
TO APPEAR IN IEEE TRANSACTIONS ON MEDICAL IMAGING; MANUSCRIPT UPDATED ON DECEMBER 11, 2011 1
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Abstract—Statistical image reconstruction using penalized
weighted least-squares (PWLS) criteria can improve image-
quality in X-ray CT. However, the huge dynamic range of the
statistical weights leads to a highly shift-variant inverse problem
making it difficult to precondition and accelerate existingiterative
algorithms that attack the statistical model directly. We propose
to alleviate the problem by using a variable-splitting scheme that
separates the shift-variant and (“nearly”) invariant components
of the statistical data model and also decouples the regularization
term. This leads to an equivalent constrained problem that
we tackle using the classical method-of-multipliers framework
with alternating minimization. The specific form of our spli tting
yields an alternating direction method of multipliers (ADM M)
algorithm with an inner-step involving a “nearly” shift-in variant
linear system that is suitable for FFT-based preconditioning using
cone-type filters. The proposed method can efficiently handle
a variety of convex regularization criteria including smooth
edge-preserving regularizers and nonsmooth sparsity-promoting
ones based on theℓ1-norm and total variation. Numerical
experiments with synthetic and realin vivo human data illustrate
that cone-filter preconditioners accelerate the proposed ADMM
resulting in fast convergence of ADMM compared to conventional
(nonlinear conjugate gradient, ordered subsets) and state-of-the-
art (MFISTA, split-Bregman) algorithms that are applicabl e for
CT.

Index Terms—Statistical Image Reconstruction, Regulariza-
tion, Iterative Algorithm, Method of Multipliers, Alterna ting
Minimization

I. I NTRODUCTION

STATISTICAL image reconstruction methods in X-ray CT
minimize a cost function consisting of a data-fidelity

term that accommodates the measurement statistics and the
geometry of the data-acquisition process, and a regularization
term that reduces noise. For example, PWLS cost functions
for X-ray CT use a (statistically) weighted quadratic data-
fidelity term [1], [2] and can provide improved image-quality
compared to filtered back-projection (FBP) [1], [2]. How-
ever, computation-intensive iterative methods are neededto
minimize such cost functions. This paper describes a new
minimization algorithm that uses variable splitting to provide
accelerated convergence.

Several types of iterative algorithms have been proposed
for statistical image reconstruction in X-ray CT, including
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iterative coordinate descent (ICD) methods [1], block-based
coordinate descent [3], ordered subsets (OS) algorithms based
on separable quadratic surrogates (SQS) [4], [5] and (precon-
ditioned) nonlinear conjugate gradient (NCG) methods [6].
For fast computation on multiprocessor computers, (P)NCG-
type methods appear to be particularly amenable to efficient
parallelization because they update all voxels simultaneously
using all measurements.

Developing suitable preconditioners for (P)NCG is chal-
lenging for X-ray CT because the enormous dynamic range of
the transmission data causes the Hessian of the statisticaldata-
fidelity term to be highly shift-variant [6]. Clinthorneet al.
[7] showed that for unweighted least-squares reconstruction,
one can precondition the problem effectively using FFTs with
a kind of cone filter. This cone filter amplifies high spatial
frequencies, helping to accelerate convergence. But that cone
filter is ineffective for (P)NCG in the PWLS case [6]. Delaney
et al. [8] considered a very special type of shift-invariant
weighting and also demonstrated accelerated convergence,but
for low-dose X-ray CT the appropriate statistical weighting
does not satisfy the assumptions in [8]. Shift-variant pre-
conditioners based on multiple FFTs were proposed in [6]
for 2D transmission tomography, but never became popular
due to their complexity and were never investigated for 3D
problems. Another way to introduce a cone filter is the iterative
FBP approach [9], [10]. Initially these algorithms “converge”
rapidly compared to (P)NCG methods, but typically they
do not have any theoretical convergence properties and “too
many” iterations lead to undesirably noisy images. Further-
more, it is unclear how to include regularization while ensuring
convergence.

The challenges described above apply regardless of the form
of the regularizer. Additional difficulties arise when one uses
nonsmooth regularizers such as total variation (TV) [11] and
sparsity-promoting ones based on theℓ1-norm [12]. These
regularizers are not differentiable everywhere precluding op-
timization by conventional gradient-descent methods (e.g.,
NCG). Differentiable approximations (e.g., using “corner-
rounding” [12, Sec. VI.A], [13, App. A]) can be employed,
but even with such modifications the Hessian of the regularizer
can have very high curvature leading to slow convergence of
conventional gradient-descent methods [14]. While some state-
of-the-art algorithms such as (M)FISTA [15], [16] and split-
Bregman-type schemes (that split only the regularization term)
[17], [18] are able to handle nonsmooth regularizers exactly
(i.e., without corner rounding), when applied to X-ray CT,
they must minimize a cost function that involves the original
statistical data-fidelity term and are in turn hindered by the
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shift-variance of its Hessian (see Sections II-B, IV).
In this work, we propose to use a variable-splitting tech-

nique that not only decouples the regularization term in
the spirit of [17], but also dissociates the statistical and
geometrical components in the data-fidelity term. This forms
the key feature of our approach that enables us to “isolate”
the shift-variant element in the statistical data-fidelityterm
thereby alleviating the problem. Our splitting procedure uses
auxiliary constraint variables to transform the original PWLS
problem into an equivalent constrained optimization task that
we solve using the classical method-of-multipliers [19], [20]
and alternating direction optimization [21]–[23] frameworks.
This leads to an alternating direction method of multipliers
(ADMM) algorithm for solving the original PWLS problem
that, apart from requiring simple operations (such as inverting
a diagonal matrix, solving 1D denoising problems), involves
the solving of a “nearly” shift-invariant linear system, which
is amenable to FFT-based preconditioning using cone-type
filters [7]. Experimental results with synthetic and realin vivo
human data indicate that the proposed ADMM converges faster
than conventional (NCG and ordered subsets) and state-of-
the-art (MFISTA and split-Bregman) methods, illustratingthe
efficacy of our splitting scheme and the potential of cone-filter
preconditioners for accelerating the proposed ADMM. The
proposed ADMM can also be used with a variety of convex
regularization criteria (see Section VI-A) including smooth
edge-preserving regularizers and nonsmooth ones such as TV
andℓ1-regularization.

