
Optimized Momentum Steps for Accelerating

X-ray CT Ordered Subsets Image Reconstruction
Donghwan Kim and Jeffrey A. Fessler

Abstract—Recently, we accelerated ordered subsets (OS) meth-
ods for low-dose X-ray CT image reconstruction using momen-
tum techniques, particularly focusing on Nesterov’s momentum
method. This paper develops an “optimized” momentum method
that is faster than Nesterov’s method. Drori and Teboulle’s
original version requires substantial memory space and com-
putation time per iteration. Therefore, we design an efficient
implementation approach of the optimized momentum method
that uses storage and computation comparable to Nesterov’s
method. We also propose to combine it with OS methods. We
examine the acceleration of the proposed algorithm using 2D
X-ray CT simulation data.

I. INTRODUCTION

We consider low-dose X-ray CT image reconstruction solv-

ing the following optimization problem:

x̂ = argmin
x

Ψ(x), (1)

where a function Ψ(x) belongs to a set FL(RNp) of convex

and continuously differentiable functions with L-Lipschitz

continuous gradient. Specifically in X-ray CT reconstruction,

we use a penalized weighted least squares (PWLS) cost

function [1]:

Ψ(x) =
1

2
||y −Ax||2W +R(x), (2)

where x ∈ RNp is an unknown image, y ∈ RNd is a noisy

measured sinogram data, A ∈ RNd×Np is a projection oper-

ator [2], a diagonal matrix W ∈ RNd×Nd provides statistical

weighting [3], and R(x) is an edge-preserving regularization

function.

In X-ray CT, iteratively minimizing the cost function Ψ(x)
requires long computation times due to the computationally

expensive operators A and A′. Ordered subsets (OS) meth-

ods [4], [5], which use only submatrices of A and A′ per

iteration, have been used widely for computational efficiency.

However, traditional OS methods require many iterations to

be used practically, so we recently proposed to combine

them with Nesterov’s momentum method [6], yielding OS-

momentum methods [7] that have faster initial convergence.

Nesterov’s momentum method achieves the optimal con-

vergence rate O(1/n2) where n counts the number of iter-

ations [8]. But, the constant of the convergence rate can be

large in Nesterov’s method, motivating Drori and Teboulle

(hereafter “DT”)’s optimized momentum1 approach [9]. That
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1Momentum methods here refer to iterative algorithms that have access to
only the first-order information of the cost function such as the value and the
gradient of the objective as well as the Lipschitz constant L.

work constructs a momentum method that achieves the fastest

possible convergence. However, each iteration of the optimized

momentum method in [9] requires substantial memory space

and computational cost for storing and (weighted-)summing

all previous gradients. Here we propose a practical approach

to circumvent this burden.

Section II and III review Nesterov’s momentum method [6]

and DT’s optimized momentum method [9]. Section IV dis-

cusses the computational burden of the optimized momentum

method and provides a much more practical approach. We

combine this proposed computationally-efficient optimized

momentum method with OS methods, and examine the accel-

eration using 2D CT simulation data, compared to OS methods

with Nesterov’s method.

II. NESTEROV’S MOMENTUM METHOD

Table I summarizes Nesterov’s momentum method [6],

which reduces to a gradient descent (GD) method when

t(n) = 1 for all n ≥ 0. The difference between z(n+1) and z(n)

plays the role of momentum with carefully chosen coefficient

t(n), where (t(n) − 1)/t(n+1) increases from 0 to 1 as the

algorithm iterates. This algorithm requires only one extra

image storage and minimal additional computation in line 5
of Table I compared to GD, while significantly accelerating

convergence.

1: Initialize x(0) = z(0) and t(0) = 1.

2: for n = 0, 1, · · · , N − 1

3: t(n+1) = 1
2

(
1 +

√
1 + 4

[
t(n)
]2
)

4: z(n+1) = x(n) − 1
L∇Ψ(x(n))

5: x(n+1) = z(n+1) + t(n)−1
t(n+1)

(
z(n+1) − z(n)

)

TABLE I
NESTEROV’S MOMENTUM METHOD [6]

Nesterov’s method in Table I satisfies the following conver-

gence rate inequality2 at any nth iteration [6]:

Ψ(z(n))−Ψ(x̂) ≤ 2L||x(0) − x̂||2
(n+ 1)2

(3)

for all functions Ψ(x) in FL(RNp). The right term of (3) is

the worst-case bound of Nesterov’s momentum method [6];

Section III reviews the optimized momentum method that

achieves the lowest worst-case bound.

