TO APPEAR IN IEEE TRANSACTIONS ON MEDICAL IMAGING; MANUSCRPT UPDATED ON DECEMBER 11, 2011 1

A Splitting-Based lIterative Algorithm for
Accelerated Statistical X-Ray CT Reconstruction

Sathish Ramani*Member, IEEEand Jeffrey A. FessleFellow, IEEE

Abstract—Statistical image reconstruction using penalized
weighted least-squares (PWLS) criteria can improve image-
quality in X-ray CT. However, the huge dynamic range of the
statistical weights leads to a highly shift-variant inverg problem
making it difficult to precondition and accelerate existingiterative
algorithms that attack the statistical model directly. We propose
to alleviate the problem by using a variable-splitting schene that
separates the shift-variant and (“nearly”) invariant components
of the statistical data model and also decouples the regulemation
term. This leads to an equivalent constrained problem that
we tackle using the classical method-of-multipliers frameork
with alternating minimization. The specific form of our splitting
yields an alternating direction method of multipliers (ADM M)
algorithm with an inner-step involving a “nearly” shift-in variant
linear system that is suitable for FFT-based preconditiomg using
cone-type filters. The proposed method can efficiently handl
a variety of convex regularization criteria including smoah
edge-preserving regularizers and nonsmooth sparsity-pmoting
ones based on thel;-norm and total variation. Numerical
experiments with synthetic and realin vivo human data illustrate
that cone-filter preconditioners accelerate the proposed BEBMM
resulting in fast convergence of ADMM compared to conventioal
(nonlinear conjugate gradient, ordered subsets) and statef-the-
art (MFISTA, split-Bregman) algorithms that are applicabl e for
CT.

Index Terms—Statistical Image Reconstruction, Regulariza-
tion, lterative Algorithm, Method of Multipliers, Alterna ting
Minimization

iterative coordinate descent (ICD) method$ [1], blockeuhs
coordinate descertl[3], ordered subsets (OS) algorithmacba
on separable quadratic surrogates (SQS) [4], [5] and (preco
ditioned) nonlinear conjugate gradient (NCG) methdds [6].
For fast computation on multiprocessor computers, (P)NCG-
type methods appear to be particularly amenable to efficient
parallelization because they update all voxels simultasigo
using all measurements.

Developing suitable preconditioners for (P)NCG is chal-
lenging for X-ray CT because the enormous dynamic range of
the transmission data causes the Hessian of the statidéita!
fidelity term to be highly shift-variant [6]. Clinthornet al.

[7] showed that for unweighted least-squares reconstmcti
one can precondition the problem effectively using FFTwit
a kind of cone filter. This cone filter amplifies high spatial
frequencies, helping to accelerate convergence. But that ¢
filter is ineffective for (P)NCG in the PWLS case [6]. Delaney
et al. [8] considered a very special type of shift-invariant
weighting and also demonstrated accelerated convergeuice,
for low-dose X-ray CT the appropriate statistical weightin
does not satisfy the assumptions [ [8]. Shift-variant pre-
conditioners based on multiple FFTs were proposed_in [6]
for 2D transmission tomography, but never became popular
due to their complexity and were never investigated for 3D
problems. Another way to introduce a cone filter is the iteeat

|. INTRODUCTION FBP approach [9],110]. Initially these algorithms “conget

TATISTICAL image reconstruction methods in X-ray CTrapidIy compared to (P.)NCG methods, but typ_icaIIy they
Sminimize a cost function consisting of a data-fidelit)go not have any theoretical convergence properties and “too
y” iterations lead to undesirably noisy images. Further

term that accommodates the measurement statistics and . _ o S
more, it is unclear how to include regularization while enrsgl

geometry of the data-acquisition process, and a regutaniza
term that reduces noise. For example, PWLS cost functio n\r/]ergre‘nltlze. d ibed ab | dl fthe f
for X-ray CT use a (statistically) weighted quadratic data- € challenges described above apply regardiess ot the form

fidelity term [1], [2] and can provide improved image-qualit of the regularizer. Additional difficulties arise when onges

compared to filtered back-projection (FBRY [1]] [2]. HOW_nonsmooth regularizers such as total variation (TV) [11d an

ever, computation-intensive iterative methods are ne&dedsparsny-promotlng ones based on thenorm [12]. These

minimize such cost functions. This paper describes a n%ﬁg_ular_izers are not differentiablg everywhere precigdip-
minimization algorithm that uses variable splitting to yvice imization by conventional gradient-descent methods.(e.g

accelerated convergence. NCG): D"iffe:entiable approxjmations (e.g., using “corner
Several types of iterative algorithms have been proposreooyndlng :1"’ Sec. VI'A]’ [:_L.3, App. A]) can be employec_i,
for statistical image reconstruction in X-ray CT, inclugin but even with such modifications the Hessian of the regudariz
can have very high curvature leading to slow convergence of
conventional gradient-descent methads [14]. While soeue st
of-the-art algorithms such as (M)FISTA [15], [16] and split
Bregman-type schemes (that split only the regularizatom}
[17], [18] are able to handle nonsmooth regularizers eyactl
(i.e., without corner rounding), when applied to X-ray CT,
they must minimize a cost function that involves the origina
statistical data-fidelity term and are in turn hindered bg th
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shift-variance of its Hessian (see Sections]I-B] 1V). M x M diagonal matrix consisting of statistical Weigﬁtand