The paper is organized as follows. In Section II, we mathe-
matically formulate X-ray CT reconstruction as a PWLS prob-
lem and briefly discuss drawbacks of some existing algorithms
for X-ray CT. Section III discusses the proposed splitting
strategy and the development of the ADMM algorithm in
detail. In Section IV, we compare our ADMM algorithm with
the split-Bregman technique applied for CT, schematically.
Section V is dedicated to numerical experiments and results,
while Section VI discusses possible extensions of this work
to 3D CT and other statistical models. Finally, we draw our
conclusions in Section VII.

II. STATISTICAL X-RAY CT RECONSTRUCTION

A. Problem Formulation

For CT, an accurate statistical model for the data is quite
complicated [24], [25] and is often replaced by a Gaussian
approximation [1], [2] with a suitable diagonal weighting
termW whose components{wi} are inversely proportional to
the measurement variances [1], [2]. We consider a penalized
weighted least-squares (PWLS) formulation of statisticalCT
reconstruction [1]:

P0 : argmin
x

{

J(x)
△

= Jdata(y,Ax) + Ψ(Rx)
}

, (1)

Jdata(y,Ax)
△

=
1

2
‖y −Ax‖2W, (2)

wherey is theM × 1 data vector (log of transmission data),
A is theM × N system matrix,Ax represents the forward
projection operation (e.g., line integrals),W = diag{wi} is a

M ×M diagonal matrix consisting of statistical weights,1 and
‖u‖2

W

△

= u⊤Wu. We use a general family of regularizers of
the form [12]

Ψ(Rx) = λ
∑

r

κrΦr

(

P
∑

p=1

|[Rp x]r|m
)

, (3)

where λ > 0 is the regularization parameter,κr > 0 ∀r
are user-provided weights that govern the spatial resolution in
the reconstructed output [26],Φr are potential functions, the
R×N matrix R

△

= [R1
⊤ · · ·RP

⊤]⊤ constitutes regularization
operatorsRp (e.g., finite differences, frames, etc) of size
L×N , whereR = PL. We concentrate on values ofm and
instances ofΦ that result in a convex regularizerΨ in (3).

The above general regularizer is in the “analysis” form [27],
i.e.,Ψ is specified as a function of the reconstructed imagex.
The method proposed in this paper can also be easily extended
to handle “synthesis” forms [27], e.g., by writingx = Sθθθ
and consideringJ(θθθ) = Jdata(y,ASθθθ) + Φ(θθθ) in P0, for
some potential functionΦ and synthesis operatorS. We focus
on the analysis form (3) as it includes popular nonsmooth
criteria such as TV (forΦr(x) =

√
x andm = 2), analysis

ℓ1-wavelets (forΦr(x) = x, m = 1) and a variety of smooth
convex edge-preserving regularizers (e.g., Huber [28], [29],
Fair [6], [30] etc).

B. Previous Approaches

Conventional gradient-descent methods, e.g., NCG, forP0

depend on the Hessian ofJdata: Hdata = A⊤WA, which
is highly shift-variant in CT particularly due to the large
dynamic range ofW. As a result, it becomes difficult to
precondition and accelerate such methods [6]. Fessleret al. [6]
directly attackedP0 using NCG and proposed a shift-variant
preconditioner to tackleHdata. But their preconditioner is
data-dependent and requires at least one pair of FFT-iFFT
operations per NCG-iteration.

Iterative shrinkage-thresholding (IST) [31] and its variants
((M)FISTA [15], [16], and (M)TWIST [32]) that are ap-
plicable to P0 depend on the Lipschitz constantLdata of
Jdata(y,Ax):

Ldata = σmax{A⊤WA}, (4)

whereσmax represents the maximum eigenvalue. The conver-
gence speed of these algorithms is primarily determined by
(4): A large value ofLdata results in small gradient steps
[15, Sec. 1.1] leading to slow convergence. SinceW has
a large dynamic range and due to the (approximately)1/r-
type decay of the elements ofA⊤A, Ldata can be large
for CT decreasing convergence speed of IST-type algorithms.
Optimization transfer-based methods (e.g., [33, Sec. IV-B.1])
face a similar issue in that the surrogate functions end up
having high curvature [5] due toW, which again leads to
small update-steps and slow convergence.

In summary, the weighting termW, although crucial for
improving reconstruction quality, poses a challenge for op-
timization. Compared toA⊤WA, the termA⊤A is “more”

1 For simplicity we usedwi = e−yi in our experiments.
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shift-invariant and is appropriate for preconditioning using
cone filters. This property has been used to accelerate un-
weighted least-squares reconstruction for tomographic image
reconstruction [7]. Therefore, our idea to mitigate the shift-
variance ofHdata is to untangleW from Hdata thereby mak-
ing the resulting problem “more” shift-invariant and suitable
to circulant preconditioning. To do so, we adopt a variable-
splitting strategy.

Variable splitting (VS) refers to the process of introducing
auxiliary constraint variables to separate coupled components
in the cost function [12], [17], [18], [34]–[42]. This procedure
transforms the original minimization problem into an equiva-
lent constrained optimization problem that can be effectively
solved using classical constrained optimization schemes [19],
[20]. The VS approach is appealing as it renders the result-
ing constrained problem tractable to alternating minimization
schemes that decouple it in terms of the auxiliary variables
and simplify optimization [12], [17], [18], [34], [36], [37],
[39]–[42].

The VS approach has become popular recently for solving
reconstruction problems in image processing [17], [34]–[37],
MRI [12], [39], [40] and CT [18], [41], [42]. Many authors
have focussed on splitting the regularization term [17], [18],
[34], [37], [39]–[41] as it is hard to tackle in inverse problems
(especially nonsmooth ones such as TV andℓ1-regularization).
Splitting the regularization term enables one to handle it
exactly (i.e., without the need for “corner-rounding” [12,
Sec. VI.A], [13, App. A] for nonsmooth criteria) via simple
denoising problems [12], [17], [37], [42]. However, in PWLS
problems for CT, the data-term adds to the complexity (as it
leads to a shift-variant hessianHdata) and therefore demands
attention. So in this work, besides splitting the regularization
term, we also split the data-term.

