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ABSTRACT

We describe and compare two hybrid mea-
sured/calculated methods for attenuation correction
in positron-emission tomography (PET). Both are itera-
tive estimation methods based on penalized least-squares
objective functions. One method is sequential: first recon-
struct the attenuation map, then segment it. The other is a
unified reconstruction/segmentation method. Simulations
demonstrate that both methods can significantly reduce
PET transmission scan time, as well as nearly eliminate
the additional emission image variance typically intro-
duced by noisy attenuation correction factors (ACF). The
unified method is shown to be superior to the sequential
method for very low count transmission scans.

When applied to a 1M event simulated transmission
scan, the unified method reduced the ACF variance con-
tribution in a 1M event simulated FDG thorax emission
scan from 90% to 1%.

The sequential method and conventional linear smooth-
ing of the transmission scan only reduced the contribution
to 33% and 45% respectively. In other words, the uni-
fied method nearly eliminates the noise contribution due to
attenuation correction, whereas the sequential and linear-
smooth methods leave a substantial ACF component. The
algorithms typically converge in about 10 iterations, mak-
ing the method practical.

I. INTRODUCTION

Correction for attenuation in PET is essential for both
quantitative and visual tasks. In principle, attenuation cor-
rection factors (ACFs) computed from the ratio of a blank
scan to a patient transmission scan should accurately com-
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pensate for attenuation. In current practice, however, mea-
surement noise in both scans produce noisy ACFs. This
noise propagates additional variance into the reconstructed
emission images. The ACF contribution to emission im-
age noise is often very substantial.

The conventional solution to this noise problem is to
acquire disproportionately lengthy transmission scans and
to smooth the blank and transmission scans [1]. Indis-
criminant smoothing can produce systematic errors in the
emission image [2].

statistical and structural image segmentation methods
almost exclusively applied in image domain
statistical methods naturally generalize to projection

domain
Nevertheless, some sort of smoothing is both neces-

sary and desirable. To illustrate, a high-resolution system
such as a CTI 931-08/12 PET system has about 50,000 de-
tectors. The transmission coincidence events are divided
among this large number of detectors, so the relative accu-
racy of each measurement is low. Since it is unlikely that
the attenuation map requires 50,000 degrees of freedom to
describe adequately, there must be redundancy in the mea-
surements. Linear smoothing is one simple but suboptimal
attempt to exploit this redundancy. The reconstruction-
reprojection method [3] is a somewhat more sophisticated
approach that also reduces the degrees of freedom. (If the
attenuation map is reconstructed within a circle in a1282

image, then there can be at most about 13,000 degrees of
freedom in the reprojected ACFs.) One hopes to reduce
the noise by eliminating degrees of freedom without in-
ducing the systematic biases inherent to linear smoothing.

The two methods proposed in this paper reduce the de-
grees of freedom by exploiting two properties of attenu-
ation maps: (i) they are composed of a relatively small
number of fairly homogeneous tissue classes, such as air,
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lung, soft tissue, and bone, and (ii) except at boundaries
between tissues, neighboring voxels tend to be composed
of the same tissue class.

These properties have been used implicitly and explic-
itly by several investigators, almost exclusively through a
sequential three-step process: (1) reconstruct using FBP
an attenuation map from the logarithm of the ACFs, (2)
process that attenuation map, and (3) reproject the atten-
uation map to form new ACFs. Huanget al. [4] laid
the groundwork for these methods by demonstrating the
efficacy of segmenting an attenuation map into discrete
classes. However, the manual adjustments of that segmen-
tation method are impractical for routine use.

More recent attempts to automate the segmentation
[5] still suffer from the fundamental limitation of such
sequential approaches: FBP produces streak artifacts
when applied to low-count transmission data. Therefore,
we propose a unified reconstruction/segmentation method
that iteratively estimates a segmented attenuation map di-
rectly from the transmission data. This method makes bet-
ter use of the statistical information in the transmission
measurements, and therefore can significantly reduce PET
transmission scan time, as well as nearly eliminate the ad-
ditional emission image variance typically introduced by
noisy attenuation correction factors (ACF).

