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1 Introduction

We have recently implemented a SPECT forward projector / back projector pair that accommodates arbitrary nonuni-
form attenuation maps and depth-dependent blur. The form of the blur is entirely arbitrary (so long as it has an odd
number of samples in thex andz directions). The user supplies samples of a 2D PSF kernels for each plane in the
object parallel to the detector,i.e., for an object sampled tonx×ny×nz = 64×64×60, the user will supplyny = 64
kernels, each of which might be sampled to say11× 11 pixels.

The user may also supply a separate set of PSF kernels for each projection angle, such as would be appropriate
for SPECT with a noncircular orbit. The default is to use the same PSF kernels for each projection angle, which
corresponds to a circular orbit.

Our approach is similar to that of Zenget al. [1]. However, since we are ultimately interested in regularized
reconstruction (and hence iterating until convergence), we have taken great pains to implement a backprojector that is
theexacttranspose of the forward projector (to with numerical precision of course), whereas Zenget al. have explored
unmatched pairs [2].

This document summarizes results of testing this projector/backprojector pair to confirm that it gives results that
outperform the in-plane (2D) system model used previously for SPECT reconstruction in our group.

2 Experiment 1: Digital Point Source

The first experiment was a computer simulation of a point source in a uniform attenuating cylinder. Three cases were
studied, with 360◦ projections in each case.

Case 1. The object was32 × 32 × 8 and there were 30 projection views of size32× 8. The voxel size was (14mm)3.
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Case 2. The object was64 × 64 × 8 and there were 60 projection views of size64× 8. The voxel size was (7mm)3.

Case 3. This case was similar to Case 2, except that the projection measurements were generatedanalytically by erf-
based sampling of a Gaussian PSF for an ideal point source. The location of this point source in object space is
as follows. Consider the central four voxels in the middle slice, in this case slice 4 of slices (0,...,7). Consider
the line segment that runs axially along the center of rotation where those four voxels touch. The point source
is located exactly at the midpoint of this line segment. Thus, the point source is exactly centered on the middle
slice. However, the point source isnot centered in any individual voxel, but rather is along the central edge of
the four central voxels, This case tests robustness to some model mismatch, since the projections did not come
from any discrete system matrix.

If the object volume has coordinates ranging over[−nx/2, nx/2]× [−ny/2, ny/2]× [0, nz], where those coor-
dinates cover the exent of the voxel (not just the voxel center), then the analytical point source coordinates were
(x, y, z) = (0, 0, (nz + 1)/2).

We compared five reconstruction methods.
• FBP with a ramp filter and 1st-order Chang attenuation correction [3].
• EM with 2D strip-integral (not depth dependent) system model
• EM with 2D depth-dependent Gaussian blur system model
• EM with 3D depth-dependent Gaussian blur system model
• OSEM1 with 3D depth-dependent Gaussian blur system model. (Case 2 only.) I used 5 subsets of 10 views each.

Fig. 1, Fig. 2, and Fig. 3 show the voxel value at location(nx/2, ny/2, nz/2), which is where the point source
was located in Case 1 and 2, as a function of EM iteration. FBP with a ramp filter only recovers a fraction of the
ideal value due to the poor resolution at the center of the object. EM with a 2D model, whether it be strip integrals or
in-plane depth-dependent response, partially recovers the point-source value, but cannot fully recover it since the true
blur is three dimensional. When we include the full 3D detector response, then naturally as EM iterates it converges
to the correct value since there is no noise in this simulation.

Curiously, in thenx = 32 case, the strip integrals outperformed the in-plane (2D) detector blur model, because the
strips have width 14mm, whereas the actual detector response has FWHM=10mm at the center of FOV, so the wider
strips are “over correcting” in plane.

And as Les Rogers says, simulations are doomed to succeed, and that is particularly true in Case 2 since the
projection measurements were computed with exactly the model used for reconstruction. In Case 3, we recover 25%
of the value because the counts are spread over the four central voxels since the ideal point source is in the corner
between them. So 25% is in fact the best we could hope to recover in this case, so the method worked better than
might have been expected given the model mismatch. Summing the four central voxels would give recovery nearly
unity.

In Case 1, the central slice had 88% of the counts (fornx = 32 case), so it is interesting that the 2D approach got
less than 60% recovery.

Not surprisingly, convergence is slower in the 64 case, since the PSFs are wider (in terms of number of voxels),
and there are more parameters (voxels) to estimate.

Fig. 2 confirms that OSEM with 5 subsets converges about 5 times faster than ordinary ML-EM, which is why it
is so popular in the depth-dependent response compensation community!

1Actually, it is a slightly modified form of OSEM that is faster than the classical OSEM algorithm yet has better convergence properties.
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Figure 1: Case 1. Digital point source results for 32 case.
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Figure 2: Case 2. Digital point source results for 64 case
with discrete system matrix projections.
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Figure 3: Case 3. Digital point source results for 64 case
with analytical Gaussian projections.
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3 Experiment 2: Monte-Carlo Point Source

The second set of experiments used a single64× 19 projection view, of a point source in air, created by Yuni’s Monte
Carlo program. Like Case 3 above, the point source is located at the center of the middle slice, and it is centered within
the transaxial plane, so it does not fall on the center of any voxel. For the purposes of verifying the resolution recovery
aspects, I considered only thegeometriccomponent of the set of detected photons in the primary energy window.

I replicated that view 60 times to form 60 artificial projection views over 360◦. The radius of rotation was 26cm,
and the pixel size was 0.36cm.

To determine the set of PSFs, I fit a Gaussian PSF to the MC data. The FWHM of the fitted Gaussian was 6.32
pixels, which is 2.275cm. (Gee that is pretty lousy spatial resolution.) Note that the MC simulation usessquare
collimator holes, yet the Gaussian fit is remarkably good (see Fig. 4) and gives remarkably good reconstructions too.
For reconstruction, I simply varied the width of the Gaussian linearly from 0 at the detector face to 2.275cm at the
center-of-rotation (26cm from detector). This ignores detector crystal response, but that’s probably a small effect and
since this is just a point source at the center it does not matter anyway.

In the interest of speed I only ran the FBP and OSEM algorithms. There is little point in using ordinary ML-EM.
Fig. 5 shows the results, which again confirm the significant benefits of using a full 3d depth-dependent system model.
Fig. 6 shows profiles through the four reconstructed images along the axial (z) direction, which clearly shows that the
full 3d depth-dependent system model does a much better job of recovering the resolution.

I took Yuni’s data and normalized it so that the single projection summed to 100 counts, so I think a peak value of
25 is what we should expect since the counts will be spread over the central four voxels.
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Figure 4: Gaussian fit to Monte-Carlo point source projection view.
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Figure 5: Monte-Carlo point source results.
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Figure 6: Profiles through reconstructions of Monte-Carlo point source data.
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