Fast converging iterative algorithms for PET

Jeffrey A. Fessler
EECS Department, BME Department, and Nuclear Medicine Division of Dept. of Internal Medicine
The University of Michigan

VIII Symposium on the Medical Applications of Cyclotrons

$$
\text { May 23, } 1999
$$

Outline

- Problem statement
- Choices / tradeoffs / considerations
- 1. Object parameterization
- 2. System physical modeling
- 3. Statistical modeling of measurements
- 4. Objective functions and regularization
- 5. Iterative algorithms
- Examples
- Open problems

PET Data Collection

Reconstruction Methods

(Simplified View)

Analytical
(FBP)
Iterative
(OSEM?)

Reconstruction Methods

ANALYTICAL
FBP
BPF
Gridding

ITERATIVE

History of Statistical Image Reconstruction

- First use of iterative methods for tomography
X-ray CT?
- Weighted least squares for 3D SPECT
(Goitein, NIM, 1972)
- First proposal of Poisson likelihood for emission tomography
(Rockmore and Macovski, TNS, 1976)
- First proposal of Poisson likelihood for transmission tomography
(Rockmore and Macovski, TNS, 1977)
- First EM algorithm for Poisson emission model
(Shepp and Vardi, TMI, 1982)
- First EM algorithm for Poisson transmission model
(Lange and Carson, JCAT, 1984)
- Late 1990's - commercial availability of OSEM
(Hudson and Larkin, TMI, 1994)

Why Statistical Methods?

- Object constraints (e.g. nonnegativity)
- Accurate models of physics (quantitative accuracy) (e.g. nonuniform attenuation in SPECT)
- System response models (possibly improved spatial resolution)
- Appropriate statistical models (less variance) (FBP treats all rays equally)
- Side information (e.g. MRI or CT boundaries)
- Nonstandard geometries ("missing" data)

Disadvantages?

- Computation time
- Model complexity
- Software complexity
- Less predictable (due to nonlinearities), especially for some methods e.g. Huesman (1984) FBP ROI variance for kinetic fitting

Five Categories of Choices

1. Object parameterization: $\lambda(\vec{x})$ vs $\underline{\lambda}$
2. System physical model: $s_{i}(\vec{x})$
3. Measurement statistical model $Y_{i} \sim$?
4. Objective function: data-fit / regularization
5. Algorithm / initialization

No perfect choices - one can critique all approaches!
Choices impact:

- Image spatial resolution
- Image noise
- Quantitative accuracy
- Computation time
- Memory
- Algorithm complexity

Choice 1. Object Parameterization

Radioisotope spatial distribution $\rightarrow \lambda(\vec{x}) \approx \tilde{\lambda}(\vec{x})=\sum_{j=1}^{n_{p}} \lambda_{j} b_{j}(\vec{x}) \leftarrow \begin{gathered}\text { Series expansion }\end{gathered}$

Object $\lambda(\vec{x})$

Pixelized approximation $\tilde{\lambda}(\vec{x})$

Basis Functions

Choices

- Fourier series
- Circular harmonics
- Wavelets
- Kaiser-Bessel windows
- Overlapping disks
- B-splines (pyramids)
- Polar grids
- Logarithmic polar grids
- "Natural pixels"
- Point masses
- pixels / voxels
- ...

Considerations

- Represent object $\lambda(\vec{x})$ "well" with moderate n_{p}
- system matrix elements $\left\{a_{i j}\right\}$ "easy" to compute
- The $n_{d} \times n_{p}$ system matrix: $\boldsymbol{A}=\left\{a_{i j}\right\}$, should be sparse (mostly zeros).
- Easy to represent nonnegative functions e.g., if $\lambda_{j} \geq 0$, then $\lambda(\vec{x}) \geq 0$, i.e. $b_{j}(\vec{x}) \geq 0$.

Point-Lattice Projector/Backprojector

$a_{i j}$'s determined by linear interpolation

Point-Lattice Artifacts

Projections (sinograms) of uniform disk object:

Choice 2. System Model

System matrix $\boldsymbol{A}=\left\{a_{i j}\right\}$ elements:
$a_{i j}=\mathrm{P}$ [decay in the j th pixel is recorded by the i th detector unit]

Physical effects

- scanner geometry
- solid angles
- detector efficiency
- attenuation
- scatter
- collimation
- detector response
- dwell time at each angle
- dead-time losses
- positron range
- noncolinearity
- ...