II. THEORY

A statistical approach to image reconstruction requires
five components: (i) a finite parameterization of the ob-
ject (attenuation map), (ii) a system model that relates the
attenuation map to ideal measurement values, (iii) a statis-
tical model that describes how the actual measurements
vary about their ideal values, (iv) an objective function
that is to be maximized to estimate the attenuation map,
and (v) an algorithm, typically iterative, for maximizing
the objective function, including specification of the ini-
tial estimate and stopping criterion. This section describes
the unified reconstruction/segmentation method in terms
of these five components.

A. Object Parameterization

Let µ(x) denote the spatial distribution of attenuation
coefficients within the patient. We assume this distribu-
tion can be approximately decomposed into rectangular
voxels:

µ(x) ≈
∑
j

µjIj(x), (1)

whereµj denotes the mean attenuation coefficient in the
jth voxel, andIj(x) is the indicator function with thejth
voxel as its support [6]. For this approximation to be

valid, the voxels must be sufficiently small. An natural
generalization of this parameterization to account for in-
homogeneity within voxels would be to adopt a “mixel”
model [7,8].

B. System Model

For a transmission scan, the patient is surrounded by
a ring containing a positron-emitting radioisotope. If the
ring emits a pair of annihilation photons along a chord that
intersects theith detector pair, then a coincidence event
occurs provided that both photons escape unabsorbed. If
the detectors are small relative to attenuation map inhomo-
geneities, then this survival probability is approximately

αi ≈ exp(−li), (2)

whereli is the effective attenuation path length along the
chord between theith pair of detectors. We assume this
length can be expressed:

li =

∫
Si

µ(x) dx (3)

whereSi denotes the strip integral over theith detector
chord. Other authors have used line integrals rather than
strip integrals, but the finite width of PET detectors makes
strip integrals more plausible. An even more accurate sys-
tem model would account for noncollinearity of the anni-
hilation photon pairs and for inter-crystal mispositioning
errors in block detectors. Note that for a circular PET ge-
ometry, the strip widths vary across the image.

Under the discretization (1), we can rewrite (3) as

li =
∑
j

aijµj, (4)

where

aij =

∫
Si

Ij(x) dx. (5)

e precompute and store the nonzero elements of the system
matrixA = {aij} using the ASPIRE software library [9],
which significantly reduces the reconstruction time.

C. Statistical Model

Ideally, the statistical model describes the distribu-
tion of each measurement about its mean, and conse-
quently determines a measure of similarity between the
actual measurements and the calculated projections of
image estimates from (4). Under a simplified statisti-
cal model, Poisson likelihood has been proposed as a
similarity measure [10], and was maximized using an
expectation-maximization (EM) [11] algorithm for PET
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[12–14]. These papers ignored the effects of accidental
coincidence (AC) events [15, 16]. The system1 at our in-
stitution uses real-time subtraction of delayed-window co-
incidences [15,17] to correct for AC events. This subtrac-
tion process produces negative sinogram bins that clearly
invalidate the usual Poisson model. We present a more
realistic Poisson-difference model below. Because the
likelihood for this Poisson-difference model is intractable,
we propose a simple weighted, transformed, least-squares
similarity measure.

Let Bi denote theith detector measurement for the
blank scan. For a system employing real-time delayed-
window AC event correction, the following statistical
model is reasonable:

Bi ∼ Poisson{τ
b(bi + r

b
i )} − Poisson{τ

brbi}, (6)

whereτ b denotes the time duration of the blank scan,bi
denotes the product of detector efficiency and photon flux
on theith detector pair, andrbi denotes the AC event rate
during the blank scan (typically very small). Similarly,
after the patient is put into the PET scanner, a reasonable
model for the transmission scan measurement is:

Ti ∼ Poisson{τ
t(biαi(1 + si) + r

t
i)} − Poisson{τ

trti},
(7)

where τ t denotes the time duration of the transmission
scan,αi was defined by (2), andsi denotes the fractional
increase in direct coincidence events due to photon scatter
within the patient.

