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Abstract— This paper describes new approximations for the variance
and covarianceof images reconstructed by penalized-likelihood (PL) meth-
ods, and presents a simple procedure for computing those approxima-
tions. The proposed approximations require less computation than the
PL estimates themselves. The method enables the display of variance im-
ages, which can provide an indication of uncertainty that may be help-
ful in medical diagnosis. Using the approximations, we show analytically
that penalized-likelihood estimates have lower variance than penalized un-
weighted least-squares methods at matched spatial resolution, confirming
previous empirical comparisons. Simulations of positron emission tomog-
raphy (PET) scans illustrate the accuracy of the proposed variance approx-
imations in nonzero image pixels.

I. INTRODUCTION

must discuss Qi [1] !!!
When estimating unknown parameters from noisy data,

usually one would like to have not only point estimates
of the parameters, but also some measure of uncer-
tainty, such as confidence intervals. In conventional to-
mographic image reconstruction using the filtered back-
projection (FBP) method, measures of statistical uncer-
tainty are rarely used or reported (e.g. displayed), except
when needed for certain post-processingprocedures [2–4].
One possible reason for this absence may be the fact that
since FBP is a linear, shift-invariant method, the variances
of the reconstructed pixel values are fairly uniform spa-
tially, and hence relatively uninteresting.

Statistical methods for image reconstruction are now
being used routinely for certain types of SPECT and PET
scans, e.g. [5, 6]. These reconstruction methods are non-
linear and shift-variant, so the resulting image variance
can be highly space-variant [7–12]. Thus it may be de-
sirable to be able to augment displays of reconstructed
images with displays of variance images to provide an
indication of uncertainty to the physician making the di-
agnostic interpretation. Variance and covariance informa-
tion should also be useful for purposes such as general-
izing Huesman’s weighting method [2, 4] from FBP to
penalized-likelihood estimators, for searching for statisti-
cally significant regions in brain activation studies [13,14],
and for statistically-based image post-processing methods
[15]. This paper presents a simple method for comput-
ing reasonably accurate approximations to the variances of
image pixel values in images reconstructed by penalized-
likelihood methods.

This work was supported in part by NIH grants CA-60711 and CA-54362 and
by the Whitaker Foundation.

The variance calculated here is that due to Poisson
noise in the emission sinogram measurements. The anal-
ysis could be extended to account for additional variance
caused by noisy attenuation correction factors, random co-
incidences, scatter, etc. Physiological factors such as pa-
tient motion or between-subject variability are not consid-
ered here, and are probably very difficult to quantify.

In most statistical methods for image reconstruction,
one estimates the unknown image parametersλ =

[λ1, . . . , λp]
′ from a realizationy = [y1, . . . , yn]′ of the

noisy measurementsY by maximizing an objective func-
tion:

λ̂ = λ̂(y) = argmax
λ≥0
Φ(λ, y). (1)

We have previously derived [12] the following general ap-
proximation for the covariance of such estimators:

Cov
{
λ̂
}
≈ [−∇20Φ(λ̌, Ȳ )]−1 ∇11Φ(λ̌, Ȳ ) Cov{Y } ·

[∇11Φ(λ̌, Ȳ )]′ [−∇20Φ(λ̌, Ȳ )]−1, (2)

where “′” denotes matrix transpose and

Ȳ = Eλtrue[Y ]

λ̌ = λ̂(Ȳ ).

Using the methods described in [12], one can use the ap-
proximation (2) fairly easily to calculate the variance of
selected pixels of interest, e.g.