III. PROPOSEDMETHOD

A. Equivalent Constrained Optimization Problem

We introduce auxiliary constraint variablesu ∈ R
M and

v ∈ R
R and writeP0 as the following equivalent constrained

problem:

arg min
x,u,v

{f(u,v) △

= Jdata(y,u) + Ψ(v)}
s.t.u = Ax, v = Rx, (5)

where u separates the effect ofW on Ax and v splits
the regularization term as in [17]. Afonsoet al. [36] and
Figueiredoet al. [38] have utilized data-term-splitting in the
context of image restoration [36], [38] and reconstructionfrom
partial Fourier observations [36]. However, our emphasis here
is on CT reconstruction whereu plays an important role:
It leads to a sub-problem that is “nearly” shift-invariant and
suitable to preconditioning using cone filters [42] as explained
in Section III-C.

In general, the proposed splitting strategy (5) can be applied
to any PWLS problem of the formP0 so as to exploit shift-
invariant features in the data-model, e.g., deconvolutionof
blurred images corrupted with non-stationary noise.

Before proceeding, we rewrite (5) concisely as

P1 : argmin
x,z

f(z) s.t. z = Cx, (6)

where

z
△

=

[

u

v

]

, C
△

=

[

A

R

]

. (7)

SinceP1 is equivalent toP0, solving P1 for x yields the
desired reconstruction in (1).

B. Method of Multipliers

To solveP1, we use the classical framework of the method
of multipliers [19], [20] and construct an augmented La-
grangian (AL) function [12], [19], [20], [42]

L(x, z, γγγ) △

= f(z) + γγγ⊤(z−Cx) +
µ

2
‖z−Cx‖2ΛΛΛ (8)

that combines a multiplier termγγγ⊤(z − Cx) with Lagrange
multiplier γγγ

△

= [γγγu
⊤ γγγv

⊤]⊤ ∈ R
M+R and a quadratic penalty

term µ
2 ‖z−Cx‖2ΛΛΛ, whereµ > 0 is the AL penalty parameter

andΛΛΛ ≻ 0 is a symmetric weighting matrix. The multiplier
term can be absorbed into the penalty term in (8) (by com-
pleting the square) for ease of manipulation leading to

L(x, z, ηηη) △

= f(z) +
µ

2
‖z−Cx− ηηη‖2ΛΛΛ + cηηη, (9)

whereηηη
△

= [ηηηu
⊤ ηηηv

⊤]⊤ = − 1
µ
ΛΛΛ−1γγγ and cηηη

△

= −µ
2 ‖ηηη‖2ΛΛΛ is a

constant independent ofx and z.Unlike standard approaches
[36], [38] that setΛΛΛ = IM+R, we propose to use

ΛΛΛ =

[

IM 0

0 νIR

]

, (10)

whereν > 0. This is crucial in CT because the elements of
A andR can differ by several orders of magnitude and it is
imperative to balance them to avoid numerical instabilities in
the resulting algorithm and to achieve faster convergence [42].

The classical AL scheme for solvingP1 alternates between
a joint-minimization step and an update step [12, Sec. III]:

(x(j+1), z(j+1)) = argmin
x,z

L(x, z, ηηη(j)), (11)

ηηη(j+1) = ηηη(j) − (z(j+1) −Cx(j+1)), (12)

respectively. Unlike pure penalty methods, remarkably, the
AL formalism does not require increasingµ → ∞ to ensure
convergence of (11)-(12) to a solution ofP1 [19].

C. Alternating Direction Minimization

It is numerically appealing to replace the more difficult
joint-minimization step (11) by alternating direction optimiza-
tion that decouples (11) as [21]–[23]

x(j+1) = argmin
x

L(x, z(j) , ηηη(j)), (13)

z(j+1) = argmin
z

L(x(j+1), z, ηηη(j)). (14)
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Thus, at thejth iteration, instead of (11)-(12), we perform
(ignoring constant terms)

x(j+1) ǫ(j)
x= argmin

x
‖z(j) −Cx− ηηη(j)‖2ΛΛΛ, (15)

z(j+1) ǫ(j)
z= argmin

z
f(z) + ‖z−Cx(j+1) − ηηη(j)‖2ΛΛΛ, (16)

η
(j+1) = η

(j) − (z(j+1) −Cx(j+1)), (17)

where we writex
ǫ
= x⋆ to mean that‖x − x⋆‖2 ≤ ǫ, i.e.,

we allow for inexact updates in (15)-(16) in the spirit of [43].
Although (15)-(16) is an approximation to (11), the following
theorem adapted from [43, Theorem 8] toP1 guarantees
convergence of (15)-(17) to a solution of (5) (andP0).

Theorem 1:ConsiderP1 in (6) wheref is closed, proper,
convex2 andC has full column-rank. Letηηη(0) ∈ R

M+R, µ >
0,

∑

j

ǫ(j)x < ∞, and
∑

j

ǫ(j)z < ∞. (18)

If P1 has a solution(x⋆, z⋆), then the sequence of updates
{(x(j), z(j))}j generated by (15)-(17) converges to(x⋆, z⋆).
If P1 has no solution, then at least one of the sequences
{(x(j), z(j))}j or {η(j)}j diverges. �

The result of Ecksteinet al. [43, Theorem 8] uses an AL
function withΛΛΛ = I, so we apply [43, Theorem 8] to (9) with
ΛΛΛ in (10) through a simple change of variables.3 For CT, it can
be readily ensured thatC has full column-rank for a variety
of regularization operatorsR. In the sequel, we explain how
to perform the minimizations in (15)-(16).

Firstly, we see that due to the structure off(z) andC, (16)
further dissociates into the following:

u(j+1) ǫ(j)
u= argmin

u

{

Jdata(y,u)

+
µ

2
‖u−Ax(j+1) − ηηη(j)

u
‖22

}

, (19)

v(j+1) ǫ(j)
v= argmin

v

{

Ψ(v)

+
µν

2
‖v −Rx(j+1) − ηηη(j)

v
‖22

}

. (20)

These sub-problems are independent of each other and can
therefore be solved simultaneously, where[ǫ

(j)
z ]2 = [ǫ

(j)
u ]2 +

[ǫ
(j)
v ]2 ∀ j. Sub-problem (19) is quadratic and has a closed

form solution:

u(j+1) = D−1
µ (Wy + µ(Ax(j+1) + ηηη(j)

u
)), (21)

whereDµ
△

= (W + µIM ). SinceW is diagonal,Dµ can be
inverted exactly, so thatǫ(j)u = 0 in (19) ∀ j.

