Parallel MR Image Reconstruction using Augmented Lagrangian Methods

Sathish Ramani*, Member, IEEE, and Jeffrey A. Fessler, Fellow, IEEE

Abstract—Magnetic resonance image (MRI) reconstruction using SENSiVity Encoding (SENSE) requires regularization to suppress noise and aliasing effects. Edge-preserving and sparsity-based regularization criteria can improve image quality, but they demand computation-intensive nonlinear optimization. In this paper, we present novel methods for regularized MRI reconstruction from undersampled sensitivity encoded data—SENSE-reconstruction—using the augmented Lagrangian (AL) framework for solving large-scale constrained optimization problems. We first formulate regularized SENSE-reconstruction as an unconstrained optimization task and then convert it to a set of (equivalent) constrained problems using variable splitting. We then attack these constrained versions in an AL framework using an alternating minimization method, leading to algorithms that can be implemented easily. The proposed methods are applicable to a general class of regularizers that includes popular edge-preserving (e.g., total-variation) and sparsity-promoting (e.g., \(\ell_1 \)-norm of wavelet coefficients) criteria and combinations thereof. Numerical experiments with synthetic and in-vivo human data illustrate that the proposed AL algorithms converge faster than both general-purpose optimization algorithms such as nonlinear conjugate gradient (NCG) and state-of-the-art MFISTA method.

Index Terms—Parallel MRI, SENSE, Image Reconstruction, Regularization, Augmented Lagrangian

I. INTRODUCTION

Parallel MR imaging (pMRI) exploits spatial sensitivity of an array of receiver coils to reduce the number of required Fourier encoding steps, thereby accelerating MR scanning. SENSiVity Encoding (SENSE) [1, 2] is a popular pMRI technique where reconstruction is performed by solving a linear system that explicitly depends on the sensitivity maps of the coil array. While efficient reconstruction methods have been devised for SENSE with Cartesian [1], as well as non-Cartesian \(k \)-space trajectories [2], they inherently suffer from SNR degradation in the presence of noise [1] mainly due to \(k \)-space undersampling and instability arising from correlation in sensitivity maps [3].

Regularization is an attractive means of restoring stability in the reconstruction mechanism where prior information can also be incorporated effectively [3–9]. Tikhonov-like quadratic regularization [3–6] leads to a closed-form solution (under a Gaussian noise model) that can be numerically implemented efficiently. However, with the advent of compressed sensing (CS) theory, sparsity-promoting regularization criteria (e.g., \(\ell_1 \)-based regularization) have gained popularity in MRI [10]. The basic assumption underlying CS-MRI is that many MR images are inherently sparse in some transform domain and can be reconstructed with high accuracy from significantly undersampled \(k \)-space data by minimizing transform-domain sparsity-promoting regularization criteria subject to data-consistency. The CS framework is apt for pMRI [11] with undersampled data. This paper investigates the problem of regularized reconstruction from sensitivity encoded data—SENSE-reconstruction—using sparsity-promoting regularizers. We formulate regularized SENSE-reconstruction as an unconstrained optimization problem where we obtain the reconstructed image, \(\hat{x} \), by minimizing a cost function, \(J(x) \), composed of a regularization term, \(\Psi(x) \), and a (negative) log-likelihood term corresponding to the noise model. For \(\Psi \), we consider a general class of functionals that includes popular edge-preserving (e.g., total-variation) and sparsity-promoting (e.g., \(\ell_1 \)-norm of wavelet coefficients) criteria and combinations thereof. Such regularization criteria are “non-smooth” (i.e., they may not be differentiable everywhere) and they require solving a nonlinear optimization problem using iterative algorithms.

This paper presents accelerated algorithms for regularized SENSE-reconstruction using the augmented Lagrangian (AL) formalism. The AL framework was originally developed for solving constrained optimization problems [12]; one combines the function to be minimized with a Lagrange multiplier term and a penalty term for the constraints, and minimizes it iteratively (while taking care to update the Lagrange parameters) to solve the original constrained problem. This combination overcomes the shortcomings of the Lagrange multiplier method and penalty-based methods for solving constrained problems [12]. To use the AL formalism for regularized SENSE-reconstruction, we first convert the unconstrained problem into an equivalent constrained optimization problem using a technique called variable splitting where auxiliary variables take the place of linear transformations of \(x \) in the cost function \(J \). Then, we construct a corresponding AL function and minimize it alternatively with respect to one auxiliary variable at a time—this step forms the key ingredient as it decouples the minimization process and simplifies optimization. We investigate different variable-splitting approaches and
correspondingly design different AL algorithms for solving the original unconstrained SENSE-reconstruction problem. We also propose to use a diagonal weighting term in the AL formalism to induce suitable balance between various constraints because the matrix-elements associated with Fourier encoding and the sensitivity maps can be of different orders of magnitude in SENSE. The proposed AL algorithms are applicable for regularized SENSE-reconstruction from data acquired on arbitrary non-Cartesian k-space trajectories. Based on numerical experiments with synthetic and real data, we demonstrate that the proposed AL algorithms converge faster (to an actual solution of the original unconstrained regularized SENSE-reconstruction problem) compared to general-purpose optimization algorithms such as NCG (that has been applied for CS-(p)MRI in [10], [11]), and the recently proposed state-of-the-art Monotone Fast Iterative Shrinkage-Thresholding Algorithm (MFISTA) [13].

The paper is organized as follows. Section II formulates the regularized SENSE-reconstruction problem (with sparsity-based regularization) as an unconstrained optimization task. Next, we concentrate on the development of AL-based algorithms. First, Section III presents a quick overview of AL algorithms. Then, Section IV applies the AL formalism to regularized SENSE-reconstruction in detail. Here, we discuss various strategies for applying variable splitting and develop different AL algorithms for regularized SENSE-reconstruction. Section V is dedicated to numerical experiments and results. Section VI discusses possible extensions of the proposed AL methods to handle some variations of SENSE-reconstruction such as that proposed in [14]. Finally, we draw our conclusions in Section VII.

II. PROBLEM FORMULATION

We consider the discretized SENSE MR imaging model given by

$$d = F S x + \varepsilon, \quad (1)$$

where x is a $N \times 1$ column vector containing the samples of the unknown image to be reconstructed (e.g., a 2-D slice of a 3-D MRI volume), d and ε are $ML \times 1$ column vectors corresponding to the data-samples from L coils and noise, respectively, S is a $NL \times N$ matrix given by $S = [S_1^H \cdots S_L^H]^H$, S_l is a $N \times N$ (possibly complex) diagonal matrix corresponding to the sensitivity map of the lth coil, $1 \leq l \leq L$, $(\cdot)^H$ represents the Hermitian-transpose, F is a $ML \times NL$ matrix given by $F = I_L \otimes F_u$, F_u is a $M \times N$ Fourier encoding matrix, I_L is the identity matrix of size L and \otimes denotes the Kronecker product. The subscript ‘u’ in F_u signifies the fact that the k-space may be undersampled to reduce scan time, i.e., $M \leq N$.