Var
{
λ̂j

}
= [Cov

{
λ̂
}
]jj = e

′
j Cov

{
λ̂
}
ej

for some pixelj, whereej is thejthe unit vector of length
p. However, for display of a variance image one must

compute allp of the diagonal elements ofCov
{
λ̂
}

. The

methods of [12] requireO(p) computation per diagonal
element, so the overall computation for a variance image
would beO(p2), which is computationally infeasible for
realistic image sizes. In this paper we derive simpler ap-
proximations that reduce the required computation to only
O(p), provided certain system-dependent factors are pre-
computed (which only needs to be done once). The re-
sulting computation time is considerably less than that re-
quired for computinĝλ itself.
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We focus on emission tomography, although the meth-
ods also apply to transmission scans and to related inverse
problems. We assume the usual independent-Poisson sta-
tistical model for the emission measurements [16]:

Yi ∼ Poisson
{
Ȳi(λ

true)
}

(3)

Ȳi(λ) =
∑
j

cigijλj + ri, (4)

whereG = {gij} represents the geometric component of
the system response [17], theci’s represent ray-dependent
factors such as attenuation and detector efficiency, and the
ri’s denote additive background events such as random
coincidences. These nonnegative factors are all assumed
known.

Under these assumptions, the log-likelihood is

L(λ, y) =

n∑
i=1

yi log Ȳi(λ)− Ȳi(λ), (5)

neglecting constants independent ofλ. We focus on
penalized-likelihood image reconstruction methods, for
which the objective function has the form:

Φ(λ, y) = L(λ, y)− βR(λ), (6)

whereR(λ) is a roughness penalty included for regular-
ization. The parameterβ controls the resolution/noise
tradeoff [17].

The following general form [18] expresses most of the
convex penalty functions that have been proposed for reg-
ularization of imaging problems:

R(λ) =

K∑
k=1

ψk([Cλ− c]k), (7)

whereC is a K × p matrix andc ∈ R
K, for some

user-defined numberK of soft “constraints” of the form
[Cλ]k ≈ ck. The standard roughness penalty, which pe-
nalizes differences between neighboring pixel values, is
the special case of (7) whereK is the number of pairs
of neighboring pixels [19, 20]. We consider general con-
vex nonquadratic functionsψk that are symmetric, twice-
differentiable, and that have bounded, nonzero second
derivatives. The Hessian (matrix of second partial deriva-
tives) of the penalty function is given by

R(λ) = ∇2R(λ) = C ′Dψ̈C, (8)

where Dψ̈ = diag
{
ψ̈k([Cλ− c]k)

}
and ψ̈k(t) =

d2

dt2
ψk(t).

For the penalized-likelihood objective function for
emission tomography, we derived in [12] from (2) that

Cov
{
λ̂
}
≈ [F + βR(λ̌)]−1F [F + βR(λ̌)]−1, (9)

where

F = G′ diag{ui}G (10)

ui = c2i /Ȳi(λ
true). (11)

The matrixF is the Fisher information for estimatingλ
fromY [21].

This paper develops simpler approximations to the co-
variance (9), and demonstrates that they are usefully
accurate. The expressions give further insight into
why weighted statistical methods outperform unweighted
methods for image reconstruction, as illustrated qualita-
tively in [22].

The approximations we present are based on (2), which
does not account for any nonnegativity constraint used in
the reconstruction. Such constraints obviously will lower
the variance of the estimator. In low-count regions where
the nonnegativity constraint is very active, our approxi-
mations will over-estimate the variance. It is generally
preferable to err on the side of over-estimating uncer-
tainty. Nevertheless, developing variance approximations
that account for the nonnegativity constraint in penalized-
likelihoodestimators remains a challenging open problem.
Some progress has been made for iterative maximum-
likelihood algorithms [9,10].

II. REGULARIZED LEAST SQUARES

Before considering the nonlinear Poisson case in Sec-
tion III, we first consider in this section the simpler case
of the linear regularized least-squares (RLS) estimator for
the linear measurement model with white noise. The lin-
ear model can be expressed:

z = Gλtrue + ε,

where the noise covariance is the identity matrix:
Cov{ε} = I. (This assumption isnot adequate for nu-
clear imaging and is only considered in this section for di-
dactic purposes.) The regularized least-squares estimator
minimizes the following objective function:

1

2
‖z −Gλ‖+ β

1

2
λ′R0λ

and can be written explicitly as

λ̂
RLS
= [G′G+ βR0]

−1G′z.
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If Cov{ε} = I then the covariance of̂λ
RLS

is exactly

K(β) = [G′G + βR0]
−1G′G[G′G+ βR0]