Minimization w.r.t.v (20) corresponds to a denoising prob-
lem that can be solved efficiently and/or exactly for a variety
of instances of (3) including TV: This has been elucidated by
many authors [12], [17], [36]–[40], [45], e.g., the techniques

2A convex functionh is closed if and only if it is lower semi-continuous
(LSC) [44, pp. 51-52] and is proper ifh(x) < +∞ for at least onex and
h(x) > −∞ ∀ x [44, p. 24]. It can be shown that the convex functions
Jdata, Ψ (for a variety of regularizers such as TV andℓ1-regularization),
and their sum,f (5), are LSC and proper [38].

3Writing z0 = ΛΛΛ
1
2 z, ηηη0 = ΛΛΛ

1
2 ηηη, andM = ΛΛΛ

1
2 C, it is easy to see that

(15)-(17) solve the constrained problemargminx,z0 f(ΛΛΛ−
1
2 z0) s.t. z0 =

Mx that is equivalent toP0 using the AL functionL0(x, z0, ηηη0) =

f(ΛΛΛ−
1
2 z0) +

µ

2
‖z0 −Mx− ηηη0‖22 with an unweighted penalty term.

developed in [12, Sec. IV.A-2 – IV.A-6] can be directly applied
to (20). For brevity, we concentrate on two particular instances
of (3) and solve (20) exactly so thatǫ(j)v = 0 in (20) ∀ j.

• Analysis ℓ1-regularization [m = 1, Φr(x) = x ∀ r in
(3)]:

Ψ(Rx) = λ

R
∑

r=1

κr|[Rx]r| (22)

with the shift-invariant Haar wavelet transform (excluding
the approximation level) forR, which is a sparsity-
promoting criterion [12], [27], [36], [38].

• Smooth edge-preserving regularization [P = 1, m = 1,
Φr = ΦFP ∀ r in (3)]:

Ψ(Rx) = λ

R
∑

r=1

κrΦFP(|[Rx]r|) (23)

using the Fair potentialΦFP(x) = x/δ−log(1+x/δ) with
δ > 0 [30] (also the smoothed Laplace function in [45,
Eq. 4.11]) and finite-differences forR. This regularizer
ensures a unique solution toP0 asΦFP is strictly convex.
It has also been successfully applied to PWLS problems
in tomography [6].

For these regularizers, (20) separates intoR 1D minimization
problems in terms of the components{vr}Rr=1 of v:

v(j+1)
r = argmin

vr
Ψ(vr) +

µν

2
(vr − ̺(j)r )2, (24)

where̺(j)r is the rth component of̺̺̺ (j) △

= Rx(j+1) + ηηη
(j)
v .

For (22), the solution of (24) is given by the shrinkage rule4

[46]

v(j+1)
r = sign{̺(j)}max

(

|̺(j)| − λκr

µν
, 0

)

. (25)

For (23), (24) leads to a quadratic equation invr [45, Eq. 4.13]
that yields

v(j+1)
r = sign{̺(j)r }

ζ
(j)
r +

√

(ζ
(j)
r )2 + 4δ|̺(j)r |
2

, (26)

whereζ(j)r
△

= |̺(j)r | − δ − λκr/(δµν).
Having addressed (16), we now consider (15) which can be

easily solved analytically:

x(j+1)⋆ = G−1
ν (A⊤(u(j) − ηηη(j)

u
) + νR⊤(v(j) − ηηη(j)

v
)), (27)

wherex(j+1)⋆ represents the exact solution to (15) and

Gν
△

= C⊤ΛΛΛC = (A⊤A+ νR⊤R) (28)

is non-singular becauseΛΛΛ ≻ 0 andR is chosen so thatC has
full column-rank. Although (27) is an exact analytical solution,
the enormous size ofGν for CT makes it impossible to store
and “invert” Gν exactly. So we propose to use the conjugate
gradient (CG) method for (27) and obtain an approximate

4An analytical update formula similar to (25) is available for the TV
regularizer that is based on a vector shrinkage-rule, see e.g., [12, Sec. IV.A-6].
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updatex(j+1) ǫ(j)
x= x(j+1)⋆. SinceGν is non-singular, we have

that

ǫ(j)
x

≤ ρ
(j)
x

σmin{Gν}
, (29)

whereρ(j)x is the corresponding residue andσmin{Gν} > 0 is
the minimum eigenvalue ofGν that depends only onA and
R and can be precomputed e.g., using stochastic techniques
[47] or the Power method.5 Therefore, using (29), one can
monitor ǫ(j)x in the CG-loop and design a suitable stopping
rule to satisfy (18).

D. Preconditioning Using Cone Filter

We see thatGν containsA⊤A, which is “nearly” shift-
invariant, so for shift-invariant6 R⊤R, Gν is amenable to pre-
conditioning using suitable cone filters [6], [7]. We constructed
a circulant matrixG̃ν from the central column ofGν :

G̃ν = circ{Gνec}, (30)

and used its inverse,̃G−1
ν , as the preconditioner, whereec

is a standard basis vector ofRN corresponding to the center
pixel of the image and circ{ααα} represents the construction of
a circulant matrix from a vectorααα. The proposed precondi-
tioner G̃−1

ν corresponds to a cone-type filter that amplifies
high spatial frequencies and accelerates convergence of both
the CG-loop for (27) and the overall ADMM scheme as
demonstrated in Section V. Implementing̃G−1

ν requires only
one FFT-iFFT per CG iteration and its construction7 uses a
product withR⊤R and only one forward-backward projection
that can be performed offline as̃Gν is independent ofW.
In our experiments, we applied at most two preconditioned
CG (PCG) iterations with warm starting [12] and found that
ρ
(j)
x decreased sufficiently rapidly. Based on (15)-(29), we

present our algorithm in Fig. 1 for solvingP1 (and thus
P0). In principle, Steps 4 and 5 of ADMM may be executed
in parallel as they are independent of each other, but in our
implementation, we chose to execute all the steps sequentially
for simplicity.

