodel(u)|2

ρ + α(2πρ)2m
=

S⋆
model(u)Strue(u)

|Smodel(u)|2 + β0ρ2m+1
,

(50)

where β0 = α(2π)2m. Not surprisingly, the response is unity

near ρ = 0, and then typically decreases with increasing spatial

frequency. The form of (50) is very similar to a constrained

least-squares restoration filter [46], or for an ideal system with

Smodel(u) = Strue(u) = 1, to a Butterworth low-pass filter.

Typical plots of L0(ρ) are shown in Figs. 10-13.

9.2 Point Spread Function

Since the frequency response is radially symmetric, one can

compute the corresponding PSF l0(r) using the Hankel trans-

form [47]:

l0(r) = 2π

∫ ∞

0

L0(ρ) J0(2πρr) ρ dρ,

where J0 is the 0th order Bessel function. We do not know of

an analytical form for the Hankel transform of (50), even when

Strue(u) = Smodel(u) = 1, but it is easy to evaluate the integral

numerically. As β0 → 0, the FWHM of l0(r) approaches 0,

whereas for a discrete system, the smallest possible FWHM is 1

pixel. Therefore, we also define the blurred response:

l1(r) = l0(r) ⋆ 1{|r|≤1/2}, (51)

where 1{|r|≤1/2} denotes the standard rectangular function. As

β0 → 0, the FWHM of l1(r) approaches 1, which better agrees

with the discrete results.

Typical plots of the normalized PSF l0(ρ)/l0(0) are shown in

Figs. 14-17, for several value of β0 and for different radial blurs

Strue(u) = Smodel(u) with no model mismatch. Note that when

β0 is small, the point response functions exhibit ringing.

Using analytically computed l1(ρ), we can tabulate the rela-

tionship between β0 and the FWHM of the PSF. Typical curves

are shown in Fig. 18, for different Strue(u) = Smodel(u) cases.

In principle, one can choose a desired resolution, and then read

off the appropriate β0 from Fig. 18. This value of β0 will be

proportional to the value of β that should be used with the mod-

ified penalty of Section 5. The proportionality constant is object

independent, so only needs to be determined once for a given ge-

ometric system matrix G as defined in Section 5. The constant

depends on the units one uses when defining G and R⋆. For a

strip-integral tomographic system G, we normalize the elements

of G so that
∑

i gij = 1, which is “count preserving.” In this

case, careful bookkeeping showed that

β0 = β
4π4

∆θ∆b
, (52)

where ∆θ is the angular spacing and ∆b is the radial center-to-

center spacing of the strip integrals.

Using this relationship between β and β0, we computed the

discrete local impulse response (43) and the corresponding an-

alytical impulse response (51) and plotted the FWHM of the

two in Fig. 19, for the case of a rectangular radial blur with

FWHM=2 pixels, i.e. Strue(u) = Smodel(u) = sinc(2u). For

resolutions greater than about 2 pixels FWHM, the resolution of

the discrete and analytical impulse responses agree quite well.

(For FWHM below 2 pixels, the effects of the discrete pixels ap-

parently yield a slightly greater FWHM than predicted by (51).)

Figure 20 displays the analytical PSF (51) and the discrete local

impulse response (43) for the case β0 = 175, for a tomograph

with rectangular strip integrals with two pixel width. The agree-

ment shown in Figs. 19 and 20 confirms that one can use Fig. 18

in conjunction with relationship like (52) to determine a value

for β that will provide reconstructed images having the user’s

desired spatial resolution.

We remind the reader that the fact that this PLS estimator

gives a response similar to a Butterworth filter does not im-

ply that in general penalized-likelihood estimation is equivalent

to Butterworth filtering! The above analysis does not include

nonnegativity, Poisson statistics, realistic system modeling, non-

quadratic penalties, and the other well-known advantages of sta-

tistical methods. However, the above analysis is useful for un-

derstanding and quantifying basic resolution properties. It is

also useful for designing preconditioners for fast gradient-based

iterative methods [23, 40].

9.3 A FWHM Rule of Thumb

It is well known that the FWHM of bump-shaped point spread

functions is approximately equal to 1/(2ρh), where ρh is the

half-amplitude frequency, i.e. L0(ρh) =
1
2L0(0). From (50), it

is clear that the half-amplitude frequency for the PLS estimator

is β
−1/(2m+1)
0 for the ideal case when Strue(u) = 1. Thus for

the usual m = 1 case, the FWHM of l0(r) is approximately

β
1/3
0 . Since we are more interested in l1(r), Fig. 9 displays the

FWHM of l1(r) versus β
1/3
0 for various detector blurs. There

is a nearly affine relationship between the FWHM of l1(r) and

β
1/3
0 for β0 > 5, which may be used to simplify further the table

lookup method for relating β to FWHM described in Section 5.5.