Given an estimate of the sensitivity maps S, the SENSE-reconstruction problem is to find x from data d. Since regularization is an attractive means of reducing aliasing artifacts and the effect of noise in the reconstruction (by incorporating prior knowledge), we formulate the problem in a penalized-likelihood setting where the reconstruction is obtained by minimizing a cost criterion:

$$\textbf{P0:} \; \hat{x} = \arg \min_x \left\{ J(x) = \frac{1}{2} \|d - F S x\|_{K_{ML}}^2 + \Psi(x) \right\}, \quad (2)$$

where K_{ML} is the inverse of the $ML \times ML$ noise covariance matrix, $\|u\|_{K_{ML}}^2 = u^H K_{ML} u$, and Ψ represents a suitable regularizer. We have included K_{ML} in the data-fidelity term to account for the fact that noise from different coils may be correlated [1], [2]. Assuming that noise is wide-sense stationary and is correlated only over space (i.e., coils) and not over k-space, K_{ML} can be written as $K_{ML} = K_s \otimes I_M$, where K_s is a $L \times L$ matrix that corresponds to the inverse of the covariance matrix of the spatial component of noise (from L coils).

The weighting matrix K_{ML} can be eliminated from J in (2) by applying a noise-decorrelation procedure [2]. Since K_s is generally positive definite, we write $K_s = K_s^H K_s$, and $K_{ML} = K_{NL}^H K_{NL}$, where $K_{NL} = K_s \otimes I_M$. Then, because of the structures of K_{ML} and F, we have (2)

$$\tilde{K}_{ML} F = (K_s \otimes I_M) \otimes (I_L \otimes F_u) = (K_L I_L \otimes I_M F_u) = (I_L K_L F_u I_N) = (I_L \otimes F_u)(K_s \otimes I_N) = F \tilde{K}_{NL},$$

where $\tilde{K}_{NL} \triangleq K_s \otimes I_N$. Letting

$$\hat{d} \triangleq K_{NL} d, \quad \hat{S} \triangleq \tilde{K}_{NL} S,$$

we therefore get that

$$\frac{1}{2} \|d - F S x\|_{K_{ML}}^2 = \frac{1}{2} \|\hat{d} - F \hat{S} x\|_2^2, \quad (5)$$

which is an equivalent unweighted data-fidelity term with a new set of sensitivity maps \hat{S} obtained by weighting the original sensitivity maps S with K_{NL}. In the sequel, we use the r.h.s. of (5) for data-fidelity and drop the $\tilde{}$ for ease of notation. In the numerical experiments, we used (3) and (4).

We consider sparsity-promoting regularization for Ψ based on the field of compressed sensing for MRI—CS-MRI [10], [11]. We focus on the “analysis form” of the reconstruction problem where the regularization is a function of the unknown image x. Specifically, we consider a general class of regularizers that use a sum of Q terms given by

$$\Psi(x) = \sum_{q=1}^{Q} \lambda_q \sum_{n=1}^{N_q} \Phi_{pq} \left(\sum_{p=1}^{P_q} |R_{pq} X_n|^m_q \right), \quad (6)$$

where q indexes the regularization terms, the parameter $\lambda_q > 0$ controls the strength of the qth regularization term, and $|X_n|$ or x_n represents the nth element of the vector x. The $N_q \times N_q$ matrices R_{pq}, $p = 1, \ldots, P_q \forall q$, represent sparsifying operators. We focus on shift-invariant operators for R_{pq} (e.g., tight frames, finite-difference matrices), but the methods can be applied to shift-variant ones such as orthonormal wavelets with only minor modifications. Typically, $P_q \ll M, N \forall q$ (as seen in the examples below). We consider that the values of m_q and the choice of potential functions $\Phi_{pq} \forall q$ and n are such

\footnote{The r.h.s. of (5) automatically includes the special case of $K_{ML} = I_M$ with $S = S$ and $d = d$.}
that Ψ is composed of non-quadratic convex regularization terms.

The general class of regularizers \(\Phi \) includes popular sparsity-promoting regularization criteria such as

(a) ℓ_1-norm of wavelet coefficients: $Q = 1$, $P_1 = 1$, $m_1 = 1$, $R_{11} = W$ is a wavelet transform (orthonormal or a tight frame), and $\Phi_{1n}(x) = x$ where n indexes the rows of R_{11},

(b) discrete isotropic total-variation (TV) regularization \[15\]: $Q = 1$, $P_1 = 2$, $m_1 = 2$, R_{11} and R_{21} represent horizontal and vertical finite-differencing matrices, respectively, and $\Phi_{1n}(x) = \sqrt{x}$, where n indexes the rows of R_{11},

(c) discrete anisotropic total-variation (TV) regularization \[15\]: $Q = 1$, $P_1 = 2$, $m_1 = 1$, R_{11} and R_{21} represent horizontal and vertical finite-differencing matrices, respectively, and $\Phi_{1n}(x) = x$, where n indexes rows of R_{11}.

The general form \[6\] also allows the use of a variety of potential functions for Φ. We consider such a generalization because combinations of wavelet-and TV-regularization have been reported to be preferable \[10\]. The proposed methods can be easily generalized for synthesis-based formulations \[10\].

The minimization in \[2\] is a non-trivial optimization task, even for only one regularization term. Although general purpose optimization techniques such as the nonlinear conjugate gradient (NCG) method or iteratively reweighted least squares can be applied to differentiable approximations of P_0, they may either be computation-intensive or exhibit slow convergence. This paper describes new techniques based on the augmented Lagrangian (AL) formalism that yield faster convergence per unit computation time.

The basic idea is to break down P_0 in to smaller tasks by introducing “artificial” constraints that are designed so that the sub-problems become decoupled and can be solved relatively rapidly \[15, 17-20\]. We first briefly review the AL method and then discuss some strategies for applying it to P_0.

III. CONstrained OPTIMIZATION AND AUGMENTED LAGRANGIAN (AL) FORMALISM

Consider the following optimization problem with linear equality constraints:

$$\hat{u} = \arg\min_{u \in \Omega^N} f(u) \text{ subject to } Cu = b,$$ \(7\)

where Ω is \mathbb{R} or C, f is a real convex function, C is a $M \times N$ (real or complex) matrix that specifies the constraint equations, and $b \in \Omega^M$. In the augmented Lagrangian (AL) framework (also known as the multiplier method \[12\]), an AL function is first constructed for problem \(7\) as

$$\mathcal{L}(u, \gamma, \mu) = f(u) + \gamma^H(Cu - b) + \frac{\mu}{2}\|Cu - b\|^2_2,$$ \(8\)

where $\gamma \in \Omega^M$ represents the vector of Lagrange multipliers, and the quadratic term on the r.h.s. of above equation is called the “penalty” term with penalty parameter $\mu > 0$. The AL scheme \[12\] for solving \(7\) alternates between minimizing $\mathcal{L}(u, \gamma, \mu)$ with respect to u for a fixed γ and updating γ, i.e.,

$$u^{(j+1)} = \arg\min_u \mathcal{L}(u, \gamma^{(j)}, \mu),$$ \(9\)

$$\gamma^{(j+1)} = \gamma^{(j)} + \mu(Cu^{(j+1)} - b),$$ \(10\)

until some stopping criterion is satisfied.

So-called “penalty methods” \[12\] correspond to the case where $\gamma = 0$ and \(9\) is solved repeatedly while increasing $\mu \rightarrow \infty$. The AL scheme \(9, 10\) also permits the use of increasing sequences of μ-values, but an important aspect of the AL scheme is that convergence may be guaranteed without the need for changing μ \[12\].