Unfortunately the individual AC event ratesrbi andrti
are not available, which appears to preclude using an exact
likelihood as a similarity measure. For this reason, and for
computational simplicity, we propose to forgo a likelihood
approach in favor of a quadratic approach based on the
first two moments. The result is an approximate similarity
measure that nevertheless performs remarkably well.

The first step is to apply a logarithmic transformation
[18]. Let {bi} and{ti} denote the measured realizations
of the random variables{Bi} and{Ti}. Then a (noisy)
estimate ofli, the strip integral of attenuation between the
ith detector pair, is given by

yi =

{
log
(
bi
τb

)
− log

(
ti
τ t

)
+ log(1 + ŝi), ti > 0, bi > 0

0, otherwise
(8)

where ŝi is an estimate of the scatter fraction [19, 20].
For simplicity, in the remainder of this paper we assume
si = 0. This assumption is reasonable for PET systems
employing orbiting rod sources with sinogram masking

1CTI ECAT 931-08, see [17]

[21–24]. Using a Taylor’s expansion for the logarithmic
transformation of a Poisson variate, one can show that

σ−2i =

{
(biti)/(bi + ti), ti > 0, bi > 0
0, otherwise

(9)

is an estimate of the Fisher information (1/variance) ofyi.
Let µ = [µ1, µ2, . . .]′ denote the vector of unknown at-
tenuation coefficients. We propose to use the following
weighted least-squares (WLS) similarity measure:

1

2
(y −Aµ)′Σ−1(y −Aµ) (10)

where y = [y1, y2, . . .]′, andΣ−1 is a diagonal ma-
trix with elementsσ−2. The similarity measure proposed
by Sauer [18] is similar, except that we have included
the blank scan variancebi. That variance can be non-
negligible for poor efficiency detectors.

D. Objective Function

Although one could minimize (10) to estimateµ from
the transformed datay, it is well known that objective
functions based solely on similarity measures such as (10)
perform poorly due to the ill-conditioned nature of tomo-
graphic reconstruction. To remedy this problem, we pro-
pose a regularization method that exploits two properties
of attenuation maps: (i) the attenuation coefficients can be
grouped into discrete classes, e.g. air, lung, water, bone,
and (ii) neighboring voxels tend to be of the same class.

To exploit the first property, we restrict the domain of
µ by reparameterizing the attenuation map. Assume that
there areK classes of attenuation coefficients with nom-
inal valuesθ = [θ1, . . . , θK ]′. We assume thatµj, the
attenuation coefficient in thejth voxel, is one of theK
values{θ1, . . . , θK}. Let xj indicate the class of thejth
voxel, i.e.,µj = θxj , wherexj takes values1, 2, . . . ,K.
An explicit notation for this parameterization isµ(x,θ)
where

µj(x,θ) = θxj . (11)

We assumeK is known, although information theoretic
approaches can in principle be used to determineK [25,
26].

To exploit the second property, we use a penalty func-
tion that encourages neighboring pixels to be of the same
class. Specifically,

R1(x) =
1

2

∑
j

∑
k∈Nj

wjk1{xj 6=xk}, (12)

whereNj is the set of eight neighbors of thej pixel. The
weightswjk equal1 for horizontal and vertical neighbors,
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and 1/
√
2 for diagonal neighbors. This type of penalty

function is often presented as a Bayesian “prior” for the
ensemble of voxel classes [27]. We do not adopt that phi-
losophy here since we have no evidence that the Gibb’s
distribution corresponding to (12) resembles the ensemble
statistics of attenuation maps.

Depending on the scatter fraction and the accuracy of
the scatter correction method, the attenuation coefficients
of theK classes may be known exactly, or their effective
values may vary somewhat from the “narrow beam” case.
In the latter case, it is desirable to also estimateθ from
y. A penalty function for this parameter estimation is also
useful:

R2(θ) =
1

2

K∑
k=1

w2k(θk − θ̄k)
2,

whereθ̄k denotes the ideal attenuation coefficients andwk
denotes weights that reflect their uncertainties.

Combining the WLS similarity measure with the above
penalty functions yields the followingpenalized, weighted
least-squares(PWLS) objective function for the unified
method:

Φu(x,θ) =
1

2
(y −Aµ(x;θ))′Σ−1(y −Aµ(x;θ))

+βR1(x) +R2(θ), (13)

whereβ controls the influence of the smoothness penalty,
in analogy with the filter window that must be chosen for
FBP reconstruction.