10 Variance Approximations

COMPARE WITH (45) of [42].

The approximation (36) provides an opportunity to derive

simple approximate expressions for the variance of penalized-

likelihood and unweighted penalized least-squares estimators.

This section derives such approximations and demonstrates that

they are usefully accurate. The expressions give further insight

into why weighted statistical methods outperform unweighted

statistical methods for image reconstruction, as illustrated qual-

itatively in [22].

In this section we focus on quadratic penalties, although one

can extend the analysis to nonquadratic penalties. The following

matrix will be central to all the approximations that follow:

Mβ = [G′
G + βR⋆]−1G′

G[G′
G+ βR⋆]−1, (53)

where R
⋆ is the Hessian of the standard quadratic penalty. The

matrix Mβ has the following interpretation. Suppose we could
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observe hypothetical noisy measurements y with mean Gθ and

with the identity covariance matrix. If we applied the penal-

ized least-squares estimator θ̂ = [G′
G + βR⋆]−1G′y to such

measurements, then Mβ would be the covariance of θ̂. In this

hypothetical scenario, the following term

σ(β) =
√
(ej)′Mβej =

√
[Mβ ]jj (54)

would be the standard deviation of θ̂j , where (ej)′Mβe
j =

[Mβ ]jj is the jth diagonal entry of Mβ . Note that for quadratic

penalties, the matrix Mβ is independent of the object θ, so one

could precompute Mβ or key portions of Mβ (such as the cen-

tral few diagonals) using algorithms similar to those discussed

in [38]. For nearly space-invariant tomographs, the diagonal of

Mβ is approximately constant, so one can easily compute diag-

onal elements from (53) using Fourier methods.

The approximations that follow below stem from the follow-

ing approximation for the covariance of penalized-likelihood es-

timates θ̂PL in emission tomography [38]:

Cov

{
θ̂PL

}
≈ [F + βR]−1F [F + βR]−1, (55)

where F was defined by (33).

10.1 The Standard Penalty

For the standard penalty one uses R = R
⋆. Substituting in the

approximation (36) into (55) and simplifying yields

Cov

{
θ̂PL

}
≈

Λ−1
θ [G′

G+ βΛ−1
θ R

⋆Λ−1
θ ]−1G′

G[G′
G+ βΛ−1

θ R
⋆Λ−1

θ ]−1Λ−1
θ .

That is not much simplification, but if one restricts attention to

examining the variance of particular pixels, then using approxi-

mations in the same spirit as (39) we have

Var

{
θ̂PL
j

}
= (ej)′ Cov

{
θ̂PL

}
ej ≈

(ej)′[G′
G+ βΛ−1

θ R
⋆Λ−1

θ ]−1G′
G[G′

G+ βΛ−1
θ R

⋆Λ−1
θ ]−1ej

κ2j(θ)

≈
(ej)′[G′

G+ β/κ2j(θ)R
⋆]−1G′

G[G′
G+ β/κ2j(θ)R

⋆]−1ej

κ2j(θ)
.

Thus for the standard quadratic penalty:

√
Var

{
θ̂PL
j

}
≈
σ(β/κ2j (θ))

κj(θ)
. (56)

One can easily tabulate σ(β) for a range of values of β, and

then apply linear interpolation to evaluate (56) for many pixels

j. (See Fig. 25.)

10.2 The Modified Penalty

The modified penalty leads to a simpler approximation for the

estimator covariance. Substituting in the approximations (36)

and (41) into (55) and simplifying yields:

Cov

{
θ̂PL

}
≈ Λ−1

θ MβΛ
−1
θ . (57)

If one only wants the variances, then further simplification is

possible. Note that from (37), Λθ is a diagonal matrix, so using

(57):

Var

{
θ̂PL
j

}
= (ej)′ Cov

{
θ̂PL

}
ej ≈ (ej)′Mβe

j

κ2j(θ)
.

We thus have the following approximation to the standard devi-

ation of θ̂PL
j for the modified penalty:

√
Var

{
θ̂PL
j

}
≈ σ(β)

κj(θ)
. (58)

Using this approximation, we can easily compute a “standard

deviation map,” where the jth pixel intensity is

√
Var

{
θ̂PL
j

}
.

(Note that the numerator is a constant independent of j.) Fig. 24

displays such a map, along with the empirical standard deviation

map from the M = 2000 realizations described in Section 6, in

this case for β = 2−4.44. Fig. 25 displays horizontal profiles

through the two maps shown in Fig. 24. Despite our use of sev-

eral approximations that might as first seem fairly crude, the pre-

dicted and empirical results agree remarkably well. The largest

disparity is at the edge where the object is zero and the empiri-

cal standard deviation is near zero small due to the nonnegativ-

ity constraint. (We would expect similar discrepancies in inte-

rior cold regions.) But for usual regions that are not too close15

to zero, the above approximation should be useful for purposes

such as generalizing Huesman’s weighting method [48,49] from

FBP to penalized-likelihood estimators, or for searching for sta-

tistically significant regions in brain activation studies [50, 51].