The AL scheme is also closely related to the Bregman iterations \[15\]. Equations (2.6)-(2.8) applied to problem \(7\):

$$u^{(j+1)} = \arg\min_u D_f(u, u^{(j)}, \rho^{(j)}) + \frac{\mu}{2}\|Cu - b\|^2_2,$$ \(11\)

$$\rho^{(j+1)} = \rho^{(j)} - \mu C^H(Cu^{(j+1)} - b),$$ \(12\)

where $D_f(u, v, \rho) = f(u) - f(v) - \rho^H(u - v)$ is called the “Bregman distance” \[15\] and ρ is a $N \times 1$ vector in the subgradient of f at u. The connection between AL method and Bregman iterations is readily established if $\rho = -C^H\gamma$ \[22\]. Then, $D_f(u, u^{(j)}, \rho^{(j)}) + \frac{\mu}{2}\|Cu - b\|^2_2$ is identical to $\mathcal{L}(u, \gamma^{(j)}, \mu)$ (up to constants irrelevant for optimization) and \(9, 10\) become equivalent to \(11-12\) as noted in \[22\].

The AL function \mathcal{L} in \(8\) can be rewritten by grouping together the terms involving $Cu - b$ as

$$\mathcal{L}(u, \eta, \mu) = f(u) + \frac{\mu}{2}\|Cu - \eta\|^2_2 + C\gamma,$$ \(13\)

where $\eta = b - \frac{1}{\mu}\gamma$, and $C\gamma$ is a constant independent of u that we ignore henceforth. The parameter γ can then be replaced by η in \(13\) which results in the following version of the AL algorithm for solving \(7\).

Algorithm AL

1. Select $u^{(0)}$, $\eta^{(0)}$, and $\mu > 0$; set $j = 0$

2. \[Repeat\]

3. \[Repeat\]

4. Set $j = j + 1$

5. Until stop-criterion is met

It has been shown in \[15\] that the Bregman iterations \(11-12\)—equivalently, the AL algorithm under above mentioned conditions—converge to a solution of \(7\) whenever the minimization in \(11\)—in turn, Step 2 of the AL algorithm—is performed exactly. However, this step may be computationally expensive and is often replaced in practice by an inexact minimization \[12\]. \[15, 17\]. Numerical evidence in \[15\] suggests that inexact minimizations can still be effective in the Bregman/AL scheme.

A more general version of AL allows for the minimization of non-convex functions subject to nonlinear equality and/or inequality constraints with non-quadratic “penalty” terms \[12\].

For non-convex problems, there may exist a lower bound on the possible values of μ for establishing convergence \[19\] Proposition 1, \[21\] page 519.
IV. PROPOSED AL ALGORITHMS FOR REGULARIZED SENSE-RECONSTRUCTION

Our strategy is to first transform the unconstrained problem \(P_0 \) into a constrained optimization task as follows. We replace linear transformations of \(x \) (FSx, and \(R_{pq}x \)) in \(J \) with a set of auxiliary variables \(\{u_k\} \). Then, we frame \(P_0 \) as a constrained problem where \(J \) is minimized as a function of \(\{u_k\} \) subject to the constraint that each auxiliary variable, \(u_k \), equals the respective linear transformations of \(x \). We handle the resulting constrained optimization task (that is equivalent to \(P_0 \)) in the AL framework described in Section III.

The technique of introducing auxiliary variables \(\{u_k\} \) is also known as variable splitting; it has been employed, for instance, in [15], [18]–[20] for image deconvolution, inpainting and CS-MRI with wavelets- and TV-based regularization in a Bregman/AL framework and in [17] for developing a fast penalty-based algorithm for TV image restoration. The purpose of variable splitting is to make the associated AL function \(L \) amenable to alternating minimization methods [15], [17], [24]–[26] which may decouple the minimization of \(L \) with respect to the auxiliary variables. This makes it easier to accomplish compared to directly solving the original unconstrained problem \(P_0 \).

The splitting procedures used in [15], [17], [19] introduce auxiliary variables only for decoupling the effect of regularization. In this work, in addition to splitting the regularization, we also propose to use one or more auxiliary variables to separate the terms involving \(F \) and \(S \) (see Section IV-B). The AL-based techniques in [13], [20] also use auxiliary variables for the data-fidelity term, but they pertain to problems of the form

\[
\min_{u,v} f(v) \text{ subject to } v = Cu,
\]

where \(C \) is a “tall”, i.e., block-column matrix and are not directly applicable to (7) with some instances of \(C \) investigated in this paper (see Sections IV-B and VI-C). Furthermore, in general, different splitting mechanisms yield different algorithms as they attempt to solve constrained optimization problems (that are equivalent to \(P_0 \)) with different constraints. In this paper, we investigate two splitting schemes for \(P_0 \), described below.

A. Splitting the Regularization Term

In the first form, we split the regularization term by introducing \(u_1 = Rx \in \mathbb{C}^R \), where \(R = \left[R_{11} \cdots R_{1Q} \right] \) and \(R \) is the number of rows in \(R \). This form is similar to the split-Bregman scheme proposed in [15] Section 4.2. The resulting constrained formulation of \(P_0 \) is given by

\[
P_1: \min_{u_1, x} J_1(x, u_1) \text{ subject to } u_1 = Rx
\]

where

\[
J_1(x, u_1) = \frac{1}{2} \left\| d - FSx \right\|^2 + \frac{1}{2} \sum_{q=1}^{Q} \lambda_q \sum_{n=1}^{N_q} \Phi_{pn} \left(\sum_{p=1}^{P_q} \left| u_{1pq} \right|^2 \right)
\]

and \(u_{1pq} = R_{pq}x, \ p = 1, \ldots, P_q \) \(\forall q \). Problem \(P_1 \) can be written in the general form of (7) with

\[
u_1 = \begin{bmatrix} u_1 \\ x \end{bmatrix}, \quad f(u) = J_1(x, u_1), \quad C = [I_R - R], \quad b = 0.
\]

The associated AL function (8) is therefore

\[
L_1(u, \gamma_1, \mu) = J_1(x, u_1) + \gamma_1^* Cu + \frac{\mu}{2} \left\| Cu \right\|^2.
\]

The AL function \(L_1 \) can be written in the form of (13) (ignoring irrelevant constants) as

\[
L_1(u, \eta_1, \mu) = J_1(x, u_1) + \frac{\mu}{2} \left\| Cu - \eta_1 \right\|^2,
\]

(14)

where \(\eta_1 = -\frac{1}{\mu} \gamma_1 \). Applying the AL algorithm to \(P_1 \) requires the joint minimization of \(L_1 \) with respect to \(u_1 \) and \(x \) at Step 2. Since this can be computationally challenging, we apply an (inexact) alternating minimization method [15], [17], [19]: We alternatively minimize \(L_1 \) with respect to one variable at a time while holding others constant. This decouples the individual updates of \(u_1 \) and \(x \) and simplifies the optimization task. Specifically, at the \(j \)th iteration, we perform the following individual minimizations, taking care to use updated variables for subsequent minimizations [15], [17]:

\[
u_1^{(j+1)} = \arg \min_{u_1} L_1(u_1, x_j, \eta_1^{(j)}, \mu),
\]

(15)

\[
x^{(j+1)} = \arg \min_{x} L_1(u_1^{(j+1)}, x, \eta_1^{(j)}, \mu).
\]

(16)

1) Minimization with respect to \(x \): The minimization in (16) is straightforward since the associated cost function is quadratic. Ignoring irrelevant constants, we get that

\[
x^{(j+1)} = \arg \min_{x} \left\{ \frac{1}{2} \left\| d - FSx \right\|^2 + \frac{\mu}{2} \left\| u_1^{(j+1)} - Rx - \eta_1^{(j)} \right\|^2 \right\}
\]

\[
= G_\mu^{-1}[S^H F^H d + \mu R^H (u_1^{(j+1)} - \eta_1^{(j)})],
\]

(17)

where

\[
G_\mu = S^H F^H FS + \mu R^H R.
\]

(18)

Although (17) is an analytical solution, computing \(G_\mu^{-1} \) is impractical for large \(N \). Therefore, we apply a few iterations of the conjugate-gradient (CG) algorithm with warm starting, i.e., the CG algorithm is initialized with the estimated \(x \) from the previous AL iteration.