In this work, we propose to use a variable-spliting techtul|%, £ u’ Wu. We use a general family of regularizers of
nique that not only decouples the regularization term ihe form [12]
the spirit of [17], but also dissociates the statistical and P
geometrical components in the data-fidelity term. This form U (Rx) = )‘Z 1oy B, (Z IR, x]r|m> ’ 3)
the key feature of our approach that enables us to “isolate” - 1
the shift-variant element in the statistical data-fideliggm
thereby alleviating the problem. Our splitting procedusesi
auxiliary constraint variables to transform the origin&VPS
problem into an equivalent constrained optimization tdekt t
we solve using the classical method-of-multipliers| [1210]
and alternating direction optimization [21]-]23] frameks.
This leads to an alternating direction method of multidie . A
(ADMM) algorithm for solving the original PWLS problem instances oft that result in a convex reglilarlz@r}n” ®).
that, apart from requiring simple operations (such as tmvgr . The_above g_eneral regular_|zer IS in the "analysis fqrm (27]
a diagonal matrix, solving 1D denoising problems), invelve:€- ¥ 1 specified as a_funt_:tlon of the reconstructec_zl Image
the solving of a “nearly” shift-invariant linear system, iwh The metho? propos_esl in this plaper can also bg gasﬂy extended
is amenable to FFT-based preconditioning using cone-ty ehandle. synthe3|s forms [27], e.g., by wr|.t|n:g = S0
filters [7]. Experimental results with synthetic and raakivo and considering/(6) = Jaar(y, ASO) + ®(6) in PO, for

human data indicate that the proposed ADMM converges fasg9Me Potential functio® and synthesis operatsi We focus

than conventional (NCG and ordered subsets) and state- Yt the analysis forml{3) as it includes popular nonsmooth
the-art (MFISTA and split-Bregman) methods, illustratihg C't€"a such as TV (ford, () = vz andm = 2), analysis
efficacy of our splitting scheme and the potential of cortexfil ti-wavelets (for®,(z) = z, m = 1) and a variety of s[nooth
preconditioners for accelerating the proposed ADMM. ThePNnVvex e_dge—preservmg regularizers (e.g., Huber [28]],[2
proposed ADMM can also be used with a variety of convex @'l [6], 30] etc).

regularization criteria (see Sectién_VI-A) including sntimo

edge-preserving regularizers and nonsmooth ones such asBr\Previous Approaches

and ¢, -regularization. Conventional gradient-descent methods, e.g., NCGPfor
The paper is organized as follows. In Secfidn Il, we mathgepend on the Hessian ofi.ia: Haata = AT WA, which
matically formulate X-ray CT reconstruction as a PWLS prolis highly shift-variant in CT particularly due to the large
lem and briefly discuss drawbacks of some existing algosthrdynamic range ofW. As a result, it becomes difficult to
for X-ray CT. Section[Ill discusses the proposed splittingrecondition and accelerate such methods [6]. Fesski [6]
strategy and the development of the ADMM algorithm ijirectly attackedP0 using NCG and proposed a shift-variant
detail. In Sectio IV, we compare our ADMM algorithm withpreconditioner to tackleFq... But their preconditioner is
the split-Bregman technique applied for CT, schematicallyata-dependent and requires at least one pair of FFT-iFFT
SectionV is dedicated to numerical experiments and resulgperations per NCG-iteration.
while SectionVl discusses possible extensions of this work terative shrinkage-thresholding (IST)[31] and its vat&@
to 3D CT and other statistical models. Finally, we draw oy{M)FISTA [15], [16], and (M)TWIST [32]) that are ap-
conclusions in Section MlI. plicable to PO depend on the Lipschitz constaltj,., Of
Jdata(Ya AX):

[l. STATISTICAL X-RAY CT RECONSTRUCTION Laata = Omax{AT WAL, (4)

where A > 0 is the regularization parametet, > 0 Vr
are user-provided weights that govern the spatial resoiuti
the reconstructed output [26], are potential functions, the
Rx N matrixR 2[R, ---Rp']" constitutes regularization
operatorsR, (e.g., finite differences, frames, etc) of size
[ x N, whereR = PL. We concentrate on values of and

A. Problem Formulation whereo,.x represents the maximum eigenvalue. The conver-

For CT, an accurate statistical model for the data is quigence speed of these algorithms is primarily determined by
complicated [[24], [[25] and is often replaced by a Gaussidd): A large value ofLg,¢. results in small gradient steps
approximation [[1], [[2] with a suitable diagonal weightind15, Sec. 1.1] leading to slow convergence. Sifé has
term W whose component&w; } are inversely proportional to a large dynamic range and due to the (approximatefy)
the measurement variancés [1]} [2]. We consider a penalizgge decay of the elements &' A, Lga... Can be large
weighted least-squares (PWLS) formulation of statistic@l for CT decreasing convergence speed of IST-type algorithms
reconstruction[[1]: Optimization transfer-based methods (e.g.] [33, Sec. .A\)B

face a similar issue in that the surrogate functions end up
PO : argmin{J(X) = Jdata(y, AX) + ‘I’(Rx)}, (1) having high curvature]5] due t&8¥, which again leads to
A1 small update-steps and slow convergence.
Jaata(y, Ax) = Slly — Ax|y, (2)  In summary, the weighting teriW, although crucial for

i L improving reconstruction quality, poses a challenge for op
wherey is the M x 1 data vector (log of transmission data)iimization. Compared teAT WA, the termAT A is “more”
A is the M x N system matrix,Ax represents the forward

jecti i .g., linei = diag{w;} i or simplicity we usedv; = e~¥i in our experiments.
rojection operation (e.g., line integral dia sa LF [ do Y



shift-invariant and is appropriate for preconditioningings Before proceeding, we rewritg](5) concisely as
cone filters. This property has been used to accelerate un-
weighted least-squares reconstruction for tomographagen P1 : argmin f(z) st.z = Cx, (6)
reconstruction[[7]. Therefore, our idea to mitigate theftshi ’
variance ofH ., is to untangléW from Hg,. thereby mak- where
ing the resulting problem “more” shift-invariant and sbi@ u AT A
to circulant preconditioning. To do so, we adopt a variable- z = [ v } , C= { R } . (7)
splitting strategy.