10.3 Unweighted Penalized Least Squares

FBP is an example of an unweighted estimator: all measure-

ments are treated equally. As noted in [52], FBP (with a ramp

filter) is closely related to an unweighted least-squares estimate,

in the special case when the system matrix is the Radon trans-

form (i.e. no blur). Using an apodizing window with FBP is

essentially equivalent to using a quadratic penalty with an un-

weighted penalized least-squares estimator (cf Section 9). We

now derive an approximate expression for the covariance of the

following unweighted penalized least-squares estimator:

θ̂QPULS = argmin
θ≥0

‖ỹ −Gθ‖2 + βθ′R⋆θ

≈ [G′
G+ βR⋆]−1G′ỹ,

where

ỹ = D
[
c−1i

]
y − r

15For the above approximation to be accurate, the estimate should be at least

one or maybe two standard deviations above zero.
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is a sinogram precorrected for attenuation, randoms, etc. Note

that there is no need to use the modified penalty for this un-

weighted estimator, since (ignoring the nonnegativity constraint)

the local impulse response is easily shown to be

lj = [G′
G+ βR⋆]−1G′

Gej ,

which is independent of θ. Except for the nonnegativity con-

straint, the estimator θ̂QPULS is linear, so an nearly exact ex-

pression for its covariance is:

Cov

{
θ̂QPULS

}
≈ [G′

G+βR⋆]−1G′D
[
q−1i

]
G[G′

G+βR⋆]−1,

where q−1i is the variance of ỹi, and {qi} were defined in (21).

An approximation analogous to (36) is:

G
′D

[
q−1i

]
G ≈ ΩG′

GΩ

where Ω = D[ωj ] is diagonal with entries

ωj =

√∑

i

g2ijq
−1
i /

∑

i

g2ij ,

which leads to the covariance approximation:

Cov

{
θ̂QPULS

}
≈ [G′

G+ βR⋆]−1ΩG′
GΩ[G′

G + βR⋆]−1.

If Ω were a scaled identity matrix, it would commute with

[G′
G + βR⋆]−1. Since the diagonal elements of Ω vary slowly

spatially, it is reasonable to suppose that Ω and [G′
G+ βR⋆]−1

approximately commute. More specifically, let ej be any unit

vector, then we maintain that

Ω[G′
G+ βR⋆]−1ej ≈ [G′

G+ βR⋆]−1ωje
j, (59)

since [G′
G + βR⋆]−1ej is fairly well localized (see Fig. 8). It

follows from (59) that

Ω[G′
G+ βR⋆]−1 ≈ [G′

G+ βR⋆]−1Ω, (60)

which leads to the following approximation for the covariance

of the unweighted penalized least squares estimator:

Cov

{
θ̂QPULS

}
≈ ΩMβΩ,

where Mβ was defined by (53). Thus

√
Var

{
θ̂QPULS
j

}
≈ σ(β)ωj . (61)

For the 100 realizations described in Section 6, we computed

θ̂QPULS using the iterative algorithm described in [22], includ-

ing the nonnegativity constraint. Fig. 26 shows the empirical

sample standard deviations map of those estimates, as well as

the approximation (61). Fig. 27 shows profiles through those

maps, and again demonstrates the accuracy of the variance ap-

proximation (61). Again, the greatest disagreement is outside of

the object where the nonnegativity constraint is active.
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 e
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Figure 8: Horizontal profile through typical case of [G′
G +

βR⋆]−1ej , in this case for β = −4.

10.4 Comparison

From (58), (61), and (35), we have:

Var

{
θ̂PL
j

}
≈ c2

∑

i

g2ij/
∑

i

g2ijqi = c2/
∑

i

hijqi

Var

{
θ̂QPULS
j

}
≈ c2

∑

i

g2ijq
−1
i /

∑

i

g2ij = c2
∑

i

hijq
−1
i ,

where hij = g2ij/
∑

i′ g
2
i′j and c = σ(β). Since hij > 0 and∑

i hij = 1, it follows from Jensen’s inequality that

Var

{
θ̂PL
j

}
< Var

{
θ̂QPULS
j

}
,

with equality if and only if all of the qi’s are equal to the same

value, i.e., if and only if the measurements are homoscedastic (or

if G = I). Homoscedasticity never happens for Poisson mea-

surements in tomography, so the PL estimator will always have

smaller variance than the UPLS estimator at equivalent spatial

resolutions.

Fig. 27 compares profiles through the standard deviation maps

for the penalized-likelihood and unweighted penalized least-

squares estimates. The variances of the PL estimates are sig-

nificantly lower than those of the UPLS estimates.