Considerations

- Accuracy vs computation and storage vs compute-on-fly
- Model uncertainties
(e.g. calculated scatter probabilities based on noisy attenuation map)
- Artifacts due to over-simplifications

"Line Length" System Model

"Strip Area" System Model

Sensitivity Patterns

$$
\sum_{i=1}^{n_{d}} a_{i j} \approx s\left(\underline{x}_{j}\right)=\sum_{i=1}^{n_{d}} s_{i}\left(\underline{x}_{j}\right)
$$

Strip Area

Forward- / Back-projector "Pairs"

Forward projection (image domain to projection domain):

$$
E\left[Y_{i}\right]=\int s_{i}(\vec{x}) \lambda(\vec{x}) d \vec{x}=\sum_{j=1}^{n_{p}} a_{i j} \lambda_{j}=[\boldsymbol{A} \underline{\lambda}]_{i}, \text { or } E[\underline{Y}]=\boldsymbol{A} \underline{\lambda}
$$

Backprojection (projection domain to image domain):

$$
\boldsymbol{A}^{\prime} \underline{y}=\left\{\sum_{i=1}^{n_{d}} a_{i j} y_{i}\right\}_{j=1}^{n_{p}}
$$

Often \boldsymbol{A}^{\prime} is implemented as $\boldsymbol{B} \underline{y}$ for some "backprojector" $\boldsymbol{B} \neq \boldsymbol{A}^{\prime}$
Least-squares solutions (for example):

$$
\underline{\hat{\lambda}}=\left[\boldsymbol{A}^{\prime} \boldsymbol{A}\right]^{-1} \boldsymbol{A}^{\prime} \underline{y} \neq[\boldsymbol{B} \boldsymbol{A}]^{-1} \boldsymbol{B} \underline{y}
$$

Mismatched Backprojector $B \neq \boldsymbol{A}^{\prime}$ (3D PET)

Horizontal Profiles

Choice 3. Statistical Models

After modeling the system physics, we have a deterministic "model:"

$$
\underline{Y} \approx E[\underline{Y}]=\boldsymbol{A} \underline{\lambda}+\underline{r} .
$$

Statistical modeling is concerned with the " \approx " aspect.

Random Phenomena

- Number of tracer atoms injected N
- Spatial locations of tracer atoms $\left\{\vec{X}_{k}\right\}_{k=1}^{N}$
- Time of decay of tracer atoms $\left\{T_{k}\right\}_{k=1}^{N}$
- Positron range
- Emission angle
- Photon absorption
- Compton scatter
- Detection $S_{k} \neq 0$
- Detector unit $\left\{S_{k}\right\}_{i=1}^{n_{d}}$
- Random coincidences
- Deadtime losses
- ...

Statistical Model Considerations

- More accurate models:
- can lead to lower variance images,
- can reduce bias
- may incur additional computation,
- may involve additional algorithm complexity
(e.g. proper transmission Poisson model has nonconcave log-likelihood)
- Statistical model errors (e.g. deadtime)
- Incorrect models (e.g. log-processed transmission data)

Statistical Model Choices

- "None." Assume $\underline{Y}-\underline{r}=\boldsymbol{A} \lambda$. "Solve algebraically" to find λ.
- White Gaussian noise. Ordinary least squares: minimize $\|\boldsymbol{Y}-\boldsymbol{A} \lambda\|^{2}$
- Non-White Gaussian noise. Weighted least squares: minimize

$$
\|\boldsymbol{Y}-\boldsymbol{A} \underline{\boldsymbol{\lambda}}\|_{\boldsymbol{W}}^{2}=\sum_{i=1}^{n_{d}} w_{i}\left(y_{i}-[\boldsymbol{A} \underline{\lambda}]_{j}\right)^{2}, \text { where }[\boldsymbol{A} \underline{\lambda}]_{i} \triangleq \sum_{j=1}^{n_{p}} a_{i j} \lambda_{j}
$$

- Ordinary Poisson model (ignoring or precorrecting for background)

$$
Y_{i} \sim \operatorname{Poisson}\left\{[\boldsymbol{A} \underline{\lambda}]_{i}\right\}
$$

- Poisson model

$$
Y_{i} \sim \operatorname{Poisson}\left\{[\boldsymbol{A} \boldsymbol{\lambda}]_{i}+r_{i}\right\}
$$

- Shifted Poisson model (for randoms precorrected PET)

$$
Y_{i}=Y_{i}^{\text {prompt }}-Y_{i}^{\text {delay }} \sim \operatorname{Poisson}\left\{[\boldsymbol{A} \underline{\lambda}]_{i}+2 r_{i}\right\}-2 r_{i}
$$

