Maximum Likelihood Transmission Image Reconstruction for Overlapping Transmission Beams

Jeffrey A. Fessler, Daniel F. Yu, and Edward P. Ficaro

EECS Department, BME Department, and Nuclear Medicine Division of Dept. of Internal Medicine
The University of Michigan

Nuclear Science Symposium and Medical Imaging Conference

October 28, 1999
Problem Motivation

- Multiple line-source array
- Scanning line source

Multiplexing of transmitted photons onto individual detector elements.
Each measurement Y_i is related to a single “line integral” through the object.

$$Y_i \sim \text{Poisson} \left\{ b_i \exp \left(- \sum_{j=1}^{p} a_{ij}\mu_j \right) + r_i \right\}$$
Conventional Transmission Scan Statistical Model for (non-overlapping) Parallel Beams

\[Y_i \sim \text{Poisson} \left\{ b_i \exp \left(- \sum_{j=1}^{p} a_{ij} \mu_j \right) + r_i \right\}, \quad i = 1, \ldots, N \]

- \(N \) number of detector elements
- \(Y_i \) recorded counts by \(i \)th detector element
- \(b_i \) blank scan value for \(i \)th detector element
- \(a_{ij} \) length of intersection of \(i \)th ray with \(j \)th pixel
- \(\mu_j \) linear attenuation coefficient of \(j \)th pixel
- \(r_i \) contribution of room background, scatter, and emission crosstalk
Conventional Maximum-Likelihood Reconstruction

\[\hat{\mu} = \arg \max_{\mu \geq 0} L(\mu) \] (Log-likelihood)

\[
L(\mu) = \sum_{i=1}^{N} Y_i \log \left[b_i \exp \left(- \sum_{j=1}^{p} a_{ij} \mu_j \right) + r_i \right] - \left[b_i \exp \left(- \sum_{j=1}^{p} a_{ij} \mu_j \right) + r_i \right]
\]

Transmission ML Reconstruction Algorithms

- Conjugate gradient
 Mumcuoğlu et al., T-MI, Dec. 1994

- Paraboloidal surrogates coordinate ascent (PSCA)
 Erdoğan and Fessler, T-MI, 1999

- Ordered subsets separable paraboloidal surrogates
 Erdoğan et al., PMB, Nov. 1999

- Transmission expectation maximization (EM) algorithm
 Lange and Carson, JCAT, Apr. 1984
Overlapping-Beam Transmission Scans

\[Y_i \sim \text{Poisson} \left\{ \sum_{m=1}^{M} b_{im} \exp \left(- \sum_{j=1}^{p} a_{ij}^m \mu_j \right) + r_i \right\} \]
Overlapping-Beam ML Reconstruction

\[\hat{\mu} = \arg \max_{\mu \geq 0} L(\mu) \]

Log-likelihood:

\[
L(\mu) = \sum_{i=1}^{N} Y_i \log \left[\sum_{m=1}^{M} b_{im} \exp \left(-\sum_{j=1}^{p} a_{ij}^m \mu_j \right) + r_i \right] - \left[\sum_{m=1}^{M} b_{im} \exp \left(-\sum_{j=1}^{p} a_{ij}^m \mu_j \right) + r_i \right]
\]

Summations: detectors, sources, pixels

- \(N \) number of detector elements
- \(p \) number of pixels
- \(Y_i \) recorded counts by \(i \)th detector element
- \(\mu_j \) linear attenuation coefficient of \(j \)th pixel
- \(r_i \) contribution of background and emission crosstalk
- \(M \) number of sources
- \(b_{im} \) blank scan value for \(m \)th source to \(i \)th detector element
- \(a_{ij}^m \) length of intersection through \(j \)th pixel of the ray that connects \(m \)th source to \(i \)th detector
Optimization Transfer Illustrated

\[\Phi(\mu) \text{ and } \phi(\mu;\mu^n) \]

Objective \(\Phi \)

Surrogate \(\phi \)
First Surrogate Function

- \(y \log x - x \) is concave in \(x \)
- Adapt De Pierro’s “multiplicative” convexity trick (T-MI, Jun. 1993)
- Move the summation over sources outside logarithm

\[
L(\mu) \geq Q_1(\mu; \mu^n) = \sum_{i=1}^{N} \sum_{m=1}^{M} \left(\frac{u_{im}^n}{\bar{y}_i^n} \right) \left[y_i \log \left(\frac{u_{im}(\mu)}{u_{im}^n} \bar{y}_i^n \right) - \frac{u_{im}(\mu)}{u_{im}^n} \bar{y}_i^n \right]
\]

where

- \(\bar{y}_i^n \triangleq \bar{y}_i(\mu^n) \)
- \(u_{im}^n \triangleq u_{im}(\mu^n) \)
- \(u_{im}(\mu) \triangleq b_{im} \exp \left(-\sum_{j=1}^{p} a_{ij}^m \mu_j \right) + r_i/M \)