Having defined this objective, our goal is to estimatex
andθ from y:

(x̂, θ̂) = argmin
x,θ
Φu(x,θ).

E. Iterative Algorithm

The objective functionΦu is nonconvex and nondif-
ferentiable because of the discrete parameterization (11).
Therefore, conventional gradient maximization meth-
ods are inapplicable. A natural algorithm is iterative
coordinate-descent (ICD) [18]. The ICD algorithm up-
dates each image parameter individually by minimizing
the objective function (13) over that parameter while hold-
ing the other parameters fixed. The method is closely re-
lated to the Gauss-Siedel algorithm for differential equa-
tions [28, 29]. (If we considered (12) to be a prior, then
ICD would be equivalent to ICM [27]). Since the number
of classes is small, the objective is evaluated for each pos-
sible class, and the minimizing class chosen. In the event
of a tie, the most physically abundant class is chosen. One
iteration consists of updating every voxel value in some

sequence. Ifθ is unknown, we alternate between updating
x andθ.

Although a derivation for the case whereθ is known is
given in [18], we summarize the algorithm here for com-
pleteness. Let̂x denote the current estimate ofx, and let
aj denote thejth column ofA. The PWLS-ICD algorithm
for knownθ is as follows.

Initialization:

f̂ := FBP{y}

x̂j := argmin
k
‖fj − θk‖ (14)

r̂ := y −Aµ(x̂,θ)

sj := a′jΣ
−1aj, ∀j. (15)

For eachj:
begin

kold := x̂j

δk = θk − θkold, k = 1, . . . ,K

x̂j := argmin
k

1

2
sjδ
2
k − a

′
jΣ
−1r̂δk + β

∑
i∈Nj

wji1{x̂i 6=k}

r̂ := r̂ − ajδx̂j

end .

We have found that the convergence rate is improved by
updating the image voxels in four different raster scan
orderings. The sparse inner-product operations are com-
puted using ASPIRE [9].

SinceΦu is quadratic in the attenuation valuesθ, updat-
ing θ in the case whereθ is estimated is performed using
standard least-squares methods. Given the previous esti-
mate forx̂, the estimate forθ is given by

θ̂ = (B′A′Σ−1AB +W−1)−1(B′A′Σ−1y +W−1θ̄),
(16)

where the indicator matrixB is given bybjk = 1{x̂j=k},
andW is diagonal with elementsw2k. There is a small
but nonzero probability that this update may produce neg-
ative estimate for some component ofθ̂. Such an event
would be a strong indication of model mismatch inA, β,
Σ, orW , and is therefore reported as an “error condi-
tion” in our current implementation. For concreteness, if
a negative value occurs, that component ofθ̂ is left at its
previous value, and the other components are recomputed
using (16). This approach preserves the monotonicity of
the algorithm.

The ICD algorithm monotonically decreasesΦu, and
since the parameter space forx is discrete it will converge
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in a finite number of iterations. Typically it will converge
to a local minima ofΦu, so the initialization step is im-
portant. Following Sauer’s intuitive suggestion [18], we
have initialized the iteration by performing a FBP recon-
struction of the attenuation map, and then classifying each
voxel using the nearest-neighbor rule. If we desired com-
plete optimality and invariance to the initial condition, an
annealing approach would be required [30]. The ICD ap-
proach is considerably more practical, and appears to be
adequate for our purposes here.

After the final iteration of the above algorithm, we have
computed the voxel classes estimatex̂, as well as the
residualr̂ = y−Aµ(x̂,θ). Subtracting this residual from
y gives the final estimate of the path lengthsli, which after
exponentiation (2) gives the desired ACFs. In other words,
the “reprojection” step is intrinsic to the algorithm.

Other investigators have reported that it is desirable
to smooth the reprojected ACFs to match the system re-
sponse. Since our system model uses strip integrals rather
than line integrals, some smoothing is inherent in the
method, further smoothing seemed unnecessary.