Transmission Phantom

FBP 7hour
FBP 12min

Thorax Phantom ECAT EXACT

Effect of statistical model

OSEM

OSTR

Iteration: 1
3
5
7

Choice 4. Objective Functions

Components:

- Data-fit term
- Regularization term (and regularization parameter β)
- Constraints (e.g. nonnegativity)

$$
\Phi(\underline{\lambda})=\operatorname{DataFit}(\underline{Y}, \boldsymbol{A} \underline{\lambda}+\underline{r})-\beta \cdot \operatorname{Roughness}(\underline{\lambda})
$$

$$
\underline{\hat{\lambda}} \triangleq \arg \max _{\underline{\lambda} \geq 0} \Phi(\underline{\lambda})
$$

"Find the image that 'best fits' the sinogram data"
Actually three choices to make for Choice 4 ...
Distinguishes "statistical methods" from "algebraic methods" for " $\underline{Y}=\boldsymbol{A} \lambda$."

Why Objective Functions?

(vs "procedure" e.g. adaptive neural net with wavelet denoising)

Theoretical reasons

ML is based on maximizing an objective function: the log-likelihood

- ML is asymptotically consistent
- ML is asymptotically unbiased
- ML is asymptotically efficient
(under true statistical model...)
- Penalized-likelihood achieves uniform CR bound asymptotically

Practical reasons

- Stability of estimates (if Φ and algorithm chosen properly)
- Predictability of properties (despite nonlinearities)
- Empirical evidence (?)

Choice 4.1: Data-Fit Term

- Least squares, weighted least squares (quadratic data-fit terms)
- Reweighted least-squares
- Model-weighted least-squares
- Norms robust to outliers
- Log-likelihood of statistical model. Poisson case:

$$
L(\underline{\lambda} ; \underline{Y})=\log P[\underline{Y}=\underline{y} ; \underline{\lambda}]=\sum_{i=1}^{n_{d}} y_{i} \log \left([\boldsymbol{A} \underline{\lambda}]_{i}+r_{i}\right)-\left([\boldsymbol{A} \underline{\lambda}]_{i}+r_{i}\right)-\log y_{i}!
$$

Poisson probability mass function (PMF):

$$
P[\underline{Y}=\underline{y} ; \underline{\lambda}]=\Pi_{i=1}^{n_{d}} e^{-\bar{y}_{i}} \bar{y}_{i}^{y_{i}} / y_{i}!\text { where } \underline{\bar{y}} \triangleq \boldsymbol{A} \underline{\lambda}+\underline{r}
$$

Considerations

- Faithfulness to statistical model vs computation
- Effect of statistical modeling errors

Choice 4.2: Regularization

Forcing too much "data fit" gives noisy images
III-conditioned problems: small data noise causes large image noise
Solutions:

- Noise-reduction methods
- Modify the data (prefilter or extrapolate sinogram data)
- Modify an algorithm derived for an ill-conditioned problem (stop before converging, post-filter)
- True regularization methods

Redefine the problem to eliminate ill-conditioning

- Use bigger pixels (fewer basis functions)
- Method of sieves (constrain image roughness)
- Change objective function by adding a roughness penalty / prior

$$
R(\underline{\lambda})=\sum_{j=1}^{n_{p}} \sum_{k \in \mathcal{N}_{j}} \psi\left(\lambda_{j}-\lambda_{k}\right)
$$

Noise-Reduction vs True Regularization

Advantages of "noise-reduction" methods

- Simplicity (?)
- Familiarity
- Appear less subjective than using penalty functions or priors
- Only fiddle factors are \# of iterations, amount of smoothing
- Resolution/noise tradeoff usually varies with iteration (stop when image looks good - in principle)

Advantages of true regularization methods

- Stability
- Predictability
- Resolution can be made object independent
- Controlled resolution (e.g. spatially uniform, edge preserving)
- Start with (e.g.) FBP image \Rightarrow reach solution faster.

Unregularized vs Regularized Reconstruction

ML (unregularized)

(OSTR)

Penalized likelihood

Iteration: 1
3

5
7

Roughness Penalty Function Considerations

$$
R(\underline{\lambda})=\sum_{j=1}^{n_{p}} \sum_{k \in \mathcal{N}_{j}} \psi\left(\lambda_{j}-\lambda_{k}\right)
$$

- Computation
- Algorithm complexity
- Uniqueness of maximum of Φ
- Resolution properties (edge preserving?)
- \# of adjustable parameters
- Predictability of properties (resolution