−1. (12)

The matrixK(β) is central to the approximations devel-
oped in the next section. In particular, for this hypothetical
scenario, the following term

σj(β) =
√
[K(β)]jj =

√
e′jK(β)ej (13)

would be the standard deviation ofλ̂
RLS
j , where[K(β)]jj

is thejth diagonal entry ofK(β).
If G′G andR0 are approximately circulant matrices,

i.e., corresponding to a shift-invariant imaging system and
penalty function, then two simplifications occur. The first
is thatσj(β) becomes independent ofj, since sums, in-
verses, and products of circulant matrices are also circu-
lant and hence have constant diagonals. The second is
that we can easily compute the diagonal valueσ(β) us-
ing Fourier methods. Thus we can precompute and store a
table of(β, σ(β)) pairs for several values ofβ. This table
needs to be computed only once for a given systemG and
regularizerR0. Then when a subsequent reconstruction is
performed for some new value ofβ, we could determine

the standard deviation of̂λ
RLS

simply by interpolating the
values in the table.

In the circulant case with white noise, a variance image

for λ̂
RLS

is uniform, which is fairly uninteresting. How-
ever, even in the noncirculant case we can precompute
σj(β) from (13) for allj for a few values ofβ, essentially
creatingp tables—one for each pixelj. Then we again
can use table lookup and interpolation to form a variance
image for anyβ that is used subsequently. Using fast-
converging iterative methods [19,23], one can precompute
{σj(β)}

p
j=1 with O(p2) computation; subsequent table-

lookups require onlyO(p) computation.
In the above linear case, the covarianceK(β) is inde-

pendent of the unknown object parametersλ, which en-
ables precomputing the table. In the next section we de-
rive approximations that also reduce the nonlinear case to
a modified form of table lookup.

III. V ARIANCE APPROXIMATIONS

This section presents approximations that simplify the
covariance (9). The first approximation is one that we
have previously used for analyzing the spatial resolution
properties of tomographic image reconstruction in [17].
Roughly speaking, this approximation brings the diagonal
measurement covariance matrix outside of the Fisher in-
formation matrix (10) as follows:

F = G′ diag{ui}G ≈DκG
′GDκ, (14)

whereDκ = diag{κj} and

κj =

√∑n
i=1 g

2
ijui∑n

i=1 g
2
ij

, j = 1, . . . , p. (15)

We also apply an approximate exchange analogous to (14)
to the regularization term in (8):

βD−1κ C
′Dψ̈CD

−1
κ ≈DηC

′CDη, (16)

whereDη = diag
{√

ηj
}

and

ηj =
β

κ2j

∑
k c
2
kjψ̈k([Cλ

true − c]k)∑
k c
2
kj

. (17)

Substituting the approximations (14) and (16) into (9)
and simplifying yields the following intermediate approx-
imation for the covariance of penalized-likelihood esti-
mates:

Cov
{
λ̂
PL
}
≈D−1κ B

−1G′GB−1D−1κ , (18)

where
B = G′G +DηC

′CDη.

Thus for the diagonal terms we have

Var
{
λ̂
PL
j

}
≈
1

κ2j
e′jB

−1G′GB−1ej . (19)

Our third approximation uses the heuristic thatB−1ej
is determined primarily by the valueηj, since typically
theηj’s vary slowly spatially. A convenient mathematical
expression for this property is the following [19]:

B−1ej = [G′G +DηC
′CDη]

−1ej

≈ [G′G + ηjC
′C]−1ej . (20)

Thus by identifyingR0 = C ′C in (12) we have:

e′jB
−1G′GB−1ej ≈ e

′
jK(ηj)ej.