III. SEQUENTIAL METHOD

In the sequential reconstruct-then-segment method, we
first perform a FBP reconstruction of the attenuation map
from y. Letm denote this (noisy) map. We then seg-
ment this map in image space using the following objec-
tive function:

Φs(x,θ) =
1

2
‖m− µ(x;θ)‖2

+βR1(x) +R2(θ), (17)

whereR1 andR2 were defined above. This objective func-
tion is of the same basic form as (13), so the same ICD
procedure applies, withA andΣ replaced by an iden-
tity matrix. After the iterates have converged, the esti-
mates must be reprojected (Aµ(x̂, θ̂)) and exponentiated
to form the ACFs.

The essential difference (and limitation) of this ap-
proach is that it uses processed data (the reconstructed
mapm) rather than the original measurements. The limi-
tations of the FBP method, such as streak artifacts, reduce
the accuracy of the segmentation for low count transmis-
sion scans. However, because the system matrixA is not
used iteratively, it uses less computation.

IV. SIMULATION

This section describes the simulation methods used to
compare three methods for determining the ACFs: 1) sim-
ple linear smoothing of the transmission scan and blank

scan measurementsprior to taking their ratio (this is
the conventional approach), 2) the sequential reconstruct-
then-segment approach described in Section IV, 3) the
unified reconstruction/segmentation method described in
Section II.

Figure 1 displays the simulated thorax attenuation map.
The assigned attenuation coefficients were 0, 0.025/cm,
0.096/cm, and 0.165/cm for air, lung, soft tissue, and bone
respectively. This high resolution image is384× 192 pix-
els, with a 1.5 mm pixel dimension. Figure 2 displays
the simulated cardiac emission distribution with relative
uptakes 0, 1, 2, and 4, for bone, lung, soft tissue, and my-
ocardium respectively.

The high-resolution attenuation map was forward pro-
jected (4) to compute the effective path lengths using strip
integrals appropriately spaced for the CTI 931-08. The
system geometry is a 1020 mm diameter circle of 512 de-
tectors with width approximately 6.25 mm, for which the
sinogram dimension was 96×512. We simulated an un-
wobbled acquisition.

The high-resolution emission image was forward pro-
jected using the 2D joint angle between opposing pairs
of detectors [31]. These projections were scaled by the
nonuniform attenuation factors and by a global scale factor
so that the resulting sinogram summed to106 events. An
emission sinogram was generated using pseudo-random
Poisson-difference variates with 1.1% precorrected AC
events [31].

A 32M event blank scan with about 1% AC events, was
simulated using (6). Thebi’s were generated by drawing
from a uniform distribution on[1, 10], which represents
a typical range of detector efficiencies. Both a 3M event
and 1M event transmission scan were simulated from the
effective path lengths using (7), also with about 1% AC
events.

A. Linear Smoothing

The blank and transmission scans were linearly
smoothed using 2D Gaussian kernels with 1, 2, 3, 4, and
5 pixel FWHM. ACFs were calculated as the ratio of the
smoothed scans.

B. Sequential Method

The logarithmy was computed using (8) from both the
3M and 1M event transmission scans. Noisy attenuation
maps were then reconstructed from these logarithms using
FBP with a ramp filter onto128 × 64 matrices. The ICD
algorithm was applied in image space to segment these at-
tenuation maps. The smoothing parameterβ was chosen
to bee−12 ande−11 for the 3M and 1M event cases, re-
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spectively, by the visual appearance of the segmentation
results. (Therefore the values ofβ chosen may not be op-
timal in terms of the measures evaluated below.) The final
segmented attenuation maps were reprojected to compute
ACFs.

C. Unified method

The logarithmy and the covarianceΣ were computed
using (8) and (9) from both the 3M and 1M event trans-
mission scans. The unified reconstruction/segmentation
algorithm described in Section II was applied usingy and
Σ in order to iteratively reconstruct a segmented attenua-
tion map within a128× 64matrix. Note that because this
grid size is coarser than the simulated attenuation map,
there will be partial-volume model mismatch, increasing
the realism of the simulation. To save computations, only
voxels within a support ellipse having short axes 64 and
32 pixels were estimated. The values forβ were again vi-
sually chosen to bee2 and e0 for the 3M and 1M event
cases respectively. The ACFs were computed from the fi-
nal residual as described in Section II-E.