E. Selection ofµ and ν

The parametersµ andν do not affect the solution ofP1, but
only regulate the convergence speed of the proposed ADMM
[12], [35, Sec. 4.4]. In general, choosing appropriate values for
AL penalty parameters (such asµ andν) is a nontrivial and
application-dependent task. Several empirical rules havebeen
put forth by many authors for setting AL penalty parameters
(to obtain good convergence speeds for AL-based iterative
reconstruction schemes) in many applications, see e.g., [37],

5Since the Power method (PM) iteratively estimates the maximum eigen-
value (in absolute magnitude) of a matrix [48, p. 488], an estimateσ̂max{Gν}
of σmax{Gν} is first computed by applying PM onGν . Next, applying
PM on K

△

= Gν − σ̂max{Gν}IN yields |σ̂min{Gν} − σ̂max{Gν}|
(as σmin{Gν} − σ̂max{Gν} is the largest eigenvalue ofK in absolute
magnitude) from whicĥσmin{Gν} can be easily obtained.

6The matrixR⊤R is circulant when periodic boundary conditions are used
for R in (22)-(23).

7We only store the frequency response corresponding toG̃−1
ν to save

memory.

1. Selectx(0), µ, ν > 0 and setj = 0
2. Setu(0)=Ax(0), v(0)=Rx(0), andηηη(0)u =ηηη

(0)
v =0

Repeat:
3. Obtainx(j+1) by applying (P)CG iterations to (27)
4. Computeu(j+1) using (21)
5. Computev(j+1) using (24)-(26)
6. ηηη(j+1)

u = ηηη
(j)
u − (u(j+1) −Ax(j+1))

7. ηηη(j+1)
v = ηηη

(j)
v − (v(j+1) −Rx(j+1))

8. Setj = j + 1
Until stop criterion is met

Fig. 1. ADMM for statistical X-ray CT reconstruction.

[38] for image restoration, [17] for denoising and compressed-
sensing MRI, and [12], [39] for parallel MRI reconstruction.

In this paper, Step 3 is the only inexact step of the proposed
ADMM. So the computational speed of ADMM is primarily
determined by how efficiently (27) is solved, which in turn
is governed byν. We use an empirical rule for selectingν
that is based on [17]: Sinceν balancesA⊤A and R⊤R in
Gν that have disjoint non-trivial null-spaces, the condition
numberκ(Gν) of Gν exhibits a minimum for someνmin > 0:
νmin = argminν κ(Gν). It was suggested in [17] to use this
property to choose AL penalty parameters to ensure quick
convergence of the CG-algorithm for solving a linear system
such as (27). ForA implemented using the distance-driven
(DD) projector [49] andR in (22)-(23),νmin ≈ 105, which
yielded a very small(λ/µν) in (20) and subsequently resulted
in slow convergence of ADMM in our experiments. On the
other extreme, settingν = 1 (corresponding to the standard
case ofΛΛΛ = IM+R) yields a poorly conditionedGν that was
not favorable either.

Based on our experience with 2D CT experiments, we found
the empirical rule8 νemp = 1

100 argminν0 κ(G̃ν0) to yield
good overall convergence speeds for ADMM, whereG̃ν is the
circulant matrix in (30). We also observed that ADMM was
slightly more robust to the choice ofµ than ν. We selected
µ = median{wi} to avoid outliers inW; this yielded a well-
conditionedDµ (with κ{Dµ} ∈ [10, 40]) that improved the
numerical stability of ADMM.

IV. COMPARISON WITH THESPLIT-BREGMAN APPROACH

The split-Bregman (SB) method [17] uses constraint vari-
ables to split the regularization term alone. For (1), this
corresponds to using onlyv = Rx which leads to following
equivalent constrained problem

argmin
x,v

{fSB(x,v)
△

= Jdata(y,Ax) + Ψ(v)} (31)

s.t. v = Rx. (32)

This type of splitting has been investigated for CT reconstruc-
tion in [18], [41]. Applying the Bregman iterations [17, Eq.

8It would be ideal to considerκ(Gν) instead ofκ(G̃ν) for selectingνemp,
but estimatingκ(Gν) (e.g., using the Power method) for a givenν for CT
is computationally expensive (ignoring the fact that it is independent ofW
and could be computed offline). But asGν is approximately shift-invariant,
κ(G̃ν) ≈ κ(Gν), which leads toνemp.
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TABLE I
COMPUTATION T IME AND NUMBER OF PROJECTIONS REQUIRED PERITERATION OF ALGORITHMS COMPARED IN SECTION V

Algorithm
Time / Iteration (in seconds) Projection operations / Iteration
Section V-A Section V-B Forward (A) Backward (A⊤)

NCG-5 1.56 4.85 1 1
NCG-10 - 8.83 1 1

MFISTA-5 2.49 8.87 1 1
MFISTA-25 5.23 - 1 1

OS-4 - 10.19 1 (effective) 1 (effective)
OS-41 - 61.84 1 (effective) 1 (effective)

SB-CG-1 2.29 6.22 1 1
SB-CG-2 3.29 8.93 2 2

SB-PCG-1 2.29 6.25 1 1
SB-PCG-2 3.30 9.07 2 2

ADMM-CG-1 3.29 8.91 1 2
ADMM-CG-2 4.31 11.61 2 3

ADMM-PCG-1 3.32 8.94 1 2
ADMM-PCG-2 4.34 11.70 2 3

3.7-3.8] with alternating minimization [17, Sec. 3.1] to (31)
yields the following SB scheme:9

x(j+1) = argmin
x

{

‖y−Ax‖2W
+
µ

2
‖v(j) −Rx− ηηη(j)v ‖22

}

, (33)

v(j+1) = argmin
v

{

Ψ(v)

+
µ

2
‖v−Rx(j+1)−ηηη(j)

v
‖22

}

, (34)

ηηη(j+1)
v

= ηηη(j)
v

− (v(j+1) −Rx(j+1)). (35)

The minimization in (34) is same as that in (20), so the
techniques described for (20) apply to (34) as well. The main
difference between the proposed method (15)-(17) and the SB
scheme (33)-(35) is in the wayx is updated. The minimization
in (33) leads to

x(j+1)⋆ = B−1
µ [A⊤Wy+ µR⊤(v(j) − ηηη(j)

v
)], (36)

wherex(j+1)⋆ represents the exact solution to (36) and

Bµ
△

= (A⊤WA+ µR⊤R). (37)

The matrixBµ contains the shift-variant componentW that
makes standard preconditioners (including cone filters) less
effective for CG-based solving of (36). Nevertheless, we used
PCG for (36) with a circulant preconditionerG̃−1

µ (obtained by
settingµ ≡ ν in (30)) in our implementation of the SB scheme
and found that it improved upon the standard CG method for
(36). We selected10 µ = Ldata/(100 σmax{R⊤R}) for SB11

(see (4) for definitions ofLdata and σmax). This choice is
motivated by the discussion pertaining toν in Section III-E.