In [7], we combined Nesterov’s method in Table I with OS

methods [4], [5] for X-ray CT reconstruction (2) by replacing

2DT [9] numerically showed that the sequence {x(n)} in Table I satisfies

the inequality (3) of {z(n)} for many choices of n.
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∇Ψ(x) by the following approximation:

∇Ψ(x) ≈MA′
mWm(Amx− ym) +∇R(x) (4)

for m = 1, · · · ,M , where Am, Wm and ym are submatrices

of A, W and y corresponding to mth subset of projection

views out of total M subsets, yielding M -times reduced

computational cost per update. So, we count one iteration after

we visit M subsets considering the use of A and A′ per update.

Combining OS and Nesterov’s momentum provided fast M2-

times initial acceleration [7], unlike M -times acceleration

from conventional OS methods.

III. OPTIMIZED MOMENTUM METHODS

A. Achievable convergence rate of momentum methods

Nesterov’s method [6] in Table I achieves the optimal rate

O(1/n2), since Nesterov [8] found one function in FL(RNp)
that cannot be minimized faster than O(1/n2) by all mo-

mentum methods using only the gradient information and the

Lipschitz constant L [8]. In particular, any momentum method

generating {x(n)} satisfies the following lower bound:

3L||x(0) − x̂||2
32(n+ 1)2

≤ Ψ(x(n))−Ψ(x̂) (5)

for at least one function Ψ(x) in FL(RNp). The constant in (3)

is 64
3 -times larger than that in (5), showing potential room for

improving Nesterov’s method in Table I.

B. Optimized momentum in N -iterations (OptMom-N )

DT [9] proposed an optimized momentum method that

minimizes the upper-bound of Ψ(x(N)) − Ψ(x̂) for a given

total number of iterations N among all possible momentum

methods, achieving a lower bound with a constant smaller than

2 in (3) (but larger than 3/32 in (5)). Our work was inspired

by [9].

All momentum algorithms using a Lipschitz constant L can

be written in the following general form [9]:

x(n+1) = x(n) − 1

L

n∑

k=0

h
(n)
k ∇Ψ(x(k)) (6)

for n = 0, · · · , N−1, where each update is a weighted sum of

all previous gradients with (precomputed) coefficients {h(n)
k }.

A constant-step GD has the form (6) with h
(n)
k = 1 for k = n,

and 0 otherwise. Nesterov’s method in Table I has this form (6)

with the following coefficients [9]:

h̄
(n)
k =





t(n)−1
t(n+1) h̄

(n−1)
k , 0 ≤ k ≤ n− 2

t(n)−1
t(n+1) (h̄

(n−1)
n−1 − 1), k = n− 1

1 + t(n)−1
t(n+1) , k = n

(7)

for n = 0, · · · , N − 1 and t(n) in Table I. These coefficients

{h̄(n)
k } are independent of N , and Table II shows a few of

them. The analysis using (6) and (7) means that both Table I

and the algorithm (6) with {h̄(n)
k } in (7) will generate the same

sequence of images. However, using (7) in (6) would require

storing all previous gradients and (weighted)-summing all of

them at each update, whereas Table I uses a computationally

efficient recursion.

Coefficients {h̄(n)
k } for Nesterov’s momentum method [6]

HHHHn
k

0 1 2 3 4

0 1.0000
1 0.0000 1.2818
2 0.0000 0.1223 1.4340
3 0.0000 0.0649 0.2305 1.5311
4 0.0000 0.0389 0.1380 0.3180 1.5988

Coefficients {ĥ(n)
k } of DT’s momentum method [9] for N = 5

HHHHn
k

0 1 2 3 4

0 1.6180
1 0.1741 2.0194
2 0.0756 0.4425 2.2317
3 0.0401 0.2350 0.6541 2.3656
4 0.0178 0.1040 0.2894 0.6043 2.0778

TABLE II
COEFFICIENTS OF NESTEROV’S {h̄(n)

k } (7) AND DT’S {ĥ(n)
k } (9)

MOMENTUM METHODS.

DT [9] consider measuring the worst-case bound for a given

number of iterations N , a given upper bound B of the distance

between x(0) and x̂, and a given candidate set of coefficients

{h(n)
k }:

PN,B({h(n)
k }) , max

Ψ(x)∈FL(RNp )

{
Ψ(x(N))−Ψ(x̂)

}
(8)

s.t. x(n+1) = x(n) − 1

L

n∑

k=0

h
(n)
k ∇Ψ(x(k)), n = 0, · · · , N − 1,

||x(0) − x̂|| ≤ B.

