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ABSTRACT
As radiotherapy has become increasingly conformal, ge-

ometric uncertainties caused by breathing and organ motion
have become an important issue. In this work, a nonrigid
motion estimation method, which can estimate the motion
history of the studied organs, is introduced. This motion in-
formation may increase the accuracy of the dose calculation
in treatment planning.

In this approach, a set of projection views of the thorax
are acquired by using a slowly rotating cone-beam CT scan-
ner, such as a radiotherapy simulator. A thorax image of the
same patient is also reconstructed using a conventional CT
scanner under the breathhold condition. Then we design a
parametric motion model based on B-splines to represent
respiratory motion. The parameters are estimated by opti-
mizing a cost function, which is the penalized least square
error between the measured projections and the estimated
projections. Preliminary simulation results on the 2D case
show that there is good agreement between the estimated
motion and the true motion. More complex simulation work
will be done in the near future.

1. INTRODUCTION

Extensive research has been carried out on dynamically es-
timating cardiac motion [1], which greatly helps the diag-
nosis of cardiac dysfunction. However, as far as we know,
there is little work on building a 4D respiratory motion model.
Understanding the motion pattern of the thorax, especially
the motion of the tumors inside the lung, is important for
treatment planning. For example, knowledge of the space
that tumors reach during a respiration cycle may guide de-
livery of the x-ray dose to focus more on tumors while spar-
ing the normal adjacent tissue.

In our work, we propose a method to estimate respira-
tory motion from two measurements. One is a sequence
of projection views acquired from a slow cone-beam CT
scanner, which usually takes about one minute for one rota-
tion. During the acquisition period, patients breathe freely,
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so the measured projections correspond to a moving object
and contain breathing motion information, which make it
reasonable to estimate respiratory motion using these pro-
jections. The other one is a reconstructed image of the tho-
rax under the breathhold condition using a conventional CT
scanner. This image serves as a reference image which will
be deformed according to our estimated motion; then the
projection of the deformed image is calculated and com-
pared with the corresponding measured projection. As is
well known, estimation is an inverse procedure aimed at re-
covering the unknown input from available measurements.
Generally, for an iteratively solved estimation problem, there
are three main tasks: define a suitable system model, choose
a good cost function and select appropriate optimization al-
gorithms. In our estimation problem, motion is defined by a
parametric model based on B-splines. Cost function or sim-
ilarity measure is the penalized least square error. The opti-
mization algorithm can be a general numeric search method,
such as the gradient descent method.

Instead of using projections, one may think that a fea-
sible alternative is to estimate respiratory motion by regis-
tering a set of thorax CTs taken under the breathhold condi-
tion. There are at least two shortcomings to this idea. First,
unnaturally controlled breathhold states tend to be discon-
tinuous, and some people (like lung cancer patients) cannot
control their respiration well. Second, patients may be re-
quired to be scanned dozens of times all at once to generate
enough views for a respiration cycle, and this long-time ex-
posure to X ray is not healthy. By contrast, in our method,
patients breathe naturally and are only scanned for a few
rotations, which overcomes those disadvantages.

The paper is organized as follows. First the theory is
described, including the temporal motion model, similarity
measure and optimization method. Then the preliminary
simulation results are presented, followed by our conclusion
and proposals for future work.



2. THEORY

2.1. Temporal Motion Model

Let {ft1 , · · · , ftm
, · · · , ftM

} denote the M -frame moving
image sequence, where ftm

is the image at time tm. As-
suming these images are all a deformation of the reference
image fr, then there exists a correspondence between ftm

and fr:

ftm
(x, y) = Wθm

fr

= fr(Tx(x, y, θ(x)
m ), Ty(x, y, θ(y)

m )), (1)

where Wθm
is the warping operator controlled by parameter

θm, Tx(x, y, θ
(x)
m ) and Ty(x, y, θ

(y)
m ) describe the deforma-

tion functions along x direction and y direction respectively,
and vector θm is the parameter of the deformation functions.
Nonrigid deformation is applied in our work. As described
in [2], a smooth nonrigid deformation can be modelled us-
ing spline functions as follows:
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where βn(x) is the spline function of degree n, θ(x) and θ(y)

are spline coefficients, and ∆x and ∆y are constant scalars
that control the width of the basis functions. The reasons
we chose the B-spline function are its advantages of good
accuracy and analytical derivatives [3].

Since the deformation of tissue over time is also con-
tinuous, a general temporal motion model can be further
expressed, as depicted below:

Tx(x, y, t) = x+
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where the basis function b(t) can take many forms, such as
the Dirac impulse function, rectangular function or spline
function etc. In our current implementation, the rectangu-
lar function is chosen to be the time basis function for the
reason of simplicity.

2.2. Measurement

As described before, the motion estimation are based on two
measurements. One is a still thorax fr, a reconstructed im-
age using a conventional CT scanner under the breathhold
condition. This image serves as a reference image and all
the deformations are operated on this image. The other one
is a projection sequence from a slow scanner:

{pφ1
, · · · , pφm

, · · · , pφM
},

where φi is the projection angle, and M is the total number
of projections.