In principle, it is possible to construct a shift-variant precon-
ditioner forBµ in the spirit of [6], but such a preconditioner
would invariably be data-dependent and may be computation-
ally involved. Our approach (15)-(17) provides a simple and
effective alternative using an extra constraint variableu in (5):
Compared to the SB scheme (33)-(35), our method requires
only an extra trivial operation of inverting a diagonal matrix
Dµ in (21).

9Theorem 1 may not be applicable to the SB scheme (33)-(35) as the
constraint matrix, which is simplyR in this case, usually does not have full
column-rank. Convergence of SB-type schemes are studied in[17].

10Similar to νmin, one could considerµmin = 1
100

argminµ κ(Bµ) for
SB, but estimatingκ(Bµ) is impractical mainly due to its dependence onW.
We chose to use the above rational-form forµ, which yields a rough estimate
of µmin.

V. EXPERIMENTAL RESULTS

We present numerical results for 2D CT reconstruction from
simulated NCAT phantom data andin vivo human head data.
The proposed ADMM is also applicable, in principle, to 3D
CT reconstruction (see Section VI-A). We implemented the
following algorithms in Matlab and conducted the experiments
on a quad-core PC with 3.07 GHz Intel Xeon processors and
12 GB RAM.

• NCG-n: unpreconditioned nonlinear conjugate gradient
algorithm withn line-search iterations that monotonically
decrease the cost functionJ [6],

• MFISTA -n: Monotone Fast Iterative Shrinkage-
Thresholding Algorithm [16] with n iterations for
solving auxiliary denoising sub-problems similar to [16,
Eq. 3.13],

• OS-n: Ordered subsets algorithm [5] withn blocks,
• SB-(P)CG-n: Split-Bregman scheme from Section IV

with n (P)CG iterations for solving (36),
• ADMM-(P)CG -n: Proposed ADMM withn (P)CG iter-

ations for solving (27).

MFISTA is a state-of-the-art method developed by Beck
et al. [16] for image restoration that is readily applicable to
P0 with the Lipschitz constantLdata in (4). Becket al. [15]
also proposed a back-tracking strategy that does not require
explicit computation ofLdata, but we chose to estimate and
use11 Ldata both for ease of implementation and because it is
the smallest possible value [15, Ex. 2.2] that yields the fastest
convergence for MFISTA. We applied the Chambolle-type
method [50] for the inner-step (i.e., computing the proximal
map [16, Eq. 3.13]) of MFISTA as that does not require
smoothing of (“corners” of)ℓ1-regularizers such as (22).

Since our task is to solveP0, we fixed the cost functionJ
(that led to a visually appealing reconstruction) and focussed
on the convergence speed of the algorithms. We quantified
the convergence rate using the normalizedℓ2-distance between
x(j) andx⋆:

ξ(j) = 20 log10

(‖x(j) − x⋆‖2
‖x⋆‖2

)

, (38)

11We estimatedLdata using the Power method applied toA⊤WA. Since
Ldata is W-dependent, its use is less appealing for practical applications in
CT.
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Fig. 2. Simulation with the NCAT phantom: (a) Noisefree NCAT phantom (in cm−1), (b) FBP reconstruction with ramp filter, also the initial
guessx(0) for all iterative algorithms, (c) FBP reconstruction with Hanning filter, and (d)ℓ1-regularized reconstruction, also the solutionx

⋆

to P0. Images in (a)-(d) have been normalized to the same color scale [as that of (a)] indicated beside (d). Theℓ1-regularized reconstruction
(d) is less noisy and has almost no streaky-artifacts compared to both FBP results.

wherex⋆ is a solution toP0 obtained numerically by running
one of the above algorithms as described next. Since the al-
gorithms have different computation load per (outer) iteration,
we evaluatedξ(j) as a function of algorithm run-time12 tj, i.e.,
the time elapsed from start until iterationj. We also plotξ(j)
as a function of the iteration indexj for completeness. We
used the DD-projector [49] (with 8 threads) for implementing
matrix-vector products such asAx, A⊤u and initialized all
the algorithms with the image reconstructed using FBP (with
the ramp filter) in all experiments.

Products withA and A⊤ (corresponding to forward- and
back-projections, respectively) are computation intensive in
CT reconstruction problems and dominate the overall compu-
tation load of a reconstruction algorithm.13 NCG and MFISTA
both require only one product withA andA⊤, respectively,
per iteration. The OS method breaks products withA and
A⊤ in terms of block-rows ofA and block-columns ofA⊤,
respectively, and cycles through each block once per every
iteration, so effectively, OS also requires only one product
with A andA⊤, respectively, per iteration. However, for each

12We excluded the computation time spent on estimatingLdata for
MFISTA in the plots. Even with this “unfair advantage” the ADMM method
was much faster than MFISTA.

13NCG, MFISTA, OS and SB require the evaluation ofA⊤Wy (e.g., see
RHS of (36) for the SB scheme), but this quantity needs to be computed only
once, so we ignore this computation need for these schemes.

block, the OS method demands the evaluation of the gradient
of the regularization term that increases computation time
per iteration as indicated in Table I. For the SB scheme, we
employ (P)CG for “inverting”Bµ (that depends onA⊤WA)
in (36), soSB-(P)CG-n requiresn products withA andA⊤,
respectively, per iteration of (33)-(35). In the case of ADMM,
we apply (P)CG at Step 3 (see Fig.1) for “inverting”Gν in
(27), but that step also requires a product withA⊤ in the
RHS of (27), so overallADMM-(P)CG -n usesn products
with A andn+1 products withA⊤ per iteration of Steps 3-7
in Fig.1. Table I summarizes this discussion and also shows
the mean computation time per iteration (averaged over 10
iterations) of the above algorithms. Although the proposed
ADMM(-PCG) requires more forward- and back-projections
per iteration (and accordingly exhibits higher computation
time per iteration) compared to other algorithms (with the
exception of the OS method) in Table I, we demonstrate in
the sequel that it converges faster in terms of algorithm run-
time.