This result, though approximate, adds further evidence to

the importance of using weighting for heteroscedastic measure-

ments, either explicitly as in penalized weighted least-squares

estimators [22, 53], or implicitly by using penalized-likelihood

estimators. We note without proof that using analyses similar to

the above, one can show that precorrecting PET data for multi-

plicative effects such as detector efficiency and attenuation has

the effect of making likelihood-based estimators more like an

unweighted estimator, thereby destroying some of the benefits

of using statistical methods.
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A FFT Simplifications

If the geometric system response G is approximately space in-

variant, and if the target penalty R
⋆ is the standard quadratic

penalty, then if one uses the modified quadratic penalty of [54],

then the local impulse response is approximately given by (43)

. In this important case, one can use FFT’s to compute (43)

approximately, thereby eliminating the need for an iterative

method to compute (43) .

Let j denote the index of a pixel near the center of the im-

age, and compute the kernel k
G

′

G
= G

′
Gej . Let kR be the

kernel of R: kR = Rej . Let F
G

′

G
(u1, u2), FR(u1, u2),

and FUPLS(u1, u2) denote the 2D FFT’s of k
G

′

G
, kR, and

[G′
G+ βR⋆]−1G′

Gej respectively.

For the standard second-order quadratic penalty, the kernel of

the regularization matrix R
⋆ is




0 −1 0
−1 4 −1
0 −1 0


+

1√
2




−1 0 −1
0 4 0

−1 0 −1


 . (62)

Then from standard properties of circulant matrices [33]:

FUPLS(u1, u2) =
F
G

′

G
(u1, u2)

F
G

′

G
(u1, u2) + αFR(u1, u2)

.

Thus one can compute (43) using two 2D FFT’s and one 2D

inverse FFT.

For systems where the geometric response can be factored

into product of the discretized Radon transform with a space-

invariant blur, one can further simplify the calculation above.

One useful approximation to the kernel of G′
G is

f(r) =

{
π − 2r, r ∈ [0, 1]

2(arcsin(1/r)−(r −
√
r2 − 1)) r > 1,

,

which is shown in Figure 2 of [22] (cf [21, Fig. 11] and [40, Fig.

1]). This function has the expected 1/r asymptotic form, but is

well behaved near zero—as it must be for a discrete system.
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Figure 10: Plots of L0(ρ), the spatial frequency response of pe-

nalized least squares, under the continuous model described in

Section 9, for several values (shown) of the regularization pa-

rameter β0, for the ideal tomograph with Strue(u) = 1.
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Figure 11: As in Fig. 10, but for a tomograph with a rectangular

detector blur: Strue(u) = sinc(u).
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Figure 12: As in the previous figure, except Strue(u) =
sinc(2u).
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Figure 13: As in Fig. 10, but for a tomograph with a Gaus-

sian detector blur: Strue(u) = exp
(
−2π2u2/σ2

)
, where σ =

(8 log 2)−1/2 so that the FWHM of strue(r) is approximately 1.
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Figure 14: Plots of l0(r)/l0(0), the impulse response or PSF of

penalized least squares, under the continuous model described

in Section 9, for several values (shown) of the regularization pa-

rameter β0, for the ideal case Strue(u) = 1.
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Figure 15: As in Fig. 14, but for a tomograph with a rectangular

detector blur: Strue(u) = sinc(u).
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Figure 16: As in the previous figure, except Strue(u) =
sinc(2u).
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Figure 17: As in Fig. 14, but for a tomograph with a Gaussian

detector blur: Strue(u) = exp
(
−2π2u2/σ2

)
.
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Figure 18: FWHM of the point spread functions l1(r) corre-

sponding to the l0(r) shown in Figs. 14-17, as a function of the

regularization parameter β0.
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Figure 19: Comparison of the resolution of the analytically com-

puted PSF (51) with the resolution of the discrete PSF ((43) ),

for a tomograph with rectangular blur: Strue(u) = sinc(2u).
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Figure 20: Comparison of analytically predicted PSF using (51)

and discrete PSF from (43) , for a tomograph with rectangular

blur: Strue(u) = sinc(2u).
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Figure 21: FWHM of l0(r) versus log2(β0), for various detector

responses.
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Figure 22: As in Fig. 19 but for l0(r) .
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Figure 23: As in Fig. 20 but for l0(r)
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Figure 24: Empirical and predicted standard deviation maps

(eqn. (58)) for θ̂PL: penalized-likelihood emission image recon-

struction using the modified quadratic penalty.
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Figure 25: Central horizontal profile through Fig. 24.
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Figure 26: Empirical and predicted standard deviation maps

(eqn. (61)) for θ̂QPULS: unweighted penalized least-squares es-

timator.
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Figure 27: Central horizontal profile through Fig. 26
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