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Abstract—Statistical image reconstruction (SIR) methods for
X-ray CT improve the ability to produce high-quality and
accurate images, while greatly reducing patient exposure to
radiation. The challenge with further dose reduction to an ultra-
low level by lowering the X-ray tube current is photon starvation
and electronic noise starts to dominate. This introduces negative
or zero values into the raw data and consequently causes artifacts
in the reconstructed CT images with current SIR methods based
on log data. At ultra-low photon counts, the CT detector signal
deviates significantly from Poisson or shifted Poisson statistics
for the pre-log data and from Gaussian statistics for post-log
data. This paper proposes a novel SIR method called MPG
(mixed Poisson-Gaussian). It models the raw noisy measurements
using a mixed Poisson-Gaussian distribution that accounts for
the electronic noise. The MPG method is able to directly use
the negative and zero values in the raw data without any
pre-processing. We adopt the reweighted least square method
to develop a tractable likelihood function that can be easily
incorporated into SIR reconstruction framework. To minimize
the MPG cost function containing the likelihood function and
an edge-preserving regularization term, we use an Alternating
Direction Method of Multipliers (ADMM) that divides the o-
riginal optimization problem into several sub-problems that are
easier to solve. Our results on 3D simulated cone-beam data set
indicate that the proposed MPG method reduces noise in the
reconstructed images comparing with the conventional FBP and
statistical penalized weighted least-square (PWLS) method for
ultra-low dose CT (ULDCT) imaging.

I. INTRODUCTION

X-Ray Computed Tomography (CT) provides high-
resolution images of anatomical structures for diagnosis and
management of human diseases and disorders. For example,
CT has had a tremendous impact on cancer. Studies have
suggested that current CT usage may be responsible for 1.5%-
2% of all cancers in the U.S. [1]. Significantly lowering
radiation dosages from CT has become a growing concern
both in the public and professional societies. Ultra-low dose
CT (ULDCT) scans that still provide suitable image quality
could shift CT scans further to the benefit side and open up
numerous entirely new clinical applications.

CT image reconstruction method improvements that could
realistically and significantly reduce patient radiation expo-
sure while maintaining high image quality is an important
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area of research to achieve low dose CT imaging. Statistical
image reconstruction (SIR) methods [2] improve the ability
to produce high-quality and accurate images, while greatly
reducing patient exposure to radiation. The challenge with
further dose reduction to an ultra-low level by reducing the
number of projection views is the aliasing artifacts due to
under-sampled sinograms when the number of views is too
small [3]. An alternative approach is to lower the X-ray tube
current, but this causes photon starvation and electronic noise
starts to denominate [4]. This approach introduces negative or
zero values into the raw data and consequently causes artifacts
in the reconstructed CT images with current data processing
methods [5] based on log sinogram data.

The measurement statistical models in most SIR methods
assume standard or shifted Poisson statistics for the pre-log
data or Gaussian distributions for the post-log data. At ultra-
low photon counts, the CT measurements deviate significantly
from Poisson or Gaussian statistics. For ULDCT imaging the
logarithm simply cannot be used because the raw data have
negative or zero values due to the electronic noise in the
data acquisition systems (DAS). In [6], the authors substituted
the non-positive measurements with a small positive value.
Poisson distribution models the number of events which should
be non-negative. The shifted Poisson model adds a positive
value associated with the variance of electronic noise to the
raw data, but the shifted raw data may still be negative or zero
for ULDCT imaging. Compound Poisson (CP) distribution [7],
[8] that accounts for the polyenergetic X-rays and Poisson light
statistics in the scintillator of energy-integrating detector has
the potential to accurately model the measurement statistics
in ULDCT imaging. However, CP model has a complicated
likelihood that impedes direct use in SIR methods and elec-
tronic readout noise leads to a distribution that is even more
complicated than a CP model.