2) Minimization with respect to \(u_1 \): Writing out (15) explicitly (ignoring constants independent of \(u_1 \)), we have that

\[
u_1^{(j+1)} = \arg \min_{u_1} \left\{ \sum_{q=1}^{Q} \lambda_q \sum_{n=1}^{N_q} \Phi_{pn} \left(\sum_{p=1}^{P_q} \left| u_{1pq} \right|^2 \right) + \frac{\mu}{2} \left\| u_1 - Rx^{(j)} - \eta_1^{(j)} \right\|^2 \right\}
\]

(19)

While (19) is a large-scale problem by itself, the splitting variable \(u_1 \) decouples the different regularization terms so that (19) can be decomposed into smaller minimization tasks as follows. Let \(r^{(j)} = Rx^{(j)}; \) for each \(q \) and \(n \), we collect \(v_{qn} =

\]

\footnotesize{\text{We design the regularization } \Psi \text{ such that the non-trivial null-spaces of } R^H R \text{ and } S^H F^H FS \text{ are disjoint. Then, } G_\mu \text{ is non-singular for } \mu > 0.}
\(\{ u_{1pq}, \ldots, u_{nPq} \} \) \(P \) \(\{ r_{1pq}, \ldots, r_{nPq} \} \) \(P \) \(\{ \eta_{1pq}, \ldots, \eta_{nPq} \} \) \(P \) so that \(v_{qn}, \varphi(j)_m, \beta(j), \varphi(j)_m \in \mathbb{C}P_q \). Then, (19) separates for each \(q \) and \(n \) as

\[
\nu_{qn}^{(j+1)} = \arg \min_{v} \left\{ \frac{\lambda}{\mu} \Phi'(v) \left\| v - \varphi(j)_m \right\|_{m} \right\} + \frac{1}{2} \left\| v_{qn} - (\varphi(j)_m + \beta(j)) \right\|_{2}^{2}, \tag{20}
\]

This is basically a \(P_q \)-dimensional denoising problem with \(\varphi(j)_m + \beta(j) \) playing the role of the data and where \(\left\| \cdot \right\|_m \) denotes the \(\ell_m \)-norm. Often (20) has a closed-form solution as discussed below. Otherwise, a gradient-descent-based algorithm such as NCG with warm starting can be applied for obtaining a partial update for \(\nu_{qn}^{(j+1)} \). Before proceeding, it is useful to compute the gradient of the cost function in (20). Ignoring the indices \(q \) and \(n \) and setting the gradient of the cost function in (20) to zero, we get for \(v \neq 0 \) that

\[
(\Theta(v) + I_P) v_{v = \nu^{(j+1)}} = \varphi(j) + \beta(j), \tag{21}
\]

where

\[
\Theta(v) = \text{diag} \left\{ \frac{\lambda m}{\mu} \Phi'(v) \left\| v \right\|_{m}^{2} \right\} \left\| v_{k} \right\|_{m-2}, \tag{22}
\]

and \(\Phi' \) is the first derivative of \(\Phi \), and \(v_k \) is the \(k \)th component of \(v \). The main obstacles to obtaining a direct solution of (20) are the coupling introduced between different components of \(v \), i.e., \(\Phi'(\|v\|_m) \), and the presence of the \(|v_k|^{m-2} \) in \(\Theta(v) \). Below we analyze some special cases of practical interest where this problem can be circumvented to obtain simple solutions.

Case of \(\ell_1 \)-regularization: For \(\ell_1 \)-type regularization in (4) we set \(m = 1 \), \(\Phi(x) = x \). Consequently, (21) further decomposes in terms of the components of \(v \) as

\[
\left(\frac{\lambda}{\mu |v_k|} + 1 \right) v_k = \varphi(j)_k + \beta(j)_k,
\]

where \(v_k
eq 0 \), \(k = 1, 2, \ldots, P \). The minimizer of (20) in this case is given by the shrinkage rule (21)

\[
v_k^{(j+1)} = \text{shrink} \left\{ \varphi(j)_k + \beta(j)_k, \frac{\lambda}{\mu} \right\} \quad \forall \ k,
\]

where \(\text{shrink} \{ d, \lambda \} = \frac{d}{d_{\text{max}}} \max \{ |d| - \lambda, 0 \} \). It is also possible to derive closed-form solutions of (20) for \(m = 2 \) for some instances of \(\Phi \) listed in (28) Section 4). In summary, the minimization problem (20) is fairly simple and fast typically.

3) AL Algorithm for Problem P1: Combining the results from Sections IV-A1 and IV-A2 we now present the first AL algorithm (that is similar to the split-Bregman scheme [15]) for solving the constrained optimization problem P1, formulated as a tractable alternative to the original unconstrained problem P0.

AL-P1: AL Algorithm for solving problem P1

1. Select \(x^{(0)} \) and \(\mu > 0 \)
2. Precompute \(S^H F^H d; \) set \(\eta^{(0)} = 0 \) and \(j = 0 \)

Repeat:

3. Obtain an update \(u^{(j+1)} \) using an appropriate technique as described in Section IV-A2
4. Obtain an update \(x^{(j+1)} \) by running few CG iterations on (17)
5. \(\eta_1^{(j+1)} = \eta_1^{(j)} - \left(\alpha^{(j+1)} - R x^{(j+1)} \right) \)
6. Set \(j = j + 1 \)

Until stop-criterion is met

The most complex step of this algorithm is using CG to solve (17). We now present an alternative algorithm that simplifies computation further.

B. Splitting the Fourier Encoding and Spatial Components in the Data-Fidelity Term

Since the data-fidelity term is composed of components (S and F) that act on the unknown image in different domains (spatial and k-space, respectively) it is natural to introduce

\(\ell_2 \)-norm of the vectors on both sides of (23), we see that this entails solving a 1-D problem of the form \(\langle \lambda \Phi'(x^2) + 1 \rangle x = d, \) for \(x. \)
auxiliary variables to split these two components. Specifically, we now consider the constrained problem

\[
P_2: \min_{u_0, u_1, u_2, x} J_2(u_0, u_1) \text{ subject to } u_0 = Sx, u_1 = Ru_2 \text{ and } u_2 = x,
\]

where \(u_0 \in \mathbb{C}^{NL}, u_1 \in \mathbb{C}^R, u_2 \in \mathbb{C}^N, \) and

\[
J_2(u_0, u_1) = \frac{1}{2} \|d - F u_0\|^2 + \sum_{q=1}^Q \sum_{n=1}^{N_q} \Phi_{qn} \left(\sum_{p=1}^{P_q} |u_{1pq}|n|^m| \right).
\]