A. Simulation with the NCAT Phantom

We used a1024 × 1024 2D slice of the NCAT phantom
[51] and numerically generated a888 × 984-view noisy
sinogram with GE LightSpeed fan-beam geometry [52] cor-
responding to a monoenergetic source with2.5 × 104 inci-
dent photons per ray and no background events. We used
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Fig. 3. Simulation with the NCAT phantom: (a), (b) Plot ofξ(j) and RMSE(x(j)), respectively, as a function of timetj and (c), (d) Plot of
ξ(j) and RMSE(x(j)), respectively, with respect to iterations, for various algorithms considered in this work. The unpreconditioned version
of the proposed method, ADMM-CG, converges slightly fasterthan MFISTA and the split-Bregman scheme SB-(P)CG but is slower than
NCG as seen in (a) and (b). But the preconditioned version, ADMM-PCG, converges rapidly both in terms ofξ(j) and RMSE indicating
that the cone-filter-preconditioner (G̃

−1
ν in Section III-E) greatly accelerates convergence of the proposed ADMM.

the ℓ1-regularization in(22) with κr = ω(r mod N), where

ωn
△

=
√

[A⊤W1]n/[A⊤1]n is based on [26]. We reconstructed
512× 512 images over a FOV of 65 cm; we obtainedx⋆ by
running 5000 iterations ofMFISTA-25 as it does not require
“corner-rounding” and is therefore guaranteed to convergeto
a solution ofP0. NCG cannot directly handle nonsmooth
criteria such as(22) without smoothing it [13, App. A],
so we used a smoothing value of10−6 cm−1. The FBP
reconstructions in Figs. 2b, 2c corresponding to the ramp and
Hanning filters, respectively, are either noisy or blurred and
streaked with artifacts. Theℓ1-regularized reconstructionx⋆

in Fig. 2d preserves image features and has lower RMSE than
both FBP outputs.

We plot ξ(j) for various algorithms as a function of time
in Fig. 3a. The SB-CG scheme appears to converge the
slowest, while SB-PCG is faster indicating that the circulant
preconditionerG̃−1

µ provides a moderate acceleration of CG
for (36). MFISTA is slower than most of the algorithms for the
reason explained in Section II. The CG-version of the proposed
method, ADMM-CG, is slightly faster than MFISTA and SB-

(P)CG but slower than NCG. The preconditioned version
ADMM-PCG is the fastest among all algorithms illustrating
that the cone-filter preconditioner̃G−1

ν is very effective in
accelerating convergence of CG applied to (27) and ADMM-
PCG. This is also corroborated by Fig. 3c where for a given
number of iterations, ADMM-PCG produces a reconstruction
that is closest tox⋆ in terms of ξ(j). Figs. 3b, 3d further
substantiate the reconstruction speed-up of ADMM-PCG over
other methods, where (both in terms of algorithm run-time and
number of iterations) it rapidly leads to a RMSE-value close
to RMSE(x⋆).

B. Experiments with a in vivo Human Head Data-set

In this experiment, we used ain vivo human head data-set
acquired with a GE scanner using 120 kVp source potential
and 585 mA tube current with 0.6 s rotation. We reconstructed
a 1024 × 1024 2D slice with 50 cm FOV and 0.625 mm
thickness from a888× 984-view sinogram. ForΨ in (1), we
used the strictly convex regularizer (23) (withδ = 10 HU)
that guarantees a unique solutionx⋆ to P0. As NCG generally
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Fig. 4. Experiment with thein vivo human head data-set: (a) FBP reconstruction with the ramp filter, also the initial guessx(0) for all
iterative algorithms, (b) RBP reconstruction with Hanningfilter, and (c) PWLS reconstruction with the strictly convexregularizer (23), also
the unique solutionx⋆ to P0. Images in (a)-(c) are displayed in Hounsfield units indicated beside (c). The regularized reconstruction (c) is
less noisy and preserves anatomical features compared to both FBP results.

had faster convergence than MFISTA in our experiments, we
obtainedx⋆ by running 5000 iterations ofNCG-10. Fig. 4
shows the reconstruction results for this experiment. The
regularized solutionx⋆ in Fig. 4c has reduced noise and
better preserves the anatomical features compared to the FBP
reconstructions in Figs. 4a, 4b obtained using the ramp and
Hanning filters, respectively.

Figs. 5a-d plotξ(j) as a function oftj and iteration
index j for all algorithms considered in this work. Here, we
additionally compare the standard OS algorithm (that is not
guaranteed to converge) in Figs. 5b, 5d, where we used the
implementation from [53] available currently for regularization
criteria such as (23). The OS algorithm is faster than all
algorithms (including ADMM-PCG) for the first few iterations
but it does not converge to the minimizer as expected. In
practice, it may be advantageous to run a few iterations of OS
and use its output to initialize a more sophisticated iterative
algorithm. Figs. 5a, 5b indicate that the convergence trends
for MFISTA, NCG, SB-(P)CG and ADMM-CG are generally
similar to those in Figs. 3a, 3b. ADMM-PCG again provides
notable reconstruction speed-up compared to all algorithms.
This substantiates the potential of the cone-filter precondi-
tioner (30) for the proposed ADMM and also demonstrates
the benefit of our splitting scheme (5).

VI. D ISCUSSION

A. Memory Requirements

Splitting-based algorithms simplify optimization at the ex-
pense of manipulating and storing auxiliary constraint vari-
ables (and corresponding Lagrange multipliers in the AL for-
malism) and therefore have additional memory requirements
compared to conventional algorithms such as NCG. Although
this does not pose much concern for 2D reconstruction prob-
lems, it can represent a significant memory overhead for 3D
problems. Specifically, the SB (Section IV) and the proposed

ADMM 14 (in Fig. 1) schemes use the constraintv = Rx

that requires the storage of2P vectors (v and ηηηv) of size
L × 1. For instance, typically, the size of an image-volume
in 3D CT is N = 512 × 512 × 512 (≈ 1 GB of memory
when stored in double-precision format in Matlab). Then, for
finite-differences withP = 13 (there are 13 nearest-neighbors
on one side of any voxel), this corresponds to storing at least
26 image-volumes (≈ 26 GB of memory) that might set a
practical limitation on these methods from an implementation
perspective.