This paper proposes a new SIR method with a data-
fit term associated with the mixed Poisson-Gaussian (MPG)
distribution model for CT measurements [9], [10] and the
edge-preserving hyperbola regularization. The proposed MPG
method is able to directly process negative or zero val-
ued raw data that contain (some, albeit limited) information
about the scanned object. We solve the MPG optimation
problem using Alternating Direction Method of Multipliers
(ADMM, also known as split Bregman method [11]) and its
unconstrained subproblems using Conjugate Gradient (CG),
Broyden-Fletcher-Goldfarb-Shanno (BFGS).

This paper is organized as follows. Section II mathematical-
ly formulates the MPG method for X-ray CT reconstruction
as a Penalized-Likelihood (PL) cost function and solves it
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using ADMM. Section III presents numerical experiments and
results. Finally, we draw our conclusions in Section IV.

II. METHODS

A. Measurement Model

Let yi denote the number of X-ray photons incident on
detector for the ith ray where i = 1, · · · , Nd, and Nd is the
number of rays. For a monoenergetic source, we model the
number of X-ray photons as :

ȳi = ȳi(x) � Ii exp(−[Ax]i) + ri (1)

where x denotes the attenuation map, and its jth element
xj is the average linear attenuation coefficient in the jth
voxel for j = 1, · · · , Np, where Np denotes the number of
voxels. A is the Nd × Np system matrix with entries aij ,
and [Ax]i =

∑Np

j=1 aijxj denotes the line integral of the
attenuation map x along the ith X-ray. We treat each Ii and
ri as known nonnegative quantities, where ri is ensemble
mean of background signals such as Compton, scatter and dark
current, and Ii is the incident X-ray intensity incorporating
X-ray source illumination and the detector gain. Although
the measurement model in (1) ignores beam-hardening effects
[12], [13], polyenergetic measurement models that account for
the source spectrum and energy-dependent attenuation will be
employed in our future work.

For the case of normal clinical exposures, the X-ray CT
measurements zi are often modeled as the sum of a Poisson
distribution representing photon-counting statistics (1) and
an independent Gaussian distribution representing additive
electronic noise:

zi = kyi + ye (2)

where yi ∼ Poisson(ȳi(x)) and ye ∼ N(0, σ2), k is a scalar
factor modeling the conversion gain from X-ray photons to
electrons and σ denotes the standard deviation of electronic
noise.

B. Penalized Weighted Least Square for Poisson-Gaussian
Mixed Noise

We adopt the reweighted least square method [10] to de-
velop a tractable likelihood function for the mixed Poisson-
Gaussian measurement statistical model. Given ȳi, Assuming
yi and ye are independent, we have

E[zi] = kE[yi] = kȳi

and
Var[zi] = k2Var[yi] + Var[ye] = k2ȳi + σ2

We approximate zi with normal distribution, i.e., zi ∼
N(kȳi, k

2ȳi+σ2), i.e., the Probability Density Function (PDF)
of zi is

P (zi;x) =
1√

2π(k2ȳi(x) + σ2)
e
− (zi−kȳi(x))2

2(k2ȳi(x)+σ2) (3)

The corresponding approximate negative log-likelihood for
independent measurements zi has the form

L̄(x) = −
Nd∑

i=1

log(P (zi;x)) ≡
1

2
‖z − kȳ(x)‖2W (x)

+
1

2
〈log (k2ȳ(x)+ σ2),1〉, (4)

where ≡ means “equal to within irrelevant constants indepen-
dent of x”, the diagonal weight matrix W (x) is

W (x) = diag

{
1

k2ȳi(x) + σ2

}
, (5)

z ∈ RNd and ȳ(x) ∈ RNd have elements of zi and ȳi(x)
respectively, σ2 ∈ RNd and 1 ∈ RNdhave every element equal
to σ2 and 1 respectively, and 〈·, ·〉 is inner product. log(·)
is pointwise operation. We estimate the attenuation map x
from the noisy measurements z by minimizing a Penalized-
Likelihood (PL) cost function as follows:

x̂ = argmin
x

Ψ(x) (6)

Ψ(x) � L̄(x) +R(x). (7)

The regularization term R(x) is

R(x) = λ

Nr∑

i=1

βrψr([Cx]r), (8)

where the regularization parameter λ controls the noise and
resolution tradeoff, βr is the spatial weighting, ψr(·) is a
potential function, C � {Crj} ∈ RNr×Np is a sparsifying
matrix finite-differencing matrix and [Cx]r =

∑Np

j=1 Crjxj .
We focus on edge-preserving hyperbola regularization, i.e,
ψr(t) = δ2(

√
( tδ )

2 + 1 − 1). The regularization term R(x)

can be written as R(x) = λδ2(
√
(Cx

δ )2 + 1− 1).

