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ABSTRACT

The truncated singular value decomposition (SVD) is a popu-
lar method for computing regularized estimates in ill-posed in-
verse problems. This paper analyzes the bias-variance trade-
off of a class of linear estimators that includes the truncated
SVD method. The bias-variance tradeoff of the truncated SVD
method is shown to be suboptimal, whereas a penalized least-
squares estimator is shown to be optimal within the linear class.

Keywords: Singular value decomposition, bias/variance
tradeoff, regularization.)

I. THEORY

Many inverse problems can be represented by the standard
linear additive noise model:

Y = Aθ + ε,

whereθ ∈ <p is the parameter to be estimated,Y ∈ <n is
the noisy measurement, andε ∈ <p is the zero-mean addi-
tive noise with positive-definite covariance matrixΠ, assumed
known up to a scaling constant. For simplicity we assume
n ≥ p. For poorly conditioned inverse problems, the standard
linear weighted least-squares estimator

θ̂LS = (A
′Π−1A)−1A′Π−1Y

is unbiased ifA has full column rank, but has unacceptably high
variance due to the small singular values ofA. Many methods
exist for reducing the variance, all of which induce bias.

One popular method for regularizing the least-squares esti-
mate is the truncated SVD [1–3]. In this paper, we derive the
bias and variance properties of the class oflinear weighted SVD
estimators, which includes both the truncated SVD and the pe-
nalized least-squares estimator. We show that if the norm of
the bias is constrained to not exceed a given value, then a pe-
nalized least-squares estimator has minimum variance, whereas
the truncated SVD is suboptimal.
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A. Linear Weighted SVD Estimators

Define the following SVD:

Π−1/2A = UD{νk}V
′, (1)

whereU ∈ <n×p andV ∈ <p×p are each orthogonal, and
D{νk} is a p × p diagonal matrix with entries{νk}

p
k=1. We

consider the class oflinear weighted SVD estimators, i.e., those
that can be written in the following form:

θ̂(w) =

p∑
k=1

vkwku
′
kΠ
−1/2Y = V D{wk}U

′Π−1/2Y , (2)

wherevk anduk are the columns ofV andU respectively. The
weightsw control the tradeoff between bias and variance. The
covariance of such an estimator is

Cov{θ̂(w)} = V D{|wk|
2}V ′. (3)

The bias of such an estimator is

b(w) = E{θ̂(w)} − θ = −V D{1− wkνk}V
′θ. (4)

B. Bias-Variance Tradeoff

Regularization always involves a tradeoff between bias and
variance. From (3) we see that to minimize variance we would
like eachwk to be small, whereas from (4) to minimize bias we
would likewk ≈ 1/νk. These are conflicting requirements that
epitomize the bias-variance tradeoff. We would like a strategy
for choosingw that minimizes variance subject to a constraint
on the allowable bias.

Define the vectorx = V ′θ, then the norm of the bias vector
b(w) in (4) can be written

‖b(w)‖2 = ‖D{1− wkνk}V
′θ‖2

=
∑
k

|1− wkνk|
2|xk|

2.

For a given amount of bias, we would like to minimize the corre-
sponding variance. Since in general thexk ’s are unknown since
they depend on the unknown signalθ, we take as our goal(BIG
LEAP HERE) the following optimization problem: minimize
the trace of the covariance matrix, subject to the constraint:∑

k

|1 − wkνk|
2qk ≤ C, (5)

for C ∈ (0,
∑
k qk). The nonnegative weightsqk are design

parameters that control the relative importance of biases in each
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of the directions of the singular vectors. For the moment we
leave{qk} unspecified. In the discussion we argue that in the
absence of prior information, the equally-weighted choiceqk =
1 is sensible.

From (3), the trace of the covariance matrix is:

trace{V D{|wk|
2}V ′} = trace{D{|wk|

2}} =
∑
k

w2k.

Using the method of Lagrange:

min
w1,...,wp

p∑
k=1

|wk|
2 + λ

(
p∑
k=1

|1 − wkνk|
2qk − C

)
,

whereλ is the Lagrangian multiplier, the optimal solution for
wk is easily shown to be:

wk(λ̂) =
ν?k

λ̂−1q−1k + |νk|
2
, (6)

whereλ̂ ∈ (0,∞) is the solution to

C =

p∑
k=1

|1− wk(λ̂)νk|
2qk =

p∑
k=1

(
1

1 + λ̂qk|νk|2

)2
.

C. Truncated SVD Estimator

For the truncated SVD estimator withm ≤ p retained com-
ponents, the form forwk is:

wk =

{
1/νk, k = 1, . . . ,m
0, k = m+ 1, . . . , p

. (7)

Comparing this to (6), one sees immediately that the trun-
cated SVD estimator correponds to theparticular case where
qk = ∞ for k = 1, . . . ,m, andqk = 0 for k = m + 1, . . . , p.
When the system matrixA is circulant andU andV corre-
spond to the Fourier basis, then this “hard threshold” choice
for the weightsqk forces the signal to be band-limited. But
for more general systemsA, it is perhaps unlikely that this
choice ofqk will be well-matched to the signal’sxk, so for
a given amount of bias, the variance could be unnecessarily
large. PRETTY WEAK CONCLUSION. THE BOTTOM
LINE IS THAT SVD IS OPTIMAL FOR SOME CHOICE
OF THE QK’S, SO UNFORTUNATELY IT JUST BOILS
DOWN TO THAT SUBJECTIVE CHOICE, ALTHOUGH
I GUESS ONE COULD ARGUE THAT IT IS BETTER
TO DECIDE UP FRONT WHAT BIAS WEIGHTING YOU
WANT AND THEN FIND THE APPROPRIATE ESTI-
MATOR RATHER THAN “DEFAULATING” TO WHAT-
EVER SVD GIVES...