Substituting this approximation into (19) and simplifying
yields:

Var
{
λ̂
PL

j

}
≈
1

κ2j
e′jK(ηj)ej,

or from the definition ofσj in (13):√
Var
{
λ̂
PL

j

}
≈
σj(ηj)

κj
. (21)

Thus we have the following simple recipe for comput-
ing approximate variance images for penalized-likelihood
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estimates. First, precomputeσj(β) as described in Sec-
tion II for each pixelj of potential interest and for a range
of β values usingR0 = C′C. Then for a given recon-
struction problem, compute1 κj and ηj (this requires a
modified backprojection in (15)). Finally, substitute the
κj ’s andηj ’s into (21) to compute the variance (or stan-
dard deviation) for each pixel.

The essence of what we have done is to make approxi-
mations that separate the system component2 (into theσj
expressions which can be precomputed) from the object-
dependent component—theκj ’s andηj ’s. BecauseG and
C are sparse matrices, calculating theκj ’s andηj ’s and
substituting into (21) requires onlyO(p) computation (a
single modified backprojection and one table lookup per
pixel).

A. Quadratic Penalties

The expression simplifies somewhat for quadratic
penalties withψk(t) = t2/2. In this caseψ̈k(t) = 1,
so substituting into (17) yields

ηj = β/κ
2
j .

Substituting into (21) yields:

√
Var
{
λ̂
PL
j

}
≈
σj(β/κ

2
j )

κj
, (22)

so we only need to compute theκj ’s to form a variance
image. We focus on this case hereafter.

B. A Modified Penalty

In [17] we proposed a modified quadratic penalty func-
tion that leads to more uniform spatial resolution than con-
ventional penalty functions. This modification is essen-
tially equivalent to choosing

C = C0Dκ, (23)

whereC0 corresponds to the usual shift-invariant penalty
neighborhood structure for whichC′0C0 is nearly circu-
lant. This modified penalty also leads to an even simpler
approximation for the estimator covariance. Substituting
in (23) and (14) into (9) and simplifying yields:

Cov
{
λ̂
PL
}
≈D−1κ K(β)D

−1
κ , (24)

1The expressions for bothκj and ηj depend on the unknown parameter
λtrue. We have found previously that simply “plugging in” the estimateλ̂
for λtrue works quite well in such expressions [12], so we adopt that approach
here as well.
2In SPECT, the system matrixG also depends on the attenuation properties

of the object. So the method as described is more readily applicable to PET than
SPECT.

provided we identifyR0 = C′0C0 in the definition of
K(β) in (12). We thus have the following approximation
to the standard deviation of the penalized-likelihood esti-

mateλ̂
PL
j for the modified penalty:

√
Var
{
λ̂
PL

j

}
≈
σj(β)

κj
. (25)

If the system is shift-invariant so thatG′G is also approx-
imately circulant, then the numeratorσj(β) is a constant
independent ofj, so the estimator standard deviation is
simply inversely proportional toκj . (We have previously
referred toκj as a measure of “certainty” [17].) Using this
approximation, we can easily compute a “standard devia-
tion map,” where thejth pixel intensity is given by (25).

C. Quadratically Penalized Unweighted Least Squares

FBP is an example of anunweightedestimator: all mea-
surements are treated equally [24]. FBP with a ramp fil-
ter is closely related to an unweighted least-squares es-
timate [25], at least in the special case when the system
matrix G is the Radon transform (i.e. no system blur).
Furthermore, FBP with certain apodizing windows is es-
sentially equivalent to using a quadratically penalized un-
weighted least-squares (QPULS) estimator [26] (without
the nonnegativity constraint). We now derive an approx-
imate expression for the covariance of the QPULS esti-
mator; which in turn approximates the covariance of FBP
images reconstructed with the appropriate window [26].
The QPULS estimator is defined by

λ̂
QPULS

= argmin
λ≥0
‖ỹ −Gλ‖2 + βλ′R0λ

≈ [G′G+ βR0]
−1G′ỹ,

where
ỹ = diag

{
c−1i
}
y − r

is a sinogram precorrected for attenuation, randoms, etc.
Besides nonnegativity, an additional difference between
QPULS and the RLS method described in Section II is that
here we account for the Poisson noise of (3) iny, whereas
in Section II the noise was assumed white. Note that there
is no need to use the modified penalty of [17] for this un-
weighted estimator, since the local impulse response [17]
is easily shown to be

lj = [G′G+ βR0]
−1G′Gej ,

which is independent ofλ. Furthermore, this local im-
pulse response is the same as that of the penalized-
likelihood estimator with the modified penalty (23) [17],