Clearly, \(P_2 \) is equivalent to \(P_0 \). The new variable \(u_2 \) simplifies the implementation by decoupling \(u_0 \) and \(u_1 \). In terms of the general AL formulation \(P_0 \), \(P_2 \) is written as

\[
u = \begin{bmatrix} u_0 \\ u_1 \\ u_2 \\ x \end{bmatrix}, \quad f(\nu) = J_2(u_0, u_1), \quad C = AB, \quad b = \begin{bmatrix} 0 \\ 0 \end{bmatrix},
\]

where

\[
A = \begin{bmatrix} I_{NL} & 0 & 0 \\ 0 & \sqrt{\nu_1} I_{R} & 0 \\ 0 & 0 & \sqrt{\nu_2} I_{N} \end{bmatrix}, \quad B = \begin{bmatrix} I_{NL} & 0 & 0 & -S \\ 0 & I_{R} & -R & 0 \\ 0 & 0 & I_{N} & -I_{N} \end{bmatrix}.
\]

We have introduced a diagonal weighting matrix \(A \) in the constraint equation whose purpose will be explained below. Using \(A \) does not alter problem \(P_2 \) as long as \(\nu_{1,2} > 0 \). The associated AL function \(\tilde{P}_2 \) is given by

\[
\mathcal{L}_2(\nu, \gamma_2, \mu) = J_2(u_0, u_1) + \gamma_2^H A B u + \frac{\mu}{2} \|B u - \eta_2\|^2_A,
\]

where \(\gamma_2 = [\gamma_{20}^H \gamma_{21}^H \gamma_{22}^H]^H \), one component for each row of \(B \). Then, we write \(\mathcal{L}_2 \) in the form of \(\mathcal{L}_1 \) (without irrelevant constants) as

\[
\mathcal{L}_2(\nu, \eta_2, \mu) = J_2(u_0, u_1) + \frac{\mu}{2} \|B u - \eta_2\|^2_A,
\]

where \(\eta_2 = [\eta_{20}^H \eta_{21}^H \eta_{22}^H]^H = -\frac{1}{\gamma_2^H A^{-1} \gamma_2}. \) From \(\mathcal{L}_2 \), we see that \(A \) specifies the relative influence of the constraints individually while \(\mu \) determines the overall influence of the constraints on \(\mathcal{L}_2 \). Note again that the final solution of \(P_2 \) does not depend on any of \(\mu, \nu_1 \) or \(\nu_2 \).

We again apply alternating minimization to \(\mathcal{L}_2 \) (ignoring irrelevant constants) to obtain the following sub-problems:

\[
u^{(j+1)} = \arg \min_{\nu_0} \left\{ \frac{1}{2} \|d - F \nu_0\|^2 + \frac{\mu}{2} \|\nu_0 - S \nu^{(j)} - \eta_{20}\|^2 \right\}, \quad (26)
\]

\[
u^{(j+1)} = \arg \min_{\nu_1} \left\{ \sum_{q=1}^Q \sum_{n=1}^{N_q} \Phi_{qn} \left(\sum_{p=1}^{P_q} |\nu_{1pq}|n|^m| \right) + \frac{\mu}{2} \|\nu_1 - R \nu^{(j)} - \eta_{21}\|^2 \right\}, \quad (27)
\]

\[
u^{(j+1)} = \arg \min_{\nu_2} \left\{ \frac{\mu}{2} \|\nu^{(j+1)} - R \nu_2 - \eta_{22}\|^2 + \frac{\mu}{2} \|\nu_2 - \nu^{(j)}\|^2 \right\}, \quad (28)
\]

\[
x^{(j+1)} = \arg \min_x \left\{ \frac{1}{2} \|d - F x\|^2 + \frac{\nu_2}{2} \|\nu_2^{(j+1)} - x - \eta_{22}\|^2 \right\}. \quad (29)
\]

The minimization in (27) is exactly same as the one in (19) except that we now have \(R \nu_2 \) instead of \(R x \) in the quadratic part of the cost. Therefore, we apply the techniques described in Section IV-A2 to solve (27).

1) Minimization with respect to \(u_{0,2} \) and \(x \): The cost functions in (26) and (28) are all quadratic and thus have closed-form solutions as follows:

\[
u_0^{(j+1)} = H_{\mu}^{-1} [F^H d + \mu (Sx^{(j)} + \eta^{(j)}_{20})], \quad (30)
\]

\[
u_1^{(j+1)} = H_{\nu_1 \nu_2}^{-1} \left[R^H (\nu_1^{(j+1)} - \eta_{21}) + \frac{\nu_2}{\nu_1} (x^{(j)} + \eta^{(j)}_{22}) \right], \quad (31)
\]

\[
x^{(j+1)} = H_{\nu_2}^{-1} \left[S^H (\nu_1^{(j+1)} - \eta_{20}) + \frac{\nu_2}{\nu_1} (\nu_2^{(j+1)} - \eta_{22}) \right], \quad (32)
\]

where

\[
H_{\mu} = F^H F + \mu I_{NL}, \quad (33)
\]

\[
H_{\nu_1 \nu_2} = R^H R + \frac{\nu_2}{\nu_1} I_{N}, \quad (34)
\]

\[
H_{\nu_2} = S^H S + \nu_2 I_{N}. \quad (35)
\]

We show below that these matrices can be inverted thereby avoiding the more difficult inverse \(G^{-1} \) in (17). We have proposed using \(A \) to ensure suitable balance between the various constraints (equivalently, the block-rows of \(B \)) since the block-rows of \(B \) may be of different orders of magnitude. We can adjust \(\nu_{1,2} \) to regulate the condition numbers of \(H_{\nu_1 \nu_2} \), and \(H_{\nu_2} \) to ensure stability of the inverses in (31)-(32). Using general positive definite diagonal matrices in place of weighted identity matrices inside \(A \) is possible but would complicate the structure of the matrices \(H_{\nu_1 \nu_2} \), and \(H_{\nu_2} \) in (33)-(35), respectively.

2) Implementing the Matrix Inverses: When the \(k \)-space samples lie on a Cartesian grid, \(F \) corresponds to a sub-sampled DFT matrix in which case we solve (30) exactly using FFTs. For non-Cartesian \(k \)-space trajectories, computing \(u_0^{(j+1)} \) requires an iterative method. For example, a CG-solver (with warm starting) that implements products with \(F^H F \) using gridding-based techniques \([22] \) can be used for (30). Alternatively, we can exploit the special structure of \(F^H F \) (of size \(NL \times NL \)) to implement (30) using the technique proposed in (30). We have that

\[
F^H F = Z^H Q Z, \quad (36)
\]

where \(Z \) is a \(2NL \times NL \) zero-padding matrix and \(Q \) is a \(2NL \times 2NL \) circulant matrix \(\left[41 \right] \). Then, we write \(H_{\mu} \) as

\[
H_{\mu} = Z^H Q \frac{1}{4} Z + \frac{\mu}{4} I_{NL}, \quad (30)
\]

where \(Q_1 = Q + \frac{\mu}{4} I_{2NL} \). We have split the factor \(\mu I_{NL} \) in \(H_{\mu} \) because \(Q \) may have a non-trivial null-space and therefore may not be invertible. Letting \(w \) denote the quantity within the
brackets on the r.h.s. of (30), we apply the Sherman-Morrison-Woodbury matrix inversion lemma (MIL) to H^{-1}_μ in (30) and obtain

$$u_0^{(j+1)} = H^{-1}_\mu w = \frac{2}{\mu} w - \frac{4}{\mu^2} Z H^T r,$$

(37)

where r must be obtained by solving

$$\left(Q_1^{-1} + \frac{2}{\mu} Z Z^H\right) r = Z w.$$

(38)

Since Q_1 is circulant and ZZ^H is a diagonal matrix containing either ones or zeros (due to the structure of Z) [30], we use a circulant preconditioner of the form $(Q_1^{-1} + \alpha I_{2NL})^{-1}$ (with $\alpha \approx 0$) to quickly solve (38) using the CG algorithm. The advantage here is that the matrices in the l.h.s. of (38) and the preconditioner are either circulant or diagonal, which simplifies CG-implementation.