Let Aφm
denote the projection operator at angle φm,

then

pφm
= Aφm

ftm
+ nm

= Aφm
Wθm

fr + nm, (2)

where nm is an additive Gaussian noise vector at time tm.
Based on the motion model defined in the previous section,
the task of the motion estimation is to find the deforma-
tion parameters θ = {θ1, · · · , θm, · · · , θM} using fr from
{pφm

}.

2.3. Similarity Measure

The goal of our motion estimation is to find θ that can
make the calculated projections based on the deformed im-
age fr best match the measured projections. A straightfor-
ward metric to evaluate similarity is the least square error,

L(θ) =
1

2

M∑

m=1

∥∥pφm
−Aφm

Wθm
fr

∥∥2
,

where Wθm
fr is the warped fr as shown in (1). This cost

function can also be derived from Maximum Likelihood es-
timation, under the assumption that the noises are indepen-
dent and identical Gaussian processes.

Since estimation from finite data may yield unrealistic
results, it is necessary to add temporal regularization to pro-
vide a practical solution. The regularized least square esti-
mator of θ contains two terms and is expressed as follows:

θ̂ = arg min
θ
ψ(θ)

ψ(θ) = L(θ) + λR(θ),

where R(θ) denotes the regularity function, and parameter
λ controls the trade-off between the similarity term and the
regularity term.

As a motion problem, it is desirable to take the temporal
smoothness of deformation as a regularity term. Here we



approximate the smoothness of the temporal deformation as
the smoothness of the parameter vector θ. As a result, R(θ)

can take the form of
∥∥Cθ

∥∥2
, where C is a differencing ma-

trix.

2.4. Optimization

The gradient descent method is chosen to be our optimiza-
tion algorithm. This method updates variables by the fol-
lowing scheme:

θ
n+1 = θ

n − α∇(θn), (3)

where α is the step size, ∇(θn) is the gradient of ψ(θ) with
respect to θ

n. Because of the linearity of the projection
operator and the close form of the B-spline functions, the
gradients can be calulated analytically using the chain rule.

A faster convergent algorithm, the preconditioned gra-
dient descent (PGD) method, can also be used as the opti-
mization algorithm, which has the following iterative form,

θ
n+1 = θ

n − αP∇(θn), (4)

where P is a preconditioning matrix. The ideal precondi-
tioning matrix P0 would satisfy P0H = I , where H is the
Hessian of ψ(θ), and I is the identity matrix. Since it is
very hard to compute H−1, we select P = (diag{H})−1

to approximate H−1.

3. SIMULATION RESULTS

In our simulation, the reference image fr is a 128×128 tho-
rax phantom (Fig. 1) [4]. We simulate a parallel-beam slow
scanner to generate the data {pφm

}m=M
m=1 (Fig. 2), which

contain M = 15 projections at angles uniformly spaced
over 180o. The detector size is 160-pixel. During the scan-
ning process, the thorax phantom moves according to an ar-
tificial motion represented by the temporal motion model
described in Section 2.1. Here the deformation of each
frame is defined by cubic splines with a control grid of 2×2
points, which means that there are 4×2 parameters for each
frame. Since there are 15 frames, the motion model is a
120-parameter function. The reason we start our simulation
with a rather idealistic condition is that knowledge of the
ground truth enables us better to evaluate and analyze the
performance of the proposed method.

Fig. 3, Fig. 4, and Fig. 5 display the estimation results.
Each parameter is initialized to be a deviation from its true
value. The deviation is randomly distributed between ±8
pixels (1 pixel corresponds to about 0.3cm). As can be seen
in Fig. 4, the estimated values of most parameters are fairly
close to their true values. We also examine two points from
the image (marked in Fig. 1) and compare the estimated dis-
placement with their true displacement. The comparison

shown in Fig. 5 illustrates that there is good agreement be-
tween the true movement and the movement found by the
algorithm. The largest error is around 1 pixel. It is nec-
essary to investigate this issue further in order to ascertain
whether the algorithm can be improved, and if so, how to
achieve the improvement.

4. CONCLUSION

In this paper, we proposed a nonrigid motion estimation
method from a sequence of slowly rotating projection views.
Cubic B-spline functions are applied as the basis of our
parametric temporal motion model. Preliminary results pre-
sented in Section 3 show the potential of this method. More
simulation work will be undertaken in the near future, in-
cluding, for example, experimenting on different time basis
functions and penalty functions, testing the performance of
the algorithm under noisy situations, and extending the cur-
rent 2D implementation to the 3D case. Finally, the algo-
rithm will be applied to real lung data.
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Fig. 1. Image f , marked points are (100,90) and (32,64)
respectively
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Fig. 2. Projection {pφm
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m=1
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Fig. 3. Cost function
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Fig. 4. Comparison of the the estimated motion parameters
with their true values
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Fig. 5. Comparison of the true movement and the estimated
movement of point(100,90),(32,64) as marked in Fig. 1