FESSLER: VARIANCE IMAGES 5

so for the sameβ, λ̂
QPULS

and λ̂
PL

have nearly equal
spatial resolution. Except for the nonnegativity constraint,

the estimator̂λ
QPULS

is linear, so an approximation for its
covariance is:

Cov
{
λ̂
QPULS

}
≈

[G′G + βR0]
−1G′ diag{vi}G[G

′G + βR0]
−1,

wherevi = u−1i is the variance of̃yi, andui was defined
in (11). An approximation analogous to (14) is:

G′ diag{vi}G ≈DχG
′GDχ (26)

whereDχ = diag{χj} is diagonal with entries

χj =

√∑n
i=1 g

2
ijvi∑n

i=1 g
2
ij

, j = 1, . . . , p. (27)

The expression forχ2j is closely related to the definition of
“mean effective number of counts” given in equation (41)
of [27]. The above approximation leads to the following
covariance approximation:

Cov
{
λ̂
QPULS

}
≈

[G′G+ βR0]
−1DχG

′GDχ[G
′G + βR0]

−1. (28)

If Dχ were a scaled identity matrix, it would exactly
commute with[G′G + βR0]−1. Since the diagonal ele-
ments ofDχ vary slowly spatially, the matricesDχ and
[G′G + βR0]

−1 approximately commute. Figure 1 illus-
trates that[G′G + βR0]−1ej is well localized near pixel
j, so the following approximation is reasonable:

Dχ[G
′G+ βR0]

−1ej ≈ [G
′G+ βR0]

−1ejχj. (29)

It follows from (29) that

Dχ[G
′G+ βR0]

−1 ≈ [G′G + βR0]
−1Dχ, (30)

which, substituted into (28), leads to the followingapprox-
imation for the covariance of the QPULS estimator:

Cov
{
λ̂
QPULS

}
≈DχK(β)Dχ, (31)

whereK(β) was defined by (12). Thus3 by (13)

√
Var
{
λ̂
QPULS

j

}
≈ χjσj(β). (32)

The results in Section IV demonstrate the accuracy of the
approximation (32).

3In the unregularized case whereβ = 0, one can relate (32) to the variance
bound given by equations (39) and (45) of [27].
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0
]−1 e
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Fig. 1. Typical horizontal profile through the image represented by[G′G +
βR0]

−1ej , in this case forβ = 2−4, for the pixelj at the image center.

D. Comparison of PL with QPULS

We have previously reported several empirical compar-
isons that demonstrate that statistical image reconstruction
methods lead to lower variance images than FBP when
spatial resolution is matched [12, 17, 22, 28, 29]. Using
the variance approximations developed above, we now
present ananalyticalcomparison of penalized-likelihood
with penalized unweighted least-squares (which is very
closely related to FBP as discussed above). This is the
first such comparison that we are aware of. Considering
any value ofβ and any pixelj, then from (25), (14), (32),
and (27), we have:

Var
{
λ̂
PL

j

}
σj(β)

≈

∑n
i=1 g

2
ij∑n

i=1 g
2
ijui
=

1∑n
i=1 hiui

Var
{
λ̂
QPULS

j

}
σj(β)

≈

∑n
i=1 g

2
ijvi∑n

i=1 g
2
ij

=

n∑
i=1

hivi,

wherehi = g2ij/
∑

i′ g
2
i′j. Sincehi ≥ 0 and

∑n
i=1 hi = 1,

it follows from Jensen’s inequality that

Var
{
λ̂
PL

j

}
< Var

{
λ̂
QPULS

j

}
, (33)

with equality if and only if all thevi’s are equal to the
same value, i.e., if and only if the measurements are ho-
moscedastic. Homoscedasticity never occurs for Poisson
measurements in tomography, so the PL estimator will al-
ways have smaller variance than the QPULS estimator at
equivalent spatial resolutions. The results in Section IV
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confirm the advantage of penalized-likelihood estimation
predicted by (33).

