A Temporal Model for Task-based Functional MRI Reconstruction
Claire Yilin Lin*, Douglas C. Noll†, Jeffrey A. Fessler‡
*Mathematics, †BME, and ‡EECS Departments, University of Michigan, MI, USA

Introduction
- Goal: better identify task-activated brain regions in task-based fMRI.
- Model: to separate task-correlated signal from non-task background.
- Novelty: use a priori knowledge of activation waveform shape, and temporal smoothness assumption of background.
- Merit: advance model-based reconstruction from undersampled k-space.

Problem Formulation
Reconstruct MR image series from undersampled k-space data:

\[\text{argmin}_{\lambda} \frac{1}{2} \| EX - d \|^2 + \lambda R(X) \]

Where:
- \(E \): data acquisition operator (where \(N_v \) = number of voxels, \(N_t \) = number of time frames, \(N_s \) = number of k-space samples)
- \(d \): desired image series
- \(R(\cdot) \): regularizer with parameter \(\lambda \)

Existing Models
- Low-Rank Plus Sparse Decomposition (L+S) [1], [2]
 \[\text{argmin}_{L,S} \frac{1}{2} \| EL + S - d \|^2 + \lambda_1 \| L \|_2 + \lambda_2 \| TS \|_2 \]
- Low-Rank Plus Task-Based Decomposition (L+UV) [3]
 \[\text{argmin}_{L,U, V} \frac{1}{2} \| EL + UV - d \|^2 + \lambda_1 \| L \|_F \]

Proposed Model
Smooth Background Plus Spatial-Temporal Decomposition (B+UV)

\[\text{argmin}_{B,U,V} \frac{1}{2} \| EB + UV - d \|^2 + \lambda_1 \| B \|_F \]

B: temporally smooth non-task background
U: estimated task spatial map
V: temporal basis with activation waveform

Optimization Algorithm
- Compatibility of vectorization with Kronecker product:
 \(\text{vec}(UV) = (V^T \otimes I) \text{vec}(U) \)
- Write \(E(UBV) = E(BV) \), \(X \sim [\text{vec}(B)] \), \(D = [D_0] \), then (1) becomes
 \[\min_{\lambda} \frac{1}{2} \| E \| X - d \|^2 + \frac{\lambda_1}{2} \| D X \|^2 \]
- Practical implementation: conjugate gradient (CG) method

Advantage over existing models:
- L+S: incoherence between \(L \) and \(S \) might not apply, and temporal Fourier sparsity assumption of \(S \) might not capture activation
- L+UV: both terms are low rank, might not separate signal from background
- B+UV: incoherence between smooth background signal \(B \) and task \(UV \)

Results
Simulated task: resting-state fMRI with 2 activated Gaussian regions of interest (ROI) in k-space, 32 coils, \(N_v = 100 \times 100, N_s = 300 \), 4× undersampling

![Figure 1](image1.png)

Finger Tapping Task: 3D task fMRI, 32 coils, \(N_v = 72 \times 48 \times 10, N_s = 235 \), 4× undersampling

![Figure 2](image2.png)

![Figure 3](image3.png)

![Figure 4](image4.png)

Conclusion
- Proposed B+UV model improves activation detection compared with existing fMRI models, as seen by higher AUC values.
- B+UV components separate task signal and non-task background.
- Solving B+UV is computationally advantageous with simple CG updates.

Acknowledgement
This work is supported in part by NIH grant R01 EB023618. We thank Amos Cao and Michelle Karker at the University of Michigan for the fMRI datasets.

References