D. Emission reconstruction

Each of the above three methods produces its own set
of ACFs. Each set of ACFs was multiplied by the noisy
emission projections, and an emission image was recon-
struction using FBP with a ramp filter onto a128×64ma-
trix with 4.5 mm pixels. An emission image was also re-
constructed using ideal ACFs 4, so the that emission com-
ponent of the noise could be evaluated. Finally, an emis-
sion image was reconstructed using noise-free emission
data and ideal ACFs 3; this image served as the reference
image for computing errors, as described below.

E. Evaluation

In virtually all other papers on image segmentation, the
primary interest is in the accuracy of the segmentation al-
gorithm in image space. In this paper, our primary interest
is the emission image, which is computed using ACFs de-
rived from the segmented attenuation map.

Let λ̂nj
Letλ denote the emission distribution, andλ̂ denote an

estimate ofλ obtained by reconstructing the product of
a noisy emission sinogram with an estimatêACF. Define
the percent ACF (PACF) contribution to the emission error
by

PAC
4
=
‖λ̂(ÂCF)− λ‖2 − ‖λ̂(true ACF)− λ‖2

‖λ̂(ÂCF)− λ‖2
·100%.

This measure clearly reflects what fraction of the emis-
sion noise is due to ACF errors. Note that we are using
error norm,not varianceas other authors have. Using the
variance measure neglects the systematic effects of over-
smoothing.

V. RESULTS

Tables 1 and 2 report the PACF contribution for the sim-
ulated transmission scans.

if the ACFs are When applied to a 3M event (600 sec-
onds on CTI 931 with ring source) simulated transmis-
sion scan, the new method reduced the PAC in a 1M
event simulated FDG thorax scan reconstructed by filtered
back-projection from 90% to 3%. For comparison, image-
domain segmentation and conventional linear smoothing
of the transmission scan only reduced the contribution to
12% and 32% respectively. Thus, for 3M events, image-
domain and projection-based segmentation both work ad-
equately, and significantly outperform simple smoothing.
When applied to a 1M event (200 seconds) simulated
transmission scan, the new method reduced the PAC from
90% to 1%, while image-domain segmentation and trans-
mission scan smoothing only reduced the PAC to 33% and
45% respectively. Here the image domain segmentation
method has deteriorated due to the large noise in the FBP
attenuation image.

VI. DISCUSSION

We have reported our results in terms of number of
transmission events, but it may be more useful to trans-
late this figure into a time duration.

In summary, even for short transmission scan times, the
new unified reconstruction/segmentation method summa-
rized by (13) can provide almost noise free ACF’s from
short transmission scans. This is possible due to the power
of the homogeneity constraint. The ICM iterations typi-
cally converge in about 10 iterations, making the method
practical for routine use.
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Figure 1: Simulated attenuation map representing a thorax
cross-section including arms, spine, lungs, and soft tissue.

Figure 2: Simulated emission distribution.

Figure 3: Emission distribution reconstructed from noise-
free measurements. This image is the standard to which
the reconstructions below should be compared.

Figure 4: Reconstructed emission image (1M event) using
ideal ACFs. The noise in this image is due solely to the
emission measurements.

Figure 5: Reconstructed emission image (1M event) using
ACFs from unprocessed measured transmission data (3M
event). With no smoothing, the transmission noise domi-
nates the image noise.

Figure 6: Reconstructed emission image (1M event) us-
ing ACFs from linearly smoothed transmission data. This
smoothing introduces artifacts at the boundaries between
tissue types.



REFERENCES 10

Figure 7: Reconstructed emission image (1M event) using
ACFs computed by the “sequential” segmentation method.

Figure 8: Reconstructed emission image (1M event)
using ACFs computed by the unified reconstruc-
tion/segmentation method. The transmission component
of the image noise has been virtually eliminated.

Figure 9: Segmented attenuation map computed by the
sequential reconstruct-then-segment method.

Figure 10: Segmented attenuation map computed by the
unified reconstruction/segmentation method.