D. Penalized Weighted Least Squares Estimator

Another natural regularized estimator for the linear additive
noise problem is the penalized weighted least-squares (PWLS)
estimator:

θ̂PLS = argmin
θ
(y −Aθ)′Π−1(y −Aθ) + βθ′Rθ, (8)

whereR is a symmetric nonnegative definite regularization ma-
trix. In the absence of constraints, the solution is:

θ̂PLS = (A
′Π−1A+ βR)−1A′Π−1Y . (9)

If R = V diag{qk}
−1
V ′, then we can rewrite (9) in the

form (2) with

wk =
ν?k

βq−1k + |νk|
2
. (10)

Comparing (10) to (6), we see that by identifyingβ with λ̂−1,
the PWLS estimator has exactly the optimal form. In other
words, there is a value forβ such that the PWLS estimator sat-
isfies the constraint (5) and has minimum variance, as measured
by the trace of the covariance, over the class of linear weighted
SVD estimators. The choice of the{qk}’s directly affects the
regularization matrixR.

II. EXAMPLE

To illustrate the difference between the truncated SVD and
PWLS estimators, consider a simple deconvolution problem
where theAmatrix corresponds to circular convolution with the
(1, 2, 1) kernel, and the noise covarianceΠ is simply the iden-
tity matrix. For the signalθ shown in Fig. 1, we constrained
the total variance to be

∑
k w
2
k ≤ 43, which corresponded to

retainingm = 18 of thep = 30 components for the truncated
SVD estimator, andβ = 0.0804 for the PWLS estimator, i.e.,
we selectedm andβ so that the total variance of the two esti-
mators was matched. Since both estimators are linear, we can
analytically compute their means, which are shown in Fig. 1.
Due to the ringing of the truncated SVD estimator, its total bias
‖b(w)‖ is about 20% higher than the total bias of the PWLS es-
timator. Fig. 2 displays the weightswk for the two estimators.
The truncated SVD weights are significantly different from the
optimal choice used by the PWLS estimator.

III. D ISCUSSION

We have shown that given a bias norm constraint, the trun-
cated SVD has suboptimally high variance (except for one par-
ticular choice of the weights{qk}), whereas a PWLS estimator
attains the minimum variance over the linear class (2). The pri-
mary issue is then how to choose the weights{qk}. If A is cir-
culant, then one can chooseV andU in (1) to be the Fourier ba-
sis.THIS IS NONSTANDARD TO HAVE COMPLEX SIN-
GULAR VECTORS?) If the objectθ is a point sourceθ = ej ,
then the elements of the vectorV ′θ will all be complex expo-
nentials, which have equal magnitude (|xk|2 = 1). When the
object is a point source, the norm of the bias of the estimator
is a measure of resolution. Therefore, by usingqk = 1 in (5),
we are essentiallyconstraining the minimum resolutionof the
estimator. This can be formalized by examining the bias gra-
dient [4, 5]. In other words, in imaging problems, for a given
resolution, the PWLS estimator will have less noise than the
truncated SVD estimator. These results can be viewed more
broadly in terms of lower bounds on achievable variance for bi-
ased estimators [4,5].

Sometimes one may have the additional side information that
for certaink the inner productxk = v′kθ is small. In such cases,
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one can choose a smallerqk for suchk, which will reduce the
correspondingwk. However, if one does not know for whichk
the productv′kθ is small, and if the object may contain small
features of interest (such as point sources), then using PWLS
with qk = 1 will yield smaller bias (or variance) over SVD with
its choice ofqk.

One can obtain some intuition about why the truncated SVD
is suboptimal by comparing (7) with (6) (see Fig. 2). Whereas
the truncated SVD (7) completely discards all information in
componentsn+ 1 throughp, the optimal choice (6) gracefully
diminishes the contribution of the components corresponding to
small singular values, thereby reducing the variance relative to
the conventional least-squares estimator, but yet still retaining
some of the information in the upper singular vectors.

From a practical view, the PWLS estimator also has the ad-
vantage that there are very fast converging algorithms [6, 7] for
performing the minimization in (8). The coordinate ascent algo-
rithms in [6,7] use much less computation than required by the
singular value decomposition. In addition, unlike the truncated
SVD, one can easily incorporate a non-negativity constraint on
the parameters into the coordinate ascent algorithms.
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Truncated SVD vs. PWLS at Matched Total Variance

Figure 1: Mean response for truncated SVD estimator and
PWLS estimator at a matched total variance. The truncated
SVD estimator has more bias due to the ringing.
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Figure 2: Comparison of the weightswk for the truncated SVD
estimator and for the PWLS estimator.