C. Optimization Method

1) Equivalent Optimization Model: Because (6) is hard to
solve directly, we introduce auxiliary variables u ∈ RNd ,v ∈
RNr . Then, we rewrite our problem as the following equivalent
constrained problem:

arg min
x,u,v

1

2
‖ z − kIe−u

√
k2Ie−u + σ2

‖22

+
1

2
〈log (k2Ie−u + σ2),1〉+ λδ2(

√
(
v

δ
)2 + 1− 1)

s.t. u = Ax,v = Cx. (9)

In this paper, e(·), log(·),√· and division are all pointwise
operation. We rewrite (9) as

argminx,s f(s)

s.t. s := Px (10)

where s � (u,v)T , P � (A,C)T .
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2) Alternating Direction Method of Multipliers: To solve
the optimzation problem in (10), we use Alternating Direction
Method of Multipliers (ADMM). Given x(0), s(0) and b(0)

ADMM updates the sequence (x(j), s(j), b(j)) by

x(j+1) =argmin
x
〈b(j),Px− sj〉+ μ

2
‖Px− sj‖22, (11)

s(j+1) =argmin
s

f(s) + 〈b(j),Px(j+1) − s〉

+
μ

2
‖Px(j+1) − s‖22, (12)

b(j+1) =b(j) + μ(Px(j+1) − s(j+1)). (13)

where μ > 0 is the penalty parameter and b = (b1, b2)
T , b1 ∈

RNd , b2 ∈ RNr have the same size as Ax,Cx respectively.
Note that we can also select a vector μ = (μ1, μ2) for the two
quadratic penalty constraints.

3) Algorithm: Firstly, we solve (11) to obtain x(j+1). Since
(11) is quadratic and differentiable on x, so we solve it
analytically, i.e.,

x(j+1)∗ = G−1
[
μ1A

�(u(j) − b
(j)
1 ) + μ2C

�(v(j) − b
(j)
2 )
]

(14)

where x(j+1)∗ represents the exact solution and G =
μ1A

�A + μ2C
�C is nonsingular because because A�A

and C�C have disjoint null space [14]. Although (14) is an
exact analytical solution, it is impractical to store and invert
it exactly due to its huge size for CT reconstruction. This
step (14) can be solved by CG method and we obtain an
approximate update x(j+1).

Due to the structure of f(s) and P , (12) can be solved
separately for u,v as follows:

u(j+1) =argmin
u

1

2
‖ z − kIe−u

√
k2Ie−u + σ2

‖22

+
1

2
〈log(k2Ie−u + σ2),1〉+ 〈b(j)1 , Ax(j+1) − u〉

+
μ1

2
‖Ax(j+1) − u‖22, (15)

v(j+1) =argmin
v

λδ2(

√
(
v

δ
)2 + 1− 1) + 〈b(j)2 ,Cx(j+1) − v〉

+
μ2

2
‖Cx(j+1) − v‖22. (16)

We can see that u,v can be solved separately and in parallel.
Subproblem (15) is smooth, differentiable nonconvex and
separable. We apply BFGS to solve the subproblem (15).

Minimization with respect to v in (16) is the proximal
operator of the edge-preserving hyperbola function, and we
can update vj separately. The dual variables is updated s-
traightforwardly as (13). Figure 1 summarizes the optimization
algorithm of the proposed MPG method.