A quick remedy is to consider the TV regularizer with finite-
differences only along the three orthogonal directions (P = 3
corresponds to 6 image-volumes) which considerably reduces
the memory load. Alternatively, one could also consider using
an orthonormal transform (such as orthonormal wavelets15)
for R, so P = 1 and L = N . The SB and ADMM14

schemes would then require storing only 2 image-volumes
(corresponding tov and ηv). Moreover, an orthonormalR
satisfiesR⊤R = IN that facilitates ADMM: Gν in (28)
becomesGν = (A⊤A + νIN ) that is still “nearly” shift-
invariant and can be effectively preconditioned using circulant
preconditioners. With orthonormal wavelets, one also has the
option of excluding the approximation coefficients from the
regularization (as they are not sparse) by using scale dependent
regularization parameters [50] and setting those parameters
corresponding to the approximation level to zero.

B. Inclusion of Nonnegativity Constraint

In CT, a nonnegativity constraint is often imposed [1, Eq.
18], [11, Sec. 2.2] to model the positivity of the attenuation
coefficient that is being reconstructed. Although we have
not considered such a constraint inP0, it can be easily

14For ADMM, we have to additionally store twoM×1 vectors,u and the
associated multiplierηηηu. This additional memory requirement is moderate for
2D CT and can be high for 3D CT depending on the size of the data.

15Quality-wise, shift-invariant wavelets are preferable toorthonormal ones
[54], but due to their over-complete nature, they require significantly more
memory (similar to finite differences) than orthonormal wavelets.
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Fig. 5. Experiment with thein vivo human head data-set: (a), (b) Plot ofξ(j) as a function of timetj and (c), (d) Plot ofξ(j) with respect
to iterations, for various algorithms considered in this work. MFISTA and SB-CG appear to be the slowest. The proposed ADMM-(P)CG
is generally faster than the split-Bregman scheme SB-(P)CGas seen in (a). Although ADMM-CG converges slower than NCG asseen in
(b), the preconditioned version ADMM-PCG is the fastest among the considered algorithms, illustrating the benefit of the cone-filter-based
preconditioner (̃Gν in Section III-E) for the proposed ADMM.

accommodated [38] as follows. We start with

argmin
x

{

J(x)
△

= Jdata(y,Ax) + Ψ(Rx) + g(x)
}

, (39)

whereg is an indicator function

g(x)
△

=

{

0, if x ≥ 0,
+∞, otherwise,

(40)

that imposes the nonnegativity constraint,x ≥ 0, taken
component-wise in (40). We then consider the following
equivalent constrained version [38] that has an additional
constraint compared to (5):

arg min
x,u,v,w

{f(u,v,w)
△

= Jdata(y,u) + Ψ(v) + g(w)}
s.t.u = Ax, v = Rx, w = x. (41)

Writing z
△

= [u⊤ v⊤ w⊤]⊤, C
△

= [A⊤ R⊤ IN ]⊤ and using
ΛΛΛ = diag{IM , ν1IR, ν2IN} in (9), we can design an ADMM-
type algorithm similar to (15)-(17) for solving (41). It canbe
shown that the updates foru andv in this algorithm will be
similar to (19) and (20), respectively, while the update ofx

would involve the “inversion” ofGν1ν2 = (A⊤A+ν1R
⊤R+

ν2IN ) and that ofw would require a simple projection onto
the positive orthant [38, Eq. 32]. SinceGν1ν2 is also “nearly”
shift-invariant, a cone-filter-type preconditioner similar toG̃−1

ν

[see (30)] can be used for effective preconditioning ofG−1
ν1ν2

.
Moreover, the aboveC has full column-rank, so this algorithm
also satisfies Theorem 1 and is guaranteed to converge to a
solution of (41) and (39).

C. Poisson-Likelihood Model for X-ray CT Reconstruction

The proposed strategy of splitting the data-term [i.e., the
use of u in (5) and (41)] is also applicable for X-ray CT
reconstruction using the Poisson-likelihood (PL) statistical
model [5, Eq. 1] that may be more suitable for low-dose
acquisitions. It can be shown that splitting the PL data-
term yields separable 1D problems in{ui}Mi=1 that can be
solved simultaneously similar to [38, Eq. 30]. However, the
PL model for X-ray CT may preclude exact updates like
(21) for {ui}. Moreover, the general PL model [5, Eq. 1]
includes background events and can be (“mildly”) nonconvex,
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so Theorem 1 cannot be directly applied to an ADMM-type
algorithm developed for this problem. We plan to explore cost
functions involving the PL model [5, Eq. 1] for transmission
tomography reconstruction as part of future extensions to this
work.

VII. SUMMARY AND CONCLUSIONS

Statistical X-ray CT reconstruction using penalized
weighted least-squares (PWLS) criteria involve a diagonal
weighting matrixW that poses a hindrance to several op-
timization methods due to its huge dynamic range and highly
shift-variant nature. In this work, we employed a variable-
splitting technique that, in addition to separating the regu-
larization term like [17], also dissociates the statistical (W)
and the system (A) components in the data term to decouple
and mitigate the effect ofW. We applied the method of
multipliers [19] with alternating minimization [21]–[23]for
the resulting equivalent constrained problem and developed
an alternating direction method of multipliers (ADMM) al-
gorithm that chiefly involves three simple operations at each
iteration: (i) inverting a diagonal matrix that depends onW,
(ii) minimizing a set of 1D auxiliary denoising-cost-functions
that can be performed efficiently and/or exactly for a variety of
regularizers, and (iii) solving a “nearly” shift-invariant linear
system (involvingA⊤A) using FFT-based preconditioning
with cone-type filters [7].

The proposed ADMM algorithm is guaranteed to con-
verge to a solution of the original PWLS problem under a
mild condition on the accuracy of operation (iii) above. We
demonstrated using simulations and experiments with realin
vivo human data that cone-filter-type preconditioners are very
effective for solving the linear system in (iii) and that the
preconditioned version of the proposed ADMM converges
faster than conventional (NCG and ordered subsets) and state-
of-the-art (MFISTA and split-Bregman) algorithms for CT.
The proposed ADMM can handle a variety of regularization
criteria for 2D CT reconstruction and is also applicable to
3D CT reconstruction, perhaps by using certain memory-
conserving regularizers.
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