Variable splitting (VS) refers to the process of introdgginSince P1 is equivalent toPO0, solving P1 for x yields the
auxiliary constraint variables to separate coupled coraptsn desired reconstruction ifl(1).
in the cost function[[12][117]/ 18]/ [34]=[42]. This prodare
transforms the original minimization problem into an eguiv o
lent constrained optimization problem that can be effetyiv B- Method of Multipliers

solved using classical constrained optimization sche®@k [ To solveP1, we use the classical framework of the method

[20]. The VS approach is appealing as it renders the resudf multipliers [19], [20] and construct an augmented La-
ing constrained problem tractable to alternating minimiara grangian (AL) function[[12],[19],[[20],142]

schemes that decouple it in terms of the auxiliary variables
and simplify optimization [[12], [[17], 18], [134],[136], 137 L(x,2,7) 2 f(z) +7 (z — Cx) + gnz—cxn,‘i (8)
[39]-[42].

The VS approach has become popular recently for solvitigat combines a multiplier term' (z — Cx) with Lagrange
reconstruction problems in image processind [17]) [34TK[3 multiplier y L [yu" 747" € RM+E and a quadratic penalty
MRI [12], [39], [40] and CT [18], [41], [42]. Many authors term £z — Cx||3, wherey > 0 is the AL penalty parameter
have focussed on splitting the regularization term [178][1 and A - 0 is a symmetric weighting matrix. The multiplier
[34], [37], [39]-[41] as it is hard to tackle in inverse prebls term can be absorbed into the penalty term[dh (8) (by com-

(especially nonsmooth ones such as TV &ndegularization). pleting the square) for ease of manipulation leading to
Splitting the regularization term enables one to handle it

exactly (i.e., without the need for “corner-rounding” [12, L(x,2,m) 2 f(z) + E||z — Cx — 1|z + ¢, (9)
Sec. VI.A], [13, App. A] for nonsmooth criteria) via simple 2

denoising problems [12], [17], [37]._[42]. However, in PWLSWheren A e T = _%A—l,y and c,, Ly —%H’?Hi is a

problems for CT, the data-term adds to the complexity (asdbnstant independent of and z.Unlike standard approaches
leads to a shift-variant hessidiy..,) and therefore demands[36] [38] that setA = I,/ r, We propose to use

attention. So in this work, besides splitting the regulstitm

term, we also split the data-term. | In O
A= [ 0 uln } , (10)
1. PROPOSEDMETHOD wherev > 0. This is crucial in CT because the elements of

A andR can differ by several orders of magnitude and it is

imperative to balance them to avoid numerical instabdiiie
We introduce auxiliary constraint variables € R™ and the resulting algorithm and to achieve faster convergef2k [

v € R and writeP0 as the following equivalent constrained The classical AL scheme for solvifg1 alternates between

A. Equivalent Constrained Optimization Problem

problem: a joint-minimization step and an update stepl [12, Sec. IlI]:
argin&r‘ll{f(u, V) £ Jaata(y,u) + ¥(v)} (xU+D 20Dy = arg riuzn L(x,2z,79), (11)
Ss.t.u= Ax, vV = Rx, (5) 'n(jﬂ) = n('j) - (ZUH) - CX('j+1))7 (12)

where u separates the effect oW on Ax and v splits respectively. Unlike pure penalty methods, remarkablg th
the regularization term as in_[17]. Afonset al. [36] and AL formalism does not require increasing— oo to ensure

Figueiredoet al. [38] have utilized data-term-splitting in theconvergence of {11)=(12) to a solution BfL [19].
context of image restoratioh [36], [38] and reconstrucfimm

partial Fourier observations [36]. However, our emphasieh
is on CT reconstruction whera plays an important role: C. Alternating Direction Minimization
It leads to a sub-problem that is “nearly” shift-invariamida

It is numerically appealing to replace the more difficult
suitable to preconditioning using cone filters|[42] as eixad y anp g e

joint-minimization step[(1l1) by alternating direction opiza-

in SectionTTT-C. - tion that decouples(11) as [21]—[23]
In general, the proposed splitting strategly (5) can be agpli
to any PWLS problem of the forf?0 so as to exploit shift- <@+ — argminﬁ(x7z(j)7n(j))7 (13)

invariant features in the data-model, e.g., deconvolutibn (G41) . G4D) )
blurred images corrupted with non-stationary noise. z’ = argmin L(xV",z,97). (14)
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Thus, at thejth iteration, instead of_{11J-(12), we performdeveloped in[[12, Sec. IV.A-2 — IV.A-6] can be directly aguli

(ignoring constant terms) to (20). For brevity, we concentrate on two particular insts
Gy @ 0 iz of @) and solve[{20) exactly so thaf) = 0 in 9V ;.
xU = argm)&n”z 7= Cx =0, (15) « Analysis ¢;-regularization fn = 1, ®,.(z) = = V r in
) Ne) _ _ :
20T 2 argmin f(z) + ||z — CxUT) — |2 (16) @)
z R

Ut = ) (g0 — cxUTD), (17) U(Rx) =AY k|[Rx],| (22)
where we writex = x* to mean that|x — x*||» < ¢, i.e., _ - =t _
we allow for inexact updates i {(IL9)=(16) in the spirit of [43 with the shlf_t-mv_anant Haar wavelet f[ransform (excll_xgim
Although [I5){I6) is an approximation 1 {11), the follogi the approximation level) forR, which is a sparsity-
theorem adapted froni [43, Theorem 8] R1 guarantees promoting criterion[[12],[[27],[[36],[138]-
convergence of (15J-(17) to a solution 61 (5) (aR®). « Smooth edge-preserving regularizatid £ 1, m = 1,

Theorem 1:ConsiderP1 in (@) wheref is closed, proper, ®, = Pep V 7 in @)]:
conveld and C has full column-rank. Let(©® € RM+E, ;>

R
0, T(Rx) =AY #,Pep(|[Rx],|) (23)

D ) <00, and Y el < 0. (18) r=1

J J using the Fair potentiabep(z) = x/6—log(1+x/0) with
If P1 has a solutionx*,z*), then the sequence of updates ¢ > 0 [30] (also the smoothed Laplace function in[45,
{(x1),2@)}; generated by[{15}-(17) converges (t0*, z*). Eg. 4.11]) and finite-differences fak. This regularizer
If P1 has no solution, then at least one of the sequences €nsures a unique solution R0 as®rp is strictly convex.
{(x9),20)}; or {nV}; diverges. W It has also been successfully applied to PWLS problems
The result of Ecksteiret al. [43, Theorem 8] uses an AL in tomographyl[B].