The analytical result (33), though approximate, adds
further evidence of the importance of using weighting for
heteroscedastic measurements, either explicitly as in pe-
nalized weighted least-squares estimators [22, 24], or im-
plicitly by using penalized-likelihood estimators. We note
without proof that using analyses similar to the above,
one can show that precorrecting PET data for multiplica-
tive effects such as detector efficiency or attenuation has
the effect of making likelihood-basedestimators more like
an unweighted estimator, thereby destroying some of the
benefits of using statistical methods. Furthermore, al-
though we have focussed on quadratic penalties in de-
riving (33), similar analysis for the case of nonquadratic
(convex) penalty functions leads to the same conclusions.

IV. SIMULATION RESULTS

To evaluate the variance approximations (22), (25),
and (32), we simulated 2000 realizations of PET emis-
sion scans using the emission phantom shown in Fig. 2.
The simulation parameters are identical to those dis-
cussed in [17], so we refer the reader to Section VII
of that paper for details, except that for better realism
we also simulated nonuniform detector efficiencies ac-
cording to a log-normal distribution with standard devi-
ation 0.3. From each of the 2000 sinogram measure-

ment realizations we computed̂λ
QPULS

for the standard

quadratic penalty and̂λ
PL

for both the standard and the

modified quadratic penalty of [17]. We computedλ̂
PL

using 10 iterations of the space-alternating generalized
expectation-maximization (PML-SAGE-3) algorithm of

[30] and λ̂
QPULS

using 10 iterations of the successive
overrelaxation algorithm of [22]. Both algorithms en-
forced the nonnegativity constraint, so some discrepancy
between predicted and empirical results is expected.

From each set of 2000 realizations we computed the
sample standard deviations pixel-by-pixel. These empir-
ical standard deviations are displayed as images in Fig. 3

and Fig. 6. (The standard deviation images forλ̂
PL

with
the standard penalty were very uniform in this case, so
are not shown.) Fig. 3 and Fig. 6 also show thepredicted
standard deviations computed from (25) and (32). Qual-
itatively the agreement is very good within the object’s
interior.

Figures 4, 5, 7 and 8 display profiles through the stan-
dard deviation maps shown in Fig. 3 and Fig. 6, and
through the map (not shown) for PL with the standard
penalty. Despite our use of several approximations that

might seem fairly crude, these (representative) predicted
and empirical results agree remarkably well. The largest
disparity is in the background region outside of the object
and in the cold disk. In these regions the true pixel val-
ues are zero, so the empirical standard deviations are very
small due to the nonnegativity constraint, whereas the pre-
dicted standard deviations are somewhat higher. But over
the nonzero interior of the object the agreement is quite
good.

Figures 7 and 8 compare profiles through the standard
deviation maps for the penalized-likelihood images recon-
structed with the modified quadratic penalty and for un-
weighted penalized least-squares estimates. The spatial
resolution of the two methods was matched using the ap-
proach described in [17]. Figures 7 and 8 also display
a profile through the standard deviation map for FBP re-
constructions of the 2000 realizations using the filter de-
scribed in [17, 26] to match spatial resolution. (We also
used these FBP images to initialize the iterative algo-
rithms.) Note that FBP and QPULS have essentially the
same variance, except outside of the object where the non-
negativity constraint is active for QPULS. More impor-
tantly, the variances of the PL estimatesare significantly
lower than those of the QPULS (and FBP) estimates, as
predicted by our analysis (33). The standard deviations of
QPULS average about 30-40% higher than for PL, which
in terms of scan time or injected dose is quite significant.