Since this problem (8) is intractable due to the functional

constraint Ψ(x) ∈ FL(RNp), DT relax (8) by replacing the

functional constraint on Ψ(x) by a basic property of the

FL(RNp) functions [8, Theorem 2.1.5]:

1

2L
||∇Ψ(x)−∇Ψ(z)||2 ≤ Ψ(x)−Ψ(z)−∇Ψ(z)′(x− z)

for all x, z ∈ RNp . Even then, the problem needs several

mathematical tricks to finally be transformed to a solvable

semidefinite programming (SDP) problem.3

DT [9] use (8) to find the “optimized” coefficients {ĥ(n)
k }

that minimize the worst-case bound for a given N as:

{ĥ(n)
k } = argmin

{h(n)
k }

PN,B({h(n)
k }), (9)

and similarly, the problem (9) eventually becomes an SDP

problem in [9]. Here, a solution {ĥ(n)
k } of (9) is independent

of B [9]. An update (6) using the optimized coefficients {ĥ(n)
k }

computed from (9) for a given N becomes an optimized

momentum method in N -iterations (OptMom-N ) [9].

For example, Table II shows the optimized coefficients

{ĥ(n)
k } for N = 5 computed from (9), achieving the following

inequality at the final N = 5th iteration:

Ψ(x(5))−Ψ(x̂) ≤ 0.67
L||x(0) − x̂||2

(5 + 1)2
. (10)

The constant here is less than half of that of Nesterov’s method

in (3) for n = 5. This (more than twice) acceleration has been

confirmed for multiple choices of N in [9].

3We used CVX [10] to solve SDP programs in our experiments.

Page 104 The third international conference on image formation in X-ray computed tomography



Similar to combining Nesterov’s momentum with OS meth-

ods [7], here we consider combining DT’s OptMom-N frame-

work with OS methods to achieve faster convergence than OS

methods with Nesterov’s momentum. However, the substantial

computational cost and storage requirements remain large

in (6) in general. The next section describes a practical

approach to reducing this burden while maintaining fast con-

vergence rate.

IV. PROPOSED EFFICIENT IMPLEMENTATION OF

OPTIMIZED MOMENTUM METHODS IN N -ITERATIONS

The general momentum methods in (6) require storing

all previous gradients and (weighted-)summing them at each

update. In contrast, Table I provides a clever method that

uses minimal extra memory and is computationally efficient,

implicitly using the coefficients in (7). In this paper, we pro-

pose an efficient version of DT’s OptMom-N framework [9]

in terms of memory and computation, instead of using the

general recursion (6), by constraining the coefficients {h(n)
k }

so that the implementation is efficient while preserving the

fast convergence rate.

To transform the general momentum method (6) into a com-

putationally efficient algorithm, we consider two modifications

of (6). Firstly, we constrain the method to store at most nw+1
linear combinations of gradient vectors in {G0, · · · , Gnw

}, so

that the extra memory relative to GD is a fixed amount instead

of growing with each iteration. This restriction is essential for

a method to be practical in 3D CT. Secondly, we constrain the

coefficients {h(n)
k } to satisfy the following condition:

h
(n)
k−1 = βkh

(n)
k , (11)

for all 1 ≤ k ≤ n−nw and 0 ≤ n < N , where {βk} is a set of

multiplicative factors that we will optimize. The condition (11)

enables the method to update recursively a weighted-sum of a

part of previous gradients {∇Ψ(x(0)), · · · ,∇Ψ(x(n−nw))} in

one image memory space G0 at the n(≥ nw)th iteration as:

G
(n)
0 ,

n−nw∑

k=0

h
(n)
k

h
(n)
n−nw

∇Ψ(x(k)) =

n−nw∑

k=0

(
n−nw∏

l=k+1

βl

)
∇Ψ(x(k))

= βn−nw
G

(n−1)
0 +∇Ψ(x(n−nw)). (12)

We use the remaining memory space {G1, · · · , Gnw
} for

storing the nw most recent gradients {∇Ψ(x(n−nw+1)), · · · ,
∇Ψ(x(n))} separately. Table III describes the corresponding

efficient implementation of (6) for coefficients {h(n)
k } that

satisfy the constraint (11).

1: Initialize x(0), N , nw, and Gl = 0 for l = 0, · · · , nw.

2: Choose {βk}N−nw

k=1 and {{h(n)
l }nl=n−nw

}N−1
n=0 .

3: for n = 0, 1, · · · , N − 1
4: if n ≤ nw − 1
5: Gn+1 ← ∇Ψ(x(n))
6: else

7: G0 ← βn−nw
G0 +G1

8: Gl ← Gl+1 for l = 1, · · · , nw − 1
9: Gnw

← ∇Ψ(x(n))
10: endif

11: x(n+1) = x(n) − 1
L

(∑nw

l=1 h
(n)
n−nw+lGl + h

(n)
n−nw

G0

)

TABLE III
PROPOSED EFFICIENT IMPLEMENTATION OF OPTIMIZED MOMENTUM

METHODS IN N -ITERATIONS.