III. RESULTS

In this section, we present numerical results for 3-D cone-
beam CT reconstruction using simulated Shepp-logan phantom
data. We used filtered back projection (FBP) reconstruction
that initialized the proposed MPG method and penalized

1. Select x(0), λ, μ and set j = 0
2. Set u(0) = Ax(0),v(0) = Cx(0) and
b(0) = (b

(0)
1 , b

(0)
2 ) = 0

Repeat:
3. Obtain x(j+1) by applying CG iterations to (14)
4. Computer u(j+1) by applying BFGS iterations to (15)
5. Computer v(j+1) by (16)
6. Compute b

(j+1)
1 and b

(j+1)
2 using (13)

7. Set j = j + 1
Until stop criterion is met.

Fig. 1: ADMM for the proposed MPG reconstruction method

weighted-least square (PWLS) reconstruction with the edge-
preserving hyperbola function [15], and compared perfor-
mance of these three methods.

We used a 512 × 512 × 64 Shepp-logan phantom and
numerically generated a 888 × 64 × 984 noisy sinogram
with GE LightSpeed cone-beam geometry corresponding to a
monoenergetic source with 104 incident photons per ray and
no background events, i.e, ri = 0, i = 1, · · ·Nd. We chose
1000 for the scalar factor k [16] modeling the conversion gain
from X-ray photons to electrons in (2) and 3302 for σ2 [17],
the variance of electronic noise. Some elements of the mea-
surements z are negative due to the small value of Ii = 104

simulating ULDCT imaging. The proposed MPG method can
directly use these data in the reconstruction without any pre-
processing. FBP and PWLS are post-log methods that need to
take logarithm of the measurements z. To obtain line integrals
Ax for FBP and PWLS reconstruction [18], we substituted
the non-positive measurement elements with a small positive
value, i.e.,

log(
kIi

max(zi − yN , ε)
). (17)

For the weight in PWLS [18], we also set non-positive
measurement elements with a small positive value, i.e.,

wi =
max(zi − yN , ε)2

max(zi − yN , ε) + σ2
. (18)

Here, in (17) and (18), ε is a small positive value and
yN ∼ N(0, σ2). The matrix C in (8) was set as the gra-
dient operator along three directions for 3D CT images, the
regularization parameter λ was set as 2 × 105 to balance the
noise and resolution, and the iteration number was 100 to
reconstruct the image. Figure 2 shows the true image and
the reconstructions by FBP, PWLS and the proposed MPG
method. PWLS method decreases noise and removes artifacts
from the FBP initialization as expected, while the proposed
MPG method further improves image quality.

IV. DISCUSSION AND CONCLUSION

We proposed a novel SIR method, called MPG (mixed
Poisson-Gaussian) for ULDCT imaging. MPG method models
the noisy measurements using mixed Poisson-Gaussian distri-
bution which accounts for the electronic noise that dominates
when the X-ray dose is at an ultra-low level. We used the
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RMS 32.6% 22.3% 15.2%
(a) Ground truth (b) FBP (c) PWLS (d) MPG

Fig. 2: Shepp-Logan phantom reconstructed by FBP, PWLS and the proposed MPG method. (a) Noisefree Shepp-Logan
phantom, (b) FBP, (c) PWLS, and (d) Proposed MPG. Images in (b)-(d) have been displayed using the same color scale [as
that of (a)]. The second row is the normalized root mean square (RMS) error of the images reconstructed by different method.

reweighted least square method to develop a tractable likeli-
hood function that can be incorporated into SIR reconstruction
framework. The proposed MPG method can accommodate
edge-preserving hyperbola regularization that preserves edges
and can be useful for under-sampled data by reducing the
number of views for further dose reduction. We minimize the
MPG cost function using ADMM which divides the original
optimization problem into several sub-problems that are easier
to solve. The proposed MPG method is able to directly use
negative and zero values in the raw data without any pre-
processing. Preliminary reconstruction results on 3D simulated
data set indicate that the proposed MPG method outperforms
the conventional FBP and statistical PWLS method.

In future work, we will investigate efficient methods for op-
timizing subproblem (15) and (16). These two subproblems are
a set of 1-D Separable problems that can be solved efficiently
by parallel methods. In CT, a nonnegativity constraint is often
imposed to model the positivity of the attenuation coefficient
that is being reconstructed. We can easily incorporate the
nonnegativity constraint in the model (6).
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