When the regularization matrices, R_{pq}, $p = 1, \ldots, P$ and $q \leq q$, are shift-invariant (or circulant), $R^H R$ is also shift-invariant. Then, we compute $H^{-1}_{\nu_1 \nu_2}$ efficiently using FFTs. In the case where a R_{pq} is not shift-invariant (e.g., an orthonormal wavelet transform), we apply a few CG iterations with warm-starting to solve (31). Finally, since $S^H S$ is diagonal, we see that H_{ν_2} is also diagonal and is therefore easily inverted.

Splitting the k-space and spatial information, components in the data-fidelity term have led to separate matrices inversions—H^{-1}_μ and $H^{-1}_{\nu_2}$ involving the components $F^H F$ and $S^H S$, respectively. Without u_0, one would have ended up with a term $S^H F^H S$ (as in G_μ) that is more difficult to handle using MIL compared to $F^H F$. Using u_2 decouples the terms $R^H R$ and $S^H S$, thereby replacing a numerically intractable matrix inverse of the form $(S^H S + \alpha R^H R)^{-1}$ with tractable ones as H^{-1}_μ and $H^{-1}_{\nu_2}$.

3) AL Algorithm for Problem P2: Combining the results from Sections IV-B1 and IV-B2, we present our second AL algorithm that solves problem P2, and thus P0.

AL-P2: AL Algorithm for solving problem P2

1. Select $x^{(0)}$, $u_0^{(0)} = x^{(0)}$, $\nu_1 > 0$, and $\mu > 0$.
2. Precompute $F^H d_1$; set $\eta_{20, 21, 22} = 0$ and $j = 0$.

Repeat:

3. Compute $u_{0}^{(j+1)}$ from (30) using FFTs on (37).
4. Compute $u_{1}^{(j+1)}$ using an appropriate technique as described in Section IV-A2 for problem (27).
5. Compute $u_{2}^{(j+1)}$ using (31).
6. Compute $x^{(j+1)}$ using (32).
7. $\eta_{20}^{(j+1)} = \eta_{20}^{(j)} - (u_{0}^{(j+1)} - S x^{(j+1)})$.
8. $\eta_{21}^{(j+1)} = \eta_{21}^{(j)} - (u_{1}^{(j+1)} - R u_{2}^{(j+1)})$.
9. $\eta_{22}^{(j+1)} = \eta_{22}^{(j)} - (u_{2}^{(j+1)} - x^{(j+1)})$.
10. Set $j = j + 1$.

Until stop-criterion is met.

With the possible exception of Steps 3 and 4, all updates in AL-P2 are exact (for circulant $\{R_{pq}\}$) unlike AL-P1 because of the way we split the variables in P2.

Although Steps 2-4 of AL-P1 and Steps 2-6 of AL-P2 do not exactly accomplish Step 2 of AL, we found in our experiments that both AL-P1 and AL-P2 work well, corroborating the numerical evidence from [15].

TABLE I

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Time Taken (in seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AL-P1-4</td>
<td>0.21</td>
</tr>
<tr>
<td>AL-P1-6</td>
<td>0.27</td>
</tr>
<tr>
<td>AL-P1-10</td>
<td>0.35</td>
</tr>
<tr>
<td>AL-P2</td>
<td>0.15</td>
</tr>
<tr>
<td>NCG-1</td>
<td>0.21</td>
</tr>
<tr>
<td>NCG-5</td>
<td>0.30</td>
</tr>
<tr>
<td>MFISTA-1</td>
<td>0.22</td>
</tr>
<tr>
<td>MFISTA-5</td>
<td>0.53</td>
</tr>
<tr>
<td>MFISTA-20</td>
<td>1.51</td>
</tr>
</tbody>
</table>

C. Choosing μ- and ν-values for the AL algorithms

Although μ- and ν-values do not affect the final solution to P0, they can affect the convergence rate of AL-P1 and AL-P2. For AL-P2, we set the parameters μ, ν_1, and ν_2 so as to achieve condition numbers $\kappa(H_{\mu})$, $\kappa(H_{\nu_1 \nu_2})$, and $\kappa(H_{\nu_2})$ of H_{μ}, $H_{\nu_1 \nu_2}$, and H_{ν_2}, respectively—that result in fast convergence of the algorithm. Because of the presence of identity matrices in (33), $\kappa(H_{\nu_1 \nu_2})$, $\kappa(H_{\nu_2})$, and $\kappa(H_{\nu_2})$ are decreasing functions of μ, ν_1, and ν_2, respectively. Choosing μ such that $\kappa(H_{\mu}) \rightarrow 1$ would require a large μ and accordingly, the influence of self-adjoint component $F^H F$ in H_{μ} diminishes H_{μ} becomes “over-regularized”; we observed in our experiments that this phenomenon would result in slow convergence of AL-P2. On the other hand, taking $\mu \rightarrow 0$ would increase $\kappa(H_{\mu})$ making H^{-1}_μ numerically unstable (because $F^H F$ may have a non-trivial null-space). The same trend also applies to $\kappa(H_{\nu_1 \nu_2})$ and $\kappa(H_{\nu_2})$ as functions of ν_1 and ν_2, respectively. We found empirically that choosing μ, ν_1, and ν_2 such that $\kappa(H_{\mu})$, $\kappa(H_{\nu_1 \nu_2})$, and $\kappa(H_{\nu_2}) \in [10, 36]$ generally provided good convergence speeds for AL-P2 in all our experiments.

In the case of AL-P1, the components $S^H F^H S$ and $R^H R$ balance each other in preventing G_μ (18) from having a non-trivial null-space—the condition number $\kappa(G_\mu)$ of G_μ therefore exhibits a minimum for some $\mu_{\text{min}} > 0$: $\mu_{\text{min}} = \arg \min_\mu \kappa(G_\mu)$. It was suggested in [18] that μ_{min} can be used for split-Bregman-like schemes such as AL-P1 for ensuring quick convergence of the CG algorithm applied to (4) (Step 4 of AL-P1). However, we observed that selecting $\mu = \mu_{\text{min}}$ did not consistently yield fast convergence of the AL-P1 algorithm in our experiments (see Section VI-B). So, we resorted to a manual selection of μ for AL-P1 for reconstructing one slice of a 3-D MRI volume, but applied the same μ-value for reconstructing other slices.

V. EXPERIMENTS

A. Experimental Setup

In all our experiments, we considered k-space samples on a Cartesian grid, so F_u corresponds to an undersampled version of the DFT matrix. We used Poisson-disk-based sub-sampling.
which provides random, but nearly uniform sampling that is advantageous for CS-MRI [33].