To optimize the factors {βk} in (11) and Table III, we

insert the condition (11) in (9) and solve a modified SDP

problem. Alternatively, as a simpler approach, we can project

the optimized coefficients computed from (9) onto the sub-

space of coefficients satisfying (11). Interestingly, we found

empirically that the optimized coefficients {ĥ(n)
k } computed

from (9) satisfy the condition (11) for any4 nw ≥ 1. Thus,

we chose the smallest nw = 1, which requires same memory

space and computational cost as Nesterov’s method in Table I.

Finally, the momentum method in Table III with nw = 1,

{βk , ĥ
(N−1)
k−1 /ĥ

(N−1)
k }N−nw

k=1 and {{ĥ(n)
l }nl=n−nw

}N−1
n=0 using

{ĥ(n)
k } in (9) becomes our proposed efficient implementation

of an optimized momentum in N -iterations (EffOptMom-N ).

4We recently found an analytical solution for {ĥ(n)
k } of (9) that we will

submit to arXiv in near future.
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Fig. 1. Plots of RMSD [HU] versus (a) iteration and (b) run time (sec) for OS methods using 1 and 12 subsets with and without momentum techniques.
Each iteration of OS methods with 12 subsets performs 12 sub-iterations.
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(a) Initial FBP image x(0) (b) Converged image x̂
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(c) Reconstructed image x(5)

Fig. 2. 2D XCAT simulation: (a) an initial FBP image x(0), (b) a converged image x̂, and (c) a reconstructed image x(5) from 5 iterations of the proposed
OS(12)-EffOptMom-N = 240 algorithm using 12 subsets.

For further acceleration, we combine the efficient version

of the optimized momentum method in Table III with OS

methods, by replacing ∇Ψ(x) with (4). We expect this OS-

EffOptMom-N method to converge faster than OS methods

with Nesterov’s momentum method. We also replaced the

1/L factor in Table III with a diagonal matrix D−1 based

on separable quadratic surrogates [5], [11]; this D is easier to

compute than the (smallest) Lipschitz constant L.

V. RESULTS

We simulated 2D fan-beam CT 492 × 444 noisy sinogram

data from a 512 × 512 XCAT phantom image [12]. We

reconstructed a 256 × 256 image from the sinogram using

OS methods (1 and 12 subsets) with and without momentum

techniques for 20 iterations.

Fig. 1 illustrates the root mean square difference (RMSD)

between x(n) and the converged image x̂ in Hounsfield Units

(HU):

RMSD(n) =
||x(n) − x̂||√

Np

[HU] (13)

versus both iteration and run time, to evaluate the convergence

rate. The results show that two momentum techniques provide

acceleration. Particularly, the proposed EffOptMom-N = 20
algorithm reaches the converged image faster than Nesterov’s

method in both iteration and run time, as expected. Even

though the (Eff)OptMom-N algorithm is known to achieve the

fast convergence only at the final N th iteration, the algorithm

shows acceleration within all N iterations in this experiment.

In Fig. 1, using 12 subsets in OS methods accelerated all

algorithms, even though it slightly increased the computation

time per iteration for executing 12 sub-iterations per each

iteration. The EffOptMom-N algorithm with OS(12) method

for 20 iterations requires N = 240 sub-iterations, leading to

solving a large SDP problem (9) with N = 240 to compute

the optimized coefficients {ĥ(n)
k }. However, these coefficients

can be precomputed for a given N regardless of the data set,

so we can neglect the computation of SDP problem in practice

(and in Fig. 1). Considering a large N = 240, we note that an

(inefficient) OptMom-N = 240 framework would require 240
image space, while our proposed efficient implementation uses

only one extra image space for storing a linear combination

of previous gradients.

Fig. 2 shows an initial filtered back-projection (FBP) image

x(0), a converged image x̂, and a reconstructed image from

5 iterations of the proposed EffOptMom-N algorithm with

OS(12) method. The result indicates that we can reach nearby

the converged image within very few iterations using the

proposed algorithm.

VI. CONCLUSION

We proposed an efficient implementation of optimized mo-

mentum [9] in N -iterations for X-ray CT image reconstruction

and showed that it converges faster in both N -iterations and

run time than Nesterov’s method. We combined it with OS

methods for further acceleration, leading to faster convergence

than our previous combination of OS methods and Nesterov’s

momentum method [7]. We will next investigate this acceler-

ation in real 3D CT data.
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