function with A = I, so we apply[[43, Theorem 8] tb](9) with For these regularizerd, (?0) separates iRtéD minimization
A in (I0) through a simple change of variatfgBor CT, it can problems in terms of the componerits.}_, of v:
be readily ensured thaf has full column-rank for a variety ‘ w ‘
of regularization operatorR. In the sequel, we explain how vt = arg min ¥(v,) + =~ (vr — o?)?, (24)
to perform the minimizations i (15)-(L6). ’

Firstly, we see that due to the structurefgk) andC, (I8) where oY) is the rth component o) £ Rx(+1 4 i),
further dissociates into the following: For (22), the solution ofi{24) is given by the shrinkage fule

(j+1) e . { Jdﬁta(y7u) } (19) [46]
u = argmin H . G+1) )2 s ) . )
u +2 u—Ax nd’ [ U§J+1) = Sign{g(-7)}max (lg(J)| — /\KT’O) ) (25)
(1) . U(v) 7%
v = argmin +£|\v — RxUtD) — @2 (- (20)  For (23), [2#) leads to a quadratic equatiom;r{d5, Eq. 4.13]
2 v ;
that yields
These sub-problems are independent of each other and can
th(e_)refore be solved simultaneously, Whéfa'g)]Q = [¥)2 + G ) G432 + 46109
[e/)12 V j. Sub-problem[{19) is quadratic and has a closed v;’" "’ = sign{o;”’} 5 ; (26)
form solution: W oe )
J J
(G+1) _ -1 G+1) 4 () where¢:”" = |or’| = 6 — Ak /(dpv).
u =D, (Wy + u(ax +137), (21) Having addressed (IL6), we now consided (15) which can be

whereD,, £ (W + ul,). SinceW is diagonal,D,, can be easily solved analytically:

inve_rte_d _exgctly, S0 thatff) =0in @)V j. N < +D* — G;l(AT(u(j) _nslj)) + VRT(V(j) _nsj)))’ 27)
Minimization w.r.t.v (20) corresponds to a denoising prob-

lem that can be solved efficiently and/or exactly for a vgriewherex7+1)* represents the exact solution [6](15) and

of instances of[(3) including TV: This has been elucidated by R

many authors[[12],117]/[36]=[20][ [45], e.g., the techmis G, =C'AC=(ATA+vR'R) (28)

2A convex functiont is closed if and only if it is lower semi-continuous IS Non-singular because > 0 andR is chosen so thal has
(LSC) [44, pp. 51-52] and is proper I(x) < +ooc for at least onex and  fyll column-rank. Although[(27) is an exact analytical dada,

h(x) > —oo V x [44, p. 24]. It can be shown that the convex function . o .
Jdata, ¥ (for a variety of regularizers such as TV adg-regularization), The enormous size di, for CT makes it impossible to store

and their sum#f (B), are LSC and propef [38]. and “invert” G, exactly. So we propose to use the conjugate

3\Writing zo — A%z, o — A3n, andM = A3 C, it is easy to see that gradient (CG) method for{(27) and obtain an approximate
(I5)-(I7) solve the constrained problemng miny,z, f(A*%zo) st.zg =
Mx that is equivalent toP0 using the AL function Lo(x, 2o, 7o) 4An analytical update formula similar td {p5) is availabler fine TV
F(A™220) + §llzo — Mx — 102 with an unweighted penalty term. regularizer that is based on a vector shrinkage-rule, spe[#2, Sec. IV.A-6].
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. L
updatexU+1 "= x(+1* SinceG, is non-singular, we have
that
(4)
() « _Px 29
= Umin{GL/}’ ( )

wherepg) is the corresponding residue aag;,{G,} > 0 is
the minimum eigenvalue o&, that depends only oA and
R and can be precomputed e.g., using stochastic techniq
[47] or the Power methdd. Therefore, using[{29), one can

1. Selectx(®, 4, v > 0 and setj = 0

2. Setu® = Ax©, v =Rx©, andp¥ ="’ =0
Repeat:

3. ObtainxU*1) by applying (P)CG iterations t¢_(R7)
4. Computeu’+1) using [21)

5. ComputevU+1) using [24){(26)
6. n(a+1) — ng) — (uU+D) — Ax(+D)

u

! sng‘H) =) — (vU+D — RxU+D)
8. Setj=j+1

monitor e§(j) in the CG-loop and design a suitable stoppin
rule to satisfy [(IB).

C]Until stop criterion is met

Fig. 1. ADMM for statistical X-ray CT reconstruction.

