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Introduction
A direct brain interface (DBI) is defined as a human−computer interface that

accepts voluntary commands directly from the brain. The University of Michigan DBI is
based on the detection of event related activity in electrocorticogram (ECoG). The
movements used here are not prompted by a cue, thus the DBI must detect the execution
of a particular movement without the knowledge of when that movement might occur.  

Two distinct forms of neural activity have been observed in ECoG during the
preparation and execution of a movement. Event−related potentials (ERPs) are time−
locked and phase−locked to an externally or internally paced event and can be
understood in terms of the response of a stationary system with a specific neuronal
circuitry. Event−related desynchronization and synchronization (ERD/ERS) are also
time−locked, but not phase−locked, and can be understood as an alteration in the ongoing
neural activity resulting from changes in the functional connectivity within the cortex or
from changes in various feedback loops [1]. These phenomena may occur individually
or linked together spatially and temporally [2].

Methods
The current method for the DBI is based on the single channel detection of ERPs

in ECoG [3]. Averaged ECoG templates are developed using triggered averaging, where
the trigger is directly derived from some aspect of the external movement. For detection,
normalized cross−correlation is performed between the template formed from a training
set and the continuous ECoG from the test set, and the result is compared to a set
threshold. 

This correlation detector is optimal for the model assuming a known signal in
additive white Gaussian noise. Experimental observations, however, show that the noise
is not white as it is neither uncorrelated nor stationary (see Results). For this model
assuming "colored" noise, it can be shown that the optimal detector depends on the
covariance of the time samples. The problem with this model is that, because the ERP
may last several seconds, we can never expect to have enough event observations from a
given subject to estimate the full covariance matrix. Thus, there is no way to implement
the optimal detector.

An alternative would be to improve the performance of the detection scheme by
using other information present in the ECoG. Neural activity such as ERD/ERS is not
phase−locked and, therefore, is absent from the averaged template used in the Gaussian
model described above. By using additional features, we can exploit information in the
signal that is ignored by the correlation detector. Two feature sets that have been
investigated for this purpose are the Hjorth parameters [4] and the adaptive
autoregressive parameters [5].

Results
We have identified that both increases and decreases occur in the intertrial

variance of the ECoG data that are correlated with the event. This confirms that the



noise in the additive Gaussian noise model is not white, and thus the correlation detector
is not optimal. 

Preliminary results using the additional parameter sets indicate that detection
performance may increase on average when certain features are combined with the ERP
information. This indicates that additional signal information exists in the ECoG that is
not present in the ERP.

Discussion
If we can determine a simplified model for the data by assuming some underlying

structure for the covariance of the additive Gaussian noise, then it may be possible to
estimate a covariance matrix from the observations that is more descriptive than that
assuming white noise. Using this information, an improved detector based on the ERP
could then be developed. Future improvements are also expected to result from the
identification of the particular features in the data that are most predictive of an event.
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