The above comparisons focused on the pixel variance,
i.e. the diagonal elements of the image estimate covari-
ance matrix. To evaluate the predicted covariance given
by (24), we computed the autocorrelation function for the
pixel at the image center for both the PL and QPULS es-
timators, i.e., thejth column of the covariance matrix,
wherej is the index of the center pixel. The 2D autocor-
relation functions turned out to be asymmetric, consider-
ably more so than predicted by (24). This is unsurprising
given the analysis of nonuniform and asymmetric spatial
resolution described in [17]. As a more modest compar-
ison, weaveragedthe autocorrelation functions radially,
which reduced them to 1D curves (and averaged out the
asymmetries). Figure 9 compares the empirical autocorre-
lation functions computed from the 2000 measurement re-
alizations with the autocorrelation function predicted from
(24). In terms of these radial averages, the agreement
is again quite good given the number of approximations
involved. However, further work is needed to accurately
represent the asymmetries that are present in the true co-
variance (and in the initial covariance approximation (9))
but that are diminished in the approximations leading to
(24).
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Computing each realization of̂λ
PL

required approx-
imately 3.0 CPU seconds on a DEC AlphaStation 600-
5/333, whereas calculating (25) for all pixels required less
than 1.0 CPU second. Thus the computation time is clini-
cally feasible.

V. DISCUSSION

The principle contribution of this paper is the new ap-
proximations for variance given by (22), (25), and (32),
and the covariance approximations (24) and (31). The
empirical results from simulated PET scans demonstrate
that these approximations are usefully accurate in nonzero
pixels. (We would expect thatE[λ̂j] should be one or two
standard deviations higher than zero for the approxima-
tions to be accurate). These approximations are easily cal-
culated so provide a practical means to display variance
images for indicating uncertainty.

In the nuclear imaging community, there sometimes a
tendency to lump all “iterative” algorithms together, as if it
were the iteration itself that leads to improved image qual-
ity. Our analytical and empirical comparison of penalized-
likelihood with penalized unweighted least-squares esti-
mators, both of which are maximized by iterative algo-
rithms, clearly demonstrates that it is the objective func-
tion that determines image quality, and the iterative algo-
rithm is only a method for maximizing that objective func-
tion. Objective functions that are based on accurate statis-
tical models lead to lower variance estimates, as we have
shown both analytically (33) and with empirical results.

The proposed approximations over-estimate the vari-
ance in low-count regions where the nonnegativity con-
straint is active in a significant fraction of the realizations.
We have confirmed numerically (results not shown) that
this inaccuracy is due to theinitial covariance approxima-
tion (2), as opposed to the subsequent approximations pre-
sented in this paper. Interestingly, in our results the effects
of the nonnegativity constraint appear to be predominately
local, i.e., even though there were many zero-valued pixels
surrounding the object and in the cold disk within the ob-
ject, the variance approximations were very accurate in all
pixels that are a few pixels away from all such zero-valued
pixels.

The foundation for this work is the covariance formula
(2), which is applicable to estimators formed by maximiz-
ing an objective function. Thus this work is inapplicable to
iterative algorithms such as ordered-subsets expectation-
maximization (OS-EM) [31], since unregularized OS-EM
is never run to convergence. The author considers this to
be less a limitation of the analysis method than an inher-
ent shortcoming of the use of unregularized iterations with

ad-hoc stopping rules. It is inherently more difficult to an-
alyze properties such as convergence, spatial resolution,
and noise for unregularized methods, so the behavior of
such methods is harder to predict. Caution would seem
advisable in the clinical use of unpredictable methods.

Future work includes possibly improving the approx-
imations to account for asymmetries in the 2D autocor-
relation functions (perhaps in conjunction with different
penalty functions that reduce those asymmetries), and to
apply the methods in generalizing Huesman’s weighting
method [2, 4] from FBP to penalized-likelihood estima-
tors.
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Fig. 3. Empirical and predicted standard deviation maps (eqn. (25)) for

λ̂
PL

: penalized-likelihood emission image reconstruction using the modi-
fied quadratic penalty.
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Fig. 4. Central horizontal profiles through Fig. 3, and through corresponding
variance image (not shown) for PL with the standard penalty.
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Fig. 5. Central vertical profiles through Fig. 3.
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, a penalized unweighted least-squares estimator.
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Fig. 7. Central horizontal profiles through Figs. 6 and 3.
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Fig. 8. Central vertical profiles through Figs. 6 and 3.
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