D. Preconditioning Using Cone Filter [38] for image restoration| [17] for denoising and compesks

~ We see thalG, _co_ntain_sTA, which is “nearly” shift- sensing MRI, and [12]/]39] for parallel MRI reconstruction
invariant, so for shift-invariaftR™ R, G,, is amenable to Pré- |n this paper, Step 3 is the only inexact step of the proposed
cor!ditioning using~suitable cone filtets [6]) [7]. We consted  ApMM. So the computational speed of ADMM is primarily
a circulant matrixG,, from the central column ot : determined by how efficiently({27) is solved, which in turn
is governed byv. We use an empirical rule for selecting
that is based on [17]: Since balancesAT A and R'R in
and used its inverse(3; !, as the preconditioner, wheke G, that have disjoint non-trivial null-spaces, the condition
is a standard basis vector B corresponding to the centernumberx(G,) of G, exhibits a minimum for some,,;,, > 0:
pixel of the image and cifa} represents the construction ofy,,;, = argmin, (G, ). It was suggested in [17] to use this
a circulant matrix from a vectot. The proposed precondi-property to choose AL penalty parameters to ensure quick
tioner G, ! corresponds to a cone-type filter that amplifiesonvergence of the CG-algorithm for solving a linear system
high spatial frequencies and accelerates convergencetbf bsuch as[(27). FoA implemented using the distance-driven
the CG-loop for [[2I7) and the overall ADMM scheme a¢DD) projector [49] andR in (22)-(23), vmin =~ 102, which
demonstrated in Sectidn] V. Implementifg); ' requires only yielded a very smal(\/pv) in (20) and subsequently resulted
one FFT-IFFT per CG iteration and its construdfiarses a in slow convergence of ADMM in our experiments. On the
product withR™ R and only one forward-backward projectiorother extreme, setting = 1 (corresponding to the standard
that can be performed offline &, is independent oW. case ofA = I, ) yields a poorly conditione@s,, that was
In our experiments, we applied at most two preconditionetbt favorable either.
CG (PCG) iterations with warm starting [12] and found that Based on our experience with 2D CT experiments, we found
p,(ﬁ) decreased sufficiently rapidly. Based dn](15)}H(29), wie empirical rulé Vemp = ﬁargminw n((},,o) to yield
present our algorithm in Fid]1 for solvin®1 (and thus good overall convergence speeds for ADMM, whefg is the
PO0). In principle, Steps 4 and 5 of ADMM may be executedirculant matrix in [3D). We also observed that ADMM was
in parallel as they are independent of each other, but in alightly more robust to the choice of thanv. We selected
implementation, we chose to execute all the steps seqligntia, = mediar{w; } to avoid outliers inW; this yielded a well-
for simplicity. conditionedD,, (with x{D,} € [10,40]) that improved the
numerical stability of ADMM.

G, =circ{Gec}, (30)

E. Selection ofx and v

The parameterg andv do not affect the solution d?1, but
only regulate the convergence speed of the proposed ADM

[12], [35, Sec. 4.4]. In general, choosing appropriateeafior  The split-Bregman (SB) method [17] uses constraint vari-
AL penalty parameters (such asandv) is a nontrivial and ables to split the regularization term alone. Fbi (1), this

application-dependent task. Several empirical rules i@en corresponds to using only = Rx which leads to following
put forth by many authors for setting AL penalty parametegguivalent constrained problem

(to obtain good convergence speeds for AL-based iterative . N
reconstruction schemes) in many applications, see &.d}, [3 arg min{ fse(x, v) = Jaaea(y, Ax) + ¥(v)} (31)
(32)

M/. COMPARISON WITH THE SPLIT-BREGMAN APPROACH

5 N ) - s.t.v=Rx.
Since the Power method (PM) iteratively estimates the mamineigen-

value (in absolute magnitude) of a matlix [48, p. 488], am&HE 65 max{G. }
of omax{Gv} is first computed by applying PM ofix,.. Next, applying
PM on K é G, — &n)ax{Gu}IN y|e|d3 ‘6’min{GV} - 6maX{GV}|
(@s omin{Gr} — 6max{G. } is the largest eigenvalue d& in absolute
magnitude) from whichmin{G.} can be easily obtained. 81t would be ideal to considex (G, ) instead of<(G, ) for selectingremp,

5The matrixR' R is circulant when periodic boundary conditions are usegut estimatings(G,) (e.g., using the Power method) for a giverfor CT
for R in 22)-(23). : is computationally expensive (ignoring the fact that itrislépendent oW

"We only store the frequency response corresponding3fp! to save and could be computed offline). But &, is approximately shift-invariant,
memory. k(Gyv) = k(Gv), which leads tavemp.

This type of splitting has been investigated for CT recarcstr
tion in [18], [41]. Applying the Bregman iterations [17, Eq.
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TABLE |
COMPUTATION TIME AND NUMBER OF PROJECTIONS REQUIRED PERTERATION OF ALGORITHMS COMPARED IN SECTION[V]

Algorith Time / lteration (in seconds)| Projection operations / lteration
gorithm Sectiol V-A | Sectiol V-B || Forward A) | Backward A")
NCG-5 1.56 4.85 1 1
NCG-10 - 8.83 1 1

MFISTA-5 2.49 8.87 1 1

MFISTA-25 5.23 - 1 1
0S-4 - 10.19 1 (effective) 1 (effective)
0S-41 - 61.84 1 (effective) 1 (effective)

SB-CG-1 2.29 6.22 1 1

SB-CG-2 3.29 8.93 2 2

SB-PCG-1 2.29 6.25 1 1

SB-PCG-2 3.30 9.07 2 2

ADMM-CG-1 3.29 8.91 1 2
ADMM-CG-2 4.31 11.61 2 3
ADMM-PCG-1 3.32 8.94 1 2
ADMM-PCG-2 4.34 11.70 2 3
3.7-3.8] with alternating minimizatiori [17, Sec. 3.1] {ollj3 V. EXPERIMENTAL RESULTS

yields the following SB schenfe: We present numerical results for 2D CT reconstruction from

2
x0+) = argmin HYH— ‘A(*;)(HW e b (33) simulated NCAT phantom data aimi vivo human head data.
x +§HV - Rx—n{’[3 The proposed ADMM is also applicable, in principle, to 3D
‘ T(v) CT reconstruction (see Sectibn VI-A). We implemented the
vUtD = argmin { 7 G+1)_ )2 ¢ (34) following algorithms in Matlab and conducted the experitsen
+§HV_RX -3 on a quad-core PC with 3.07 GHz Intel Xeon processors and
PIARY n{) — (vUD — RxUTD). (35) 12 GB RAM.