We compared the proposed AL methods to NCG (which has been used for CS-(p)MRI [10], [11]) and to the recently proposed MFISTA [13]—a monotone version of the state-of-the-art Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [34]. For the minimization step [13, Equation 5.3] in MFISTA, we applied the Chambolle-type algorithm developed in [35] that accommodates general regularizers of the form (6). We used the line-search described in [36] for NCG that guarantees monotonic decrease of $J(x)$. NCG also requires a positive “smoothing” parameter, ϵ (as indicated in [10, Appendix A]) to round-off “corners” of non-smooth regularization criteria; we set $\epsilon = 10^{-8}$ which seemed to yield good convergence speed for NCG without compromising the resulting solution too much (see Section VI-A). We implemented the following algorithms in MATLAB:

- **MFISTA-N** with N iterations of [35, Equation 6],
- **NCG-N** with N line-search iterations,
- **AL-P1-N** with N CG iterations at Step 4, and
- **AL-P2**.

We conducted the experiments on a dual quad-core Mac Pro with 2.67 GHz Intel processors. Table I shows the per-iteration computation time of the above algorithms for each experiment.

Since our goal is to minimize the cost function J (which determines the image quality), we focused on the speed of convergence to a solution of P_0. For all algorithms, we quantified convergence rate by computing the normalized ℓ_2-distance between $x^{(j)}$ and the limit $x^{(\infty)}$ (that represents a
solution of P_0) given by
\[
\xi(j) = 20 \log_{10} \left(\frac{\|x^{(j)} - x^{(\infty)}\|_2}{\|x^{(\infty)}\|_2} \right). \tag{39}
\]

We obtained $x^{(\infty)}$ in each experiment by running thousands of iterations of MFISTA-20 because our implementation of MFISTA (with Chambolle-type inner iterations [35]) does not require rounding the corners of non-smooth regularization unlike NCG, and therefore converges to a solution of P_0. Since the algorithms have different computational loads per outer-iteration, we evaluated $\xi(j)$ as a function of algorithm run-time t_j (time elapsed from start until iteration j). We used the square-root of sum of squares (SRSoS) of coil images (obtained by taking inverse Fourier transform of the undersampled data after filling the missing k-space samples with zeros) as our initial guess $x^{(0)}$ for all algorithms. For the purpose of illustration, we selected the regularization parameter $\{\lambda_q\}$ such that minimizing the corresponding J in (2) resulted in a visually appealing solution $x^{(\infty)}$. In practice, quantitative methods such as the discrepancy principle or cross-validation-based schemes may be used for automatic tuning [37] of regularization parameters. We adjusted μ for AL-P1 and ν_1 and ν_2 for AL-P2 as described in Section IV-C: In particular, we universally set
\[
\kappa(H_{\mu}) = 24, \quad \kappa(H_{\nu_1\nu_2}) = 12, \tag{40}
\]
\[
\kappa(H_{\nu_2}) = \min\{0.9\kappa(S^H S), 12\} \tag{41}
\]
for AL-P2 in all our experiments, which provided good results for different undersampling rates and regularization settings (such as ℓ_1-norm of wavelet coefficients, TV and their combination) as demonstrated next.

B. Experiments with Synthetic Data

We considered a noise-free 256×256 T2-weighted MR image obtained from the Brainweb database [38]. We used a Poisson-disk-based sampling scheme where we fully sampled the central 8×8 portion of the k-space; the resulting sampling pattern (shown in Figure 1b) corresponded to 80%
undersampling of the k-space. We simulated data from $L = 4$ coils whose sensitivities were generated using the technique developed in [39] (SoS of coil sensitivities is shown in Figure 1c). We added complex zero-mean white Gaussian noise (with a $1/r$-type correlation between coils) to simulate noisy correlated coil data of 30 dB SNR. This setup simulates data acquisition corresponding to one 2-D slice of a 3-D MRI volume where the k-space sampling pattern in Figure 1b is in the phase-encode plane.

We utilized the true sensitivities and inverse noise covariance matrix (i.e., those employed for simulating data generation) to compute \hat{S} in (4). We chose $\Psi(x) = \|Wx\|_{\ell_1}$, where W represents 2 levels of the undecimated Haar-wavelet transform (with periodic boundary conditions) excluding the ‘scaling’ coefficients. Using ℓ_1-regularization has reduced aliasing artifacts and restored most of the fine structures in the regularized reconstruction $x^{(\infty)}$ (Figure 1d) compared to the SRSoS image (Figure 1b). Figure 2 compares NCG, MFISTA and the proposed AL-P1 and AL-P2 schemes in terms of speed of convergence to $x^{(\infty)}$, showing $\xi(j)$ as a function of t_j for the above algorithms. Both AL methods converge significantly faster than NCG and MFISTA.

C. Experiments with In-Vivo Human Brain Data

In our next experiment, we used a 3-D in-vivo human brain data-set acquired from a GE 3T scanner ($T_{R} = 25$ ms, $T_{E} = 5.172$ ms, and voxel-size $= 1 \times 1.35 \times 1$ mm3), with a 8-channel head-coil. The k-space data corresponded to $256 \times 144 \times 128$ uniformly-spaced samples in the k_x and k_y (phase-encode plane), and k_z (read-out) directions, respectively. We used the iFFT-reconstruction of fully-sampled data collected simultaneously from a body-coil as a reference for quality. Two slices—Slice 38 and 90—(along x-y direction) of the reference body-coil image-volume are shown in Figures 3a and 3b, respectively. To estimate the sensitivity maps S corresponding to a slice, we separately optimized a quadratic-regularized least-squares criterion (similar to [40]) that encouraged smooth maps which “closely” fit the body-coil image to the head-coil images. We estimated the inverse of noise covariance matrix K_x from data collected during a dummy scan where only the static magnetic-field (and no RF excitations) was applied and computed S using (4).

We then performed regularized SENSE-reconstruction of 2-D slices (x-y plane)—Slice 38 and 90—from undersampled
Fig. 5. Experiment with in-vivo human brain data: Plot of $\xi(j)$ as a function time t_j for NCG, MFISTA, AL-P1, and AL-P2 for the reconstruction of (a) Slice 38, and (b) Slice 90. The AL penalty parameter μ was manually tuned for fast convergence of AL-P1 for reconstructing Slice 38, while the same μ-value was used in AL-P1 for reconstructing Slice 90. For AL-P2, the “universal” setting \[\mu = 10^{-6} \] was used for reconstructing both slices. It is seen that the AL algorithms converge much faster than NCG and MFISTA in both cases. These results also indicate that the proposed condition-number-setting \[\mu = 10^{-6} \] provides agreeably fast convergence of AL-P2 for reconstructing multiple slices of a 3-D volume.

phase-encodes: For experiments with both slices, we applied the Poisson-disk-sampling pattern in Figure 3b (corresponding to 16% of the original 256×144 k-space samples) in the phase-encode plane and used a regularizer that combined ℓ_1-norm of 2-level undecimated Haar-wavelet coefficients (excluding the ‘scaling’ coefficients) and TV-regularization. The reconstructions, $x(\infty)$, corresponding to Slice 38 and 90 were obtained by running several thousands of iterations of MFISTA-20 and are shown in Figures 3l and 3j, respectively. Aliasing artifacts and noise have been suppressed considerably in the regularized reconstructions compared to corresponding SRSoS images (Figures 3i and 3h, respectively). We manually adjusted μ for AL-P1 for reconstructing Slice 38 and used the same μ-value for reconstructing Slice 90 using AL-P1. For AL-P2, we used the “universal” setting \[\mu = 10^{-6} \] for reconstructing both slices. We also ran NCG and MFISTA in both cases and computed ξ, Figures 5l and 5j plot $\xi(j)$ for the all algorithms as a function of t_j. The AL algorithms converge faster than NCG and MFISTA in both cases. These figures also illustrate that choosing μ, ν_1 and ν_2 using the proposed condition-number-setting \[\mu = 10^{-6} \] provides agreeably fast convergence of AL-P2 for reconstructing multiple slices of a 3-D volume. We also obtained results (not shown) in favor of AL-P2 similar to those in Figures 5l and 5j when we repeated the above experiment (with Slices 38 and 90) with the same sampling and regularization setup but using sensitivity maps estimated from low-resolution body-coil and head-coil images obtained from iFFT-reconstruction of corresponding central 32×32 phase-encodes.