\(Q_1 \) still difficult to maximize
Second Surrogate Function

- $y \log(be^{-l} + r) - (be^{-l} + r)$ has a parabola surrogate: q_{im}^n
- Optimum curvature of parabola derived by Erdoğan (T-MI, 1999).
- Replace nonquadratic surrogate with paraboloidal surrogate

$$Q_1(\mu; \mu^n) \geq Q_2(\mu; \mu^n) = \sum_{i=1}^{N} \sum_{m=1}^{M} \left(\frac{u_{im}^n}{\bar{y}_i^n} \right) q_{im}^n \left(\sum_{j=1}^{p} a_{ij}^n \mu_j \right)$$

- q_{im}^n is a simple quadratic function
- Iterative algorithm:

$$\mu^{n+1} = \arg \max_{\mu \geq 0} Q_2(\mu; \mu^n)$$

- Maximizing $Q_2(\mu; \mu^n)$ over μ is equivalent to (rewighted) least-squares.
- Natural algorithms
 - Conjugate gradient
 - Coordinate ascent
(Optional) Third Surrogate Function

- Parabolas are convex functions
- Apply De Pierro’s “additive” convexity trick (T-MI, Mar. 1995)
- Move summation over pixels outside quadratic

\[Q_2(\mu; \mu^n) \geq Q_3(\mu; \mu^n) = \sum_{i=1}^{N} \sum_{m=1}^{M} \sum_{j=1}^{p} u_{im}^{n} a_{ij}^{m} q_{im}^{n} (\gamma_{m}^{n}(\mu_{j} - \mu_{j}^{n}) + [A_{m}^{n} \mu_{j}^{n}]) \]

- \[\gamma_{i}^{m} \triangleq \sum_{j=1}^{p} a_{ij}^{m} \]
- Separable paraboloidal surrogate function \(\Rightarrow \) trivial to maximize (cf EM)

\[\mu_{j}^{n+1} = \left[\mu_{j}^{n} + \frac{1}{d_{j}(\mu^{n})} \frac{\partial}{\partial \mu_{j}} L(\mu^{n}) \right]_{+} \]

- \(d_{j}(\mu) \) related to parabola curvatures (not to Fisher information)
- Natural starting point for forming ordered-subsets variation
Simulation

Digital Thorax Phantom
128×128 3.56mm pixels
Source Collimation: Blank-scan profiles

(Results vary with acceptance angle of source and detector collimators.)
Reconstruction Algorithms

• Filtered backprojection (FBP)
 Based on usual idealized parallel, non-overlapping, line-integral model
 Requires subtraction of emission crosstalk before taking logarithm

• Parallel-beam method
 Penalized-likelihood based on usual non-overlapping strip-integral model
 Effect of emission crosstalk built into statistical model

• Proposed method
 Penalized-likelihood based on overlapping system/statistical model

Variables

• Source strength
• Crosstalk background level
• Source collimation angle
• Desired target spatial resolution
Simulation Results

- Parallel-beam Method
 - Parallel algorithm

- Proposed Method
 - Proposed algorithm

- FBP

- ±3.6° source collimation
- 497,000 transmitted counts + 263,000 emission crosstalk counts
- Resolution matched to 6.8 pixels FWHM effective Gaussian width
Noise vs Collimation

- Resolution matched to 4.7 pixels FWHM
- Similar curves for other target resolutions
(Each point is for noise-minimizing collimator resolution)
Summary

- New algorithm for overlapping beams
- Intrinsically monotonic (no line searches, no divergence)
- Convergence to a local maximizer
- Requires separate blank scan / system matrix for each source
 - increased memory and computational requirements
- Improved resolution/noise tradeoff over parallel algorithm
- Allows increased acceptance angles : higher transmitted/crosstalk ratio
- Acceptance angle currently limited by detector collimation.
Collimation vs Resolution

Proposed algorithm
Parallel algorithm
Noiseless Data Reconstructions ($\beta \approx 0$)

Parallel algorithm

Proposed algorithm