The minimization in [34) is same as that in20), so the *® NCG-n: unpreconditioned nonlinear conjugate gradient
techniques described fdr (20) apply [01(34) as well. The main algorithm withn, line-search iterations that monotonically
difference between the proposed mettad (I5)-(17) and the SB decrease the cost functiohl[6], . .
schemel[33)E(35) is in the wayis updated. The minimization ¢ MFISTA-n: Monotone Fast lIterative ~ Shrinkage-

in (33) leads to Thre_sholdin_g_ Algorithm [16] with n iterz?\ti(_)ns for
_ _ _ solving auxiliary denoising sub-problems similar [o[16,
xUtr = BN ATWy + uRT (v —q@))],  (36) Eq. 3.13],
(G+1)x , o OSn: Ordered subsets algorithinl [5] with blocks,
wherex!’ represents the exact solution fa](36) and « SB-(P)CGn: Split-Bregman scheme from Sectign]IV
B, 2 (ATWA + uR'R). 37) with n (P)CG iterations for solvingﬂB(_S), _
o« ADMM-(P)CG -n: Proposed ADMM withn (P)CG iter-
The matrixB,, contains the shift-variant componeW that ations for solving[(2]7).

makes standard preconditioners (including cone filtersy le \iriSTA is a state-of-the-art method developed by Beck
effective for CG-based solving df (B6). Nevertheless, weduset 5|, [16] for image restoration that is readily applicable to
PCG for [38) with a circulant preconditionerr,* (obtained by - pg with the Lipschitz constank.qa, in @). Becket al. [15]
settingu = v in (30)) in our implementation of the SB schemeyiso proposed a back-tracking strategy that does not eequir
and found that it improved upon the standard CG method f@f(plicit computation ofL4.c., but we chose to estimate and
(38). we 59@“@ p = Laata/ (100 omax {R'RY}) for SB s 1, both for ease of implementation and because it is
(see [(#) for definitions ofLdaa @nd gmax). This choice is  the smallest possible valug [15, Ex. 2.2] that yields theefits
motivated by the discussion pertainingtdn Sectiorllll-E.  convergence for MFISTA. We applied the Chambolle-type
In principle, it is possible to construct a shift-varianepon-  method [50] for the inner-step (i.e., computing the proxima
ditioner for B,, in the spirit of [6], but such a preconditionermap [16: Eq. 3.13]) of MFISTA as that does not require
would invariably be data-dependent and may be computatigpﬁoot'hing of (“corners” ofy;-regularizers such ag (R2).
ally involved. Our approacti {15)-(1L7) provides a simple and gjnce our task is to solVP0, we fixed the cost functiod
effective alternative using an extra constraint variabie ©): (that led to a visually appealing reconstruction) and feeds
Compared to the SB schemle {3B)i(35), our method requitgs ihe convergence speed of the algorithms. We quantified
only an extra trivial operation of inverting a diagonal matr e convergence rate using the normalizedistance between

D, in D). x(@) andx*:
9Theorem[]l may not be applicable to the SB schefé [33)-(35has t . %) — x* ||,
constraint matrix, which is simplR in this case, usually does not have full f(]) =20 1Oglo W ) (38)
column-rank. Convergence of SB-type schemes are studi¢t7in X7l2
10Similar to vy, one could considefyi, = ﬁ arg min,, k(B,,) for
SB, but estimating:(B,) is impractical mainly due to its dependence WA. 1we estimatedLy,;, USing the Power method applied %7 WA.. Since

We chose to use the above rational-form forwhich yields a rough estimate Lg.:» is W-dependent, its use is less appealing for practical apjgitain
of Mmin- CT.
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Fig. 2. Simulation with the NCAT phantom: (a) Noisefree NCAT phant@n cm™'), (b) FBP reconstruction with ramp filter, also the initial
guessx) for all iterative algorithms, (c) FBP reconstruction wittakhing filter, and (d¥:-regularized reconstruction, also the solutioh
to P0. Images in (a)-(d) have been normalized to the same colde fasthat of (a)] indicated beside (d). Theregularized reconstruction
(d) is less noisy and has almost no streaky-artifacts coagptr both FBP results.

wherex* is a solution taP0 obtained numerically by running block, the OS method demands the evaluation of the gradient
one of the above algorithms as described next. Since the @fl-the regularization term that increases computation time
gorithms have different computation load per (outer) tiera  per iteration as indicated in Taklle I. For the SB scheme, we
we evaluated(j) as a function of algorithm run-tirﬂtj, i.e., employ (P)CG for “inverting’B,, (that depends oA WA)
the time elapsed from start until iteratignWe also plot(j) in (38), SoSB-(P)CGn requiresn products withA and AT,
as a function of the iteration index for completeness. We respectively, per iteration of (B3)=(85). In the case of ABIM
used the DD-projectof [49] (with 8 threads) for implemegtinwe apply (P)CG at Step 3 (see [Eig.1) for “invertingr, in
matrix-vector products such a&x, ATu and initialized all (27), but that step also requires a product wAh in the
the algorithms with the image reconstructed using FBP (wiRHS of [27), so overalADMM-(P)CG -n usesn products
the ramp filter) in all experiments. with A andn + 1 products withAT per iteration of Steps 3-7

Products withA and AT (corresponding to forward- andin Fig[l. Table[l summarizes this discussion and also shows
back-projections, respectively) are computation intemsh the mean computation time per iteration (averaged over 10
CT reconstruction problems and dominate the overall compitgrations) of the above algorithms. Although the proposed
tation load of a reconstruction algorittthNCG and MFISTA ADMM(-PCG) requires more forward- and back-projections
both require only one product witA. and A", respectively, per iteration (and accordingly exhibits higher computatio
per iteration. The OS method breaks products wkhand time per iteration) compared to other algorithms (with the
AT in terms of block-rows ofA and block-columns ofA”, exception of the OS method) in Talle |, we demonstrate in
respectively, and cycles through each block once per evéhg sequel that it converges faster in terms of algorithm run
iteration, so effectively, OS also requires only one pradutme.
with A and AT, respectively, per iteration. However, for each ) ) )

A. Simulation with the NCAT Phantom

12We excluded the computation time spent on estimatibg,, for We used al024 x 1024 2D slice of the NCAT phantom