VI. DISCUSSION

A. Influence of Corner-Smoothing Parameter on NCG

Section V-A mentioned that implementing NCG requires a parameter $\epsilon > 0$ to round-off the “corners” of non-smooth regularizers. While ϵ is usually set to a “small” value in practice, we observed in our experiments that varying ϵ over several orders of magnitude yielded a trade-off (results not shown) between the convergence speed of NCG and the limit to which it converged. Smaller ϵ yielded slow convergence speeds, probably because $\|\nabla J\|_2$ (norm of the gradient of the cost function in (2)) is large for non-smooth regularization criteria with sparsifying operators and correspondingly, many NCG-iterations may have to be executed before a satisfactory decrease of $\|\nabla J\|_2$ can be achieved. For sufficiently small ϵ, running numerous NCG-iterations would approach a solution of P_0. On the other hand, increasing ϵ accordingly decreases the gradient-norm thereby accelerating convergence. However, for larger ϵ-values, the gradient no longer corresponds to the actual ∇J and NCG converges to something that is not a solution of P_0 (e.g., Figure 5). In our experiments, we found that $\epsilon \in [10^{-8}, 10^{-4}]$ provided reasonable balance in the above trade-off. No such ϵ is needed in MFISTA and AL methods.

B. AL-P1 versus AL-P2

Increasing the number of CG iterations, N in AL-P1-N, leads to a more accurate update $x^{(j+1)}$ at Step 4 of AL-P1 thereby decreasing AL-P1’s run-time to convergence (e.g., Figures 2 and 5h). However, at some point the computation load dominates the accuracy gained resulting in longer run-time to achieve convergence—this is illustrated in Figure 5b where AL-P1-6 is slightly faster than AL-P1-10.

Selecting $\mu = \mu_{\text{min}}$ did not consistently provide fast convergence of the split-Bregman-like AL-P1 algorithm in our experiments as remarked in Section V-C. Our understanding of this phenomenon is that μ_{min} can be extremely large or small whenever the elements of $S^H F^H F S$ and $R^H R$ in G_μ \[\mu \] are of different orders of magnitude (because S can
vary arbitrarily depending on the scanner or noise level). Correspondingly, $\frac{\max}{\min}$ in (20) becomes very small or large, which does not favor the convergence speed of AL-P1.

In devising AL-P2, we circumvented the above problem by introducing additional splitting variables that lead to simpler matrices H_μ, $H_{\nu_1\nu_2}$, and H_{ν_2} whose condition numbers $\kappa(H_\mu)$, $\kappa(H_{\nu_1\nu_2})$, and $\kappa(H_{\nu_2})$, can be adjusted individually to account for differing orders of magnitude of F, R, and S, respectively. Choosing (μ, ν_1, ν_2) based on condition numbers provided good convergence speeds for AL-P2 in our experiments (including those in Sections V-B and V-C) with different synthetic data-sets and a real breast-phantom data-set acquired with a Philips 3T scanner (results not shown). Furthermore, almost all the steps of AL-P2 are exact which makes it more appealing for implementation. With proper code-optimization, we believe the computation-time of AL-P2 can be reduced more than that of AL-P1.

C. Constraint Involving the Data

Recently, Liu et al. [14] applied a Bregman iterative scheme to TV-regularized SENSE-reconstruction, which converges to a solution of the constrained optimization problem

$$\min_{x} \Psi(Rx) \text{ subject to } FSx = d$$

(42)

for some regularization Ψ. Although this paper has focused on faster algorithms for solving the unconstrained problem (P0), we can extend the proposed approaches to solve (42) by including a constraint involving the data. For instance, (42) can be reformulated as

$$\min_{u_1, u_2, u_3, x} \Psi(u_2) \text{ subject to } d = Fu_1, \ u_1 = Sx, \ u_2 = Ru_3, \text{ and } u_3 = x,$$

(43)

where we have introduced auxiliary variables to decouple the data-domain components F and S, and the regularization component R. The AL technique (Section III) can then be applied to (43) noting that it can be written in the general form of (7) as

$$u = \left[\begin{array}{c} u_1 \\ u_2 \\ u_3 \\ x \end{array} \right], \ b = \left[\begin{array}{c} d \\ 0 \\ 0 \end{array} \right], \ \ \ \ \ \ \ \ \ C = \Lambda_1 \left[\begin{array}{ccc} F & 0 & 0 \\ 0 & 0 & -S \\ 0 & I_R & -R \\ 0 & 0 & I_N \end{array} \right],$$

$$f(u) = \Psi(u_2), \text{ where } \Lambda_1 \text{ is a suitable weighting matrix similar to } \Lambda \text{ administered in P2, respectively. The AL algorithm (Section III) applied to (43) will converge to a solution that satisfies the constraint in (42).}$$

VII. SUMMARY AND CONCLUSIONS

The augmented Lagrangian (AL) framework constitutes an attractive class of methods for solving constrained optimization problems. In this paper, we investigated the use of AL-based methods for MR image reconstruction from undersampled data using sensitivity encoding (SENSE) with a general class of regularization functional. Specifically, we formulated regularized SENSE-reconstruction as an unconstrained optimization problem in a penalized-likelihood framework and investigated two constrained versions—equivalent to the original unconstrained problem—using variable splitting. The first version, P1, is similar to the split-Bregman approach [15] where we split only the regularization term. In the second version, P2, we proposed to split the components of the data-fidelity term as well. These constrained problems were then tackled in the AL framework. We applied alternating schemes to decouple the minimization of the associated AL functions and developed AL algorithms AL-P1 and AL-P2, respectively, thereof.

The convergence speeds of the above AL algorithms is chiefly determined by the AL penalty parameter μ. Automatically selecting μ for fast convergence of AL-P1 still remains to be addressed for regularized SENSE-reconstruction. This is a significant practical drawback of AL-P1. However, for AL-P2 we provided an empirical condition-number-rule to select μ for fast convergence. In our experiments with synthetic and real data, the proposed AL algorithms—AL-P1 and AL-P2 (with μ determined as above)—converged faster than conventional (NCG) and state-of-the-art (MFISTA) methods. The algebraic developments and numerical results in this paper indicate the potential of using variable splitting and alternating minimization in the AL formalism for solving other large-scale constrained/unconstrained optimization problems.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewer for suggesting the reformulation of the problem in equation (5). Dr. Jon-Fredrik Nielsen, University of Michigan, for providing the in-vivo human brain data-set used in the experiments and Michael Allison, University of Michigan, for carefully proofreading the manuscript.

REFERENCES

