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Abstract
In [1] we proposed a spatially-variant method for removing noise from tomographic projection data using

weighted spline smoothing. The projection model in [1] was based on detectors with the same width as their spacing.
A better approximation for the detector response of many tomographs is a rectangular function or Gaussian func-
tion whose width is twice the detector spacing. (Such systems are almost adequately sampled in a Nyquist sense.)
In this note, we derive a new weighted spline smoothing algorithm that accommodates arbitrary detector models.
The implementation described in this note is based on more numerically stable B-splines, rather than the piecewise
polynomials of [1]. Simulations demonstrate that the bias/variance tradeoffs using the new algorithm with a more
accurate system model are improved relative to the method of [1] and to conventional spatially-invariant smoothing.

I. THEORY

A. Projection Model

Let g(x1, x2) denote the object being imaged, restricted to two dimensions for simplicity. The ideal line-integral
projection of this object at an angleφ and radial offsetτ is given by

lφ(τ) =

∫
g(τ cos φ− t sinφ, τ sinφ+ t cos φ) dt.

Assume that the tomographic system has a detector response that is approximately depth independent, and for the
remainder drop the dependence onφ. The mean response of theith detector is approximately:

pi = Lil, i = 1, . . . , n,

where
Lil =

∫
hi(τ)l(τ) dτ (1)

andhi(τ) is the line response of theith detector.
Actual detector measurements will fluctuate around the ideal valuepi according to a statistical model that depends

on the imaging modality. We are only interested in the first two moments of the statistical model, so we assume that
the following model is a reasonable approximation:

yi ∼ N (pi, σ
2
i ),

whereσ2i may have to be estimated from the data and correction factors [1–3].
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B. Objective Function

We would like to recoverl(τ) from {yi}. Since direct deconvolution would amplify the noise, we include smoothness
constraints. Such smoothness constraints were also used by Hutchinset al. [4,5], although without variance weighting.

Smoothing splines are naturally suited to problems with second-order statistics and smoothness constraints. There-
fore, we propose to estimatel(τ) using the the following penalized least-squares objective function:

l̂ = arg min
l∈Cm

n∑
i=1

(
yi − Lil

σi

)2
+ β

∫
|l(m)(τ)|2 dτ, (2)

wherel(m) is themth derivative ofl, andCm is the class of functions whosemth derivatives are square integrable. This
objective trades off smoothness (measured by a squared derivative) and a weighted agreement with the measurements.
The smoothing parameterβ controls that tradeoff, and is analogous to the cutoff frequency of a CBP filter. In fact, one
can show that if the variance is homoscedastic and the system is radially-invariant, then generalized spline smoothing
corresponds to a Wiener filter with Butterworth regularization of order2m and half-power frequency that is a function
of β [6]. In the tomographic applications of interest, the data is very heteroscedastic, so the “impulse response” of the
smoothing spline will be spatially variant, as illustrated in [1].

C. System Modeling

Let the centers of the detectors be{τi}ni=1. For a uniformly spaced detector array with spacing∆, we have

τi = ∆

(
i− 1−

n− 1

2

)
.

For ring PET systems, theτi’s are nonuniformly spaced. Most spline smoothing is based on the “evaluation” function-
als:

Lil = l(τi).

These functionals ignore the finite width of tomographic detectors. In [1], we used the functional

Lil =

∫ (τi+τi+1)/2
(τi+τi−1)/2

l(τ)dτ, (3)

which corresponds to strips with widths equal to their spacing. In this note, we focus on the following functionals:

Lil =
1

2

∫ τi+1
τi−1

l(τ)dτ, (4)

which correspond to overlapping strips with width about twice their spacing.
Under the system model (4), it follows from the Euler-Lagrange formulae for the variational problem (2) that its

minimizer is a spline of order2m. The spline has an even order because of (4); evaluation functionals result in the
more familiar odd-order splines (although see [7]).

As outlined in the Appendix, the coefficients of the smoothing spline are easily computed noniteratively using fast
banded-matrix operations [8]. The computation increases withm, so we focus our attention on the casem = 1.

II. A PPENDIX: SPLINE CALCULATIONS

In this appendix, we show that the solution to the minimization problem posed in (2) is a spline composed of
polynomials of order at most2m, and then describe the banded matrices that are used to compute the polynomial
coefficients.

The objective function of interest is:

Φ(f) =
n∑
i=1

(
yi −

∫
hi(τ)f(τ) dτ

σi

)2
+ β

∫
|f (m)(τ)|2 dτ. (5)
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By setting the Euler-Lagrange formula for the variational problem (5) to zero, one can show that:

f̂ (2m)(τ) = (−1)mβ−1
n∑
i=1

(
yi −

∫
hi(τ)f̂(t) dt

σi

)2
hi(τ). (6)

From (4),hi(τ) is 1/2 for τ ∈ [τi−1, τi+1) and zero elsewhere. Therefore, under (3) or (4)f̂ is a polynomial of order
2m on each interval[τi−1, τi+1), and is a polynomial of order2m− 1 for τ /∈ [τ0, τn+1].

In the remainder, we focus our attention on the casem = 1, in which case the spline is quadratic on the measurement
intervals and linear outside of[τ0, τn+1]. One can show that under (3) or (4) the solution space of (6) (under appropriate
end conditions) is spanned by the numerically stable B-spline basis:

f̂(τ) =
n∑
i=1

xibi(τ), (7)

where

bi(τ) =




hi+hi+1
4hi−1

(τ − τi−1)2, τ ∈ [τi−1, τi)
(hi+hi+1)(hi−1+Ti)

4 − hi−1+2hi+hi+14hi
(τ − τi − Ti)2, τ ∈ [τi, τi+1)

hi−1+hi
4hi+1

(τ − τi+2)2, τ ∈ [τi+1, τi+2)

0, τ /∈ [τi−1, τi+2)

,

wherehi = τi+1 − τi−1 is the interval width, andTi = hi(hi + hi+1)/(hi−1 + 2hi + hi+1). One can verify that
these basis functions are continuous, have continuous first derivatives, and satisfybi(τi−1) = b

(1)(τi−1) = bi(τi+2) =
b(1)(τi+2) = 0. If one uses system models different from (3) or (4), then this basis does not necessarily span the space
of solutions to (6). However, we expect that it should be adequate even in such cases.

Let aij =
∫
hi(τ)bj(τ) dτ , so that ∫

hi(τ)f̂(τ) dτ =
∑
j

aijxj,

and letA = {aij}. Note that

∫
|f̂ (m)(τ)|2 dτ =

∫ ( n∑
i=1

xib
(m)
i (τ)

)2
dτ =

∑
i

∑
j

xixjRij,

where
Rij =

∫
(b
(m)
i (τ)) (b

(m)
j (τ)) dτ.

Then the objective (5) can be rewritten

x̂ = argmin
x
(y −Ax)′Σ−1(y −Ax) + βx′Rx,

where the definitions of the various vectors and matrices should be obvious. Thus, the estimated B-spline coefficients
are given by:

x̂ = (AΣ−1A+ βR)−1A′Σ−1y.

This latter system of equations is solved using a Cholesky decomposition for banded matrices [8], which requires only
O(n) operations. Having solved for the coefficientsx̂, one can then evaluatêf at any pointτ using (7).
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