MFISTA in the plots. Even with this “unfair advantage” the MM method [51] and numerically generated 888 x 984-view noisy

was much faster than MFISTA. , sinogram with GE LightSpeed fan-beam geomefry [52] cor-
NCG, MFISTA, OS and SB require the evaluation Af Wy (e.g., see di . With 4o
RHS of [38) for the SB scheme), but this quantity needs to inepced only responding to a monoenergetic source x 10% inci-

once, so we ignore this computation need for these schemes. dent photons per ray and no background events. We used
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Fig. 3. Simulation with the NCAT phantom: (a), (b) Plot 6f;) and RMSEx'?)), respectively, as a function of timg and (c), (d) Plot of
&(y) and RMSEﬁxU)), respectively, with respect to iterations, for variousoalyims considered in this work. The unpreconditioned ieers
of the proposed method, ADMM-CG, converges slightly fastem MFISTA and the split-Bregman scheme SB-(P)CG but iweldhan
NCG as seen in (a) and (b). But the preconditioned versionMIMSPCG, converges rapidly both in terms §f;j) and RMSE indicating
that the cone-filter-preconditione€(;* in Sectior[1I[-B) greatly accelerates convergence of trgppsed ADMM.

the /;-regularization in(22) with x, = w( moeda n), Where (P)CG but slower than NCG. The preconditioned version

W, = VJATW1],,/[AT1],, is based or([26]. We reconstructedA\DMM-PCG is the fastest among all algorithms illustrating
512 x 512 images over a FOV of 65 cm; we obtained by that the cone-filter preconditionds ;! is very effective in
running 5000 iterations d¥IFISTA-25 as it does not require accelerating convergence of CG applied[tol (27) and ADMM-
“corner-rounding” and is therefore guaranteed to convéoge PCG. This is also corroborated by Fig. 3¢ where for a given
a solution of P0. NCG cannot directly handle nonsmootHhiumber of iterations, ADMM-PCG produces a reconstruction
criteria such as(22) without smoothing it [[13, App. A], that is closest tax* in terms of {(j). Figs.[3b,[Bd further
so we used a smoothing value @H~¢ cm~!. The FBP Substantiate the reconstruction speed-up of ADMM-PCG over
reconstructions in Fig&l 2B] 2c corresponding to the rantp apther methods, where (both in terms of algorithm run-timet an
Hanning filters, respectively, are either noisy or blurred a umber of iterations) it rapidly leads to a RMSE-value close
streaked with artifacts. Thé,-regularized reconstructior* t0 RMSEx*).

in Fig.[2d preserves image features and has lower RMSE than

both FBP outputs. B. Experiments with a in vivo Human Head Data-set

We plot £(j) for various algorithms as a function of time In this experiment, we usedia vivo human head data-set
in Fig. Ba. The SB-CG scheme appears to converge thequired with a GE scanner using 120 kVp source potential
slowest, while SB-PCG is faster indicating that the ciratilaand 585 mA tube current with 0.6 s rotation. We reconstructed
preconditioner@;l provides a moderate acceleration of C@& 1024 x 1024 2D slice with 50 cm FOV and 0.625 mm
for (38). MFISTA is slower than most of the algorithms for thehickness from &88 x 984-view sinogram. For in (@), we
reason explained in Sectib Il. The CG-version of the prefdosused the strictly convex regularizdr {23) (with= 10 HU)
method, ADMM-CG, is slightly faster than MFISTA and SB-that guarantees a unique solutiohto P0. As NCG generally
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Fig. 4. Experiment with thein vivo human head data-set: (a) FBP reconstruction with the rartey, fllso the initial guesg® for all
iterative algorithms, (b) RBP reconstruction with Hannfiitgr, and (c) PWLS reconstruction with the strictly conveegularizer[(2B), also
the unique solutiorx™ to P0. Images in (a)-(c) are displayed in Hounsfield units indidabeside (c). The regularized reconstruction (c) is
less noisy and preserves anatomical features comparedhd=B& results.

had faster convergence than MFISTA in our experiments, wedMM[H (in Fig. [I) schemes use the constraint= Rx
obtainedx* by running 5000 iterations oNCG-10. Fig.[4 that requires the storage @fP vectors ¢ andn,) of size
shows the reconstruction results for this experiment. THex 1. For instance, typically, the size of an image-volume
regularized solutionx* in Fig. [dc has reduced noise andn 3D CT is N = 512 x 512 x 512 (~ 1 GB of memory
better preserves the anatomical features compared to tRe Rithen stored in double-precision format in Matlab). Them, fo
reconstructions in Fig$.] 4&] 4b obtained using the ramp afiite-differences withP = 13 (there are 13 nearest-neighbors
Hanning filters, respectively. on one side of any voxel), this corresponds to storing at leas

Figs. [Ba-d plot¢(j) as a function oft; and iteration 26 image-volumes~ 26 GB of memory) that might set a
index j for all algorithms considered in this work. Here, wePractical limitation on these methods from an implemeotati
additionally compare the standard OS algorithm (that is nBerspective.
guaranteed to converge) in Figs. §b, 5d, where we used thé? quick remedy is to consider the TV regularizer with finite-
implementation from 53] available currently for regutaiion differences only along the three orthogonal directiofs<( 3
criteria such as[(23). The OS algorithm is faster than &@prresponds to 6 image-volumes) which considerably resluce
algorithms (including ADMM-PCG) for the first few iteratisn the memory load. Alternatively, one could also considengsi
but it does not converge to the minimizer as expected. @ orthonormal transform (such as orthonormal waElgts
practice, it may be advantageous to run a few iterations of & R, so P = 1 and L = N. The SB and ADMM*
and use its output to initialize a more sophisticated iteeat sSchemes would then require storing only 2 image-volumes
algorithm. Figs[ball5b indicate that the convergence gen@orresponding tov and 7). Moreover, an orthonormaR
for MFISTA, NCG, SB-(P)CG and ADMM-CG are generallysatisfiesR'R = Iy that facilitates ADMM: G, in (28)
similar to those in Figd]3&] 3b. ADMM-PCG again providebecomesG, = (ATA + vIy) that is still “nearly” shift-
notable reconstruction speed-up compared to all algosthninvariant and can be effectively preconditioned usingulant
This substantiates the potential of the cone-filter precondreconditioners. With orthonormal wavelets, one also has t
tioner [30) for the proposed ADMM and also demonstratétion of excluding the approximation coefficients from the

the benefit of our splitting schemiel (5). regularization (as they are not sparse) by using scale depén
regularization parameters [50] and setting those parasiete

corresponding to the approximation level to zero.

VI. DISCUSSION
B. Inclusion of Nonnegativity Constraint

A. Memory Requirements In CT, a nonnegativity constraint is often imposéd [1, Eq.
o ) o o 18], [11, Sec. 2.2] to model the positivity of the attenuatio
Splitting-based algorithms simplify optimization at the-e coefficient that is being reconstructed. Although we have
pense of manipulating and storing auxiliary constraint-var,qt considered such a constraint PO, it can be easily
ables (and corresponding Lagrange multipliers in the Al for
malism) and therefore have additional memory requirementssgor ADMM, we have to additionally store twd? x 1 vectors,u and the
compared to conventional algorithms such as NCG. Althoughsociated multiplien.,. This additional memory requirement is moderate for

this does not pose much concern for 2D reconstruction proti2 CT and can be high for 3D CT depending on the size of the data.
r}5QuaIity-wise, shift-invariant wavelets are preferableotthonormal ones

lems, it can rep.r.esent a significant _memory overhead for ?[54], but due to their over-complete nature, they requignigicantly more
problems. Specifically, the SB (Sectibnl IV) and the propos@@émory (similar to finite differences) than orthonormal wiass.
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Fig. 5. Experiment with then vivo human head data-set: (a), (b) Plotédfi) as a function of time; and (c), (d) Plot of(j) with respect
to iterations, for various algorithms considered in thisrtkvdMFISTA and SB-CG appear to be the slowest. The proposeMMEP)CG
is generally faster than the split-Bregman scheme SB-(Pa€Geen in (a). Although ADMM-CG converges slower than NCGeen in
(b), the preconditioned version ADMM-PCG is the fastest agithe considered algorithms, illustrating the benefit af tone-filter-based
preconditioner G, in Sectior(1[[-E) for the proposed ADMM.

accommodated [38] as follows. We start with would involve the “inversion” ofG,,,, = (ATA+1;RTR+
. A 1 In) and that ofw would require a simple projection onto
argmin {J(X) = Jaata(y, Ax) + U(Rx) + g(x)} » (39)  the positive orthanf[28, Eq. 32]. Sin€®,,,, is also “nearly”
shift-invariant, a cone-filter-type preconditioner siamito G;l
[see [[(3D)] can be used for effective preconditionin 11V2.
Moreover, the abov€ has full column-rank, so this algorithm
also satisfies Theored 1 and is guaranteed to converge to a

solution of [41) and[(39).

whereg is an indicator function

A{o, if x>0,

9(x) = 400, otherwise, (40)

that imposes the nonnegativity constraiat, > 0, taken
component-wise in[(40). We then consider the followin ) . _
equivalent constrained version [38] that has an additional Poisson-Likelihood Model for X-ray CT Reconstruction
constraint compared t§1(5): The proposed strategy of splitting the data-term [i.e., the
R use ofu in (B) and [41)] is also applicable for X-ray CT
argxrl?ivnw{f(u,v,w) = Jaata(y, u) + ¥(v) + g(W)}  reconstruction using the Poisson-likelihood (PL) sttt
Stu— ij v=Rx, w=x. (41) model [5, Eq. 1] that may be more suitable for low-dose
acquisitions. It can be shown that splitting the PL data-
writing z £ [u” v/ w']T, C £ [AT R Iy]" and using term yields separable 1D problems {m;}}/, that can be
A =diag{Iy;, v11g, v2Iy}in (@), we can design an ADMM- solved simultaneously similar td [38, Eq. 30]. However, the
type algorithm similar to[(I5):-(17) for solving_(¥1). It cdme PL model for X-ray CT may preclude exact updates like
shown that the updates far and v in this algorithm will be (@1) for {u;}. Moreover, the general PL modell [5, Eq. 1]
similar to [19) and[(20), respectively, while the updatexof includes background events and can be (“mildly”) nonconvex



so Theoreni]l cannot be directly applied to an ADMM-typ€s]
algorithm developed for this problem. We plan to exploret cos
functions involving the PL model[5, Eq. 1] for transmission[6
tomography reconstruction as part of future extensionito t
work. 1

VIl. SUMMARY AND CONCLUSIONS

Statistical X-ray CT reconstruction using penalized8]
weighted least-squares (PWLS) criteria involve a diagonal
weighting matrix W that poses a hindrance to several opqg
timization methods due to its huge dynamic range and highly
shift-variant nature. In this work, we employed a variableI-lO]
splitting technique that, in addition to separating theureg
larization term like [[17], also dissociates the statidtiC&)
and the systemA) components in the data term to decoupl@l]
and mitigate the effect oW. We applied the method of
multipliers [19] with alternating minimization [21]=[23for [12]
the resulting equivalent constrained problem and develope
an alternating direction method of multipliers (ADMM) al-[13
gorithm that chiefly involves three simple operations atheac
iteration: (i) inverting a diagonal matrix that dependsn
(ii) minimizing a set of 1D auxiliary denoising-cost-fuims
that can be performed efficiently and/or exactly for a varadt
regularizers, and (iii) solving a “nearly” shift-invariainear
system (involving AT A) using FFT-based preconditioning
with cone-type filters([7]. [16]

The proposed ADMM algorithm is guaranteed to con-
verge to a solution of the original PWLS problem under g7
mild condition on the accuracy of operation (iii) above. We
demonstrated using simulations and experiments withireal[18
vivo human data that cone-filter-type preconditioners are very
effective for solving the linear system in (iii) and that the
preconditioned version of the proposed ADMM converg §9]
faster than conventional (NCG and ordered subsets) aret stat
of-the-art (MFISTA and split-Bregman) algorithms for CT[20]
The proposed ADMM can handle a variety of regularizatio&l]
criteria for 2D CT reconstruction and is also applicable to
3D CT reconstruction, perhaps by using certain memor?/-
conserving regularizers. 22]

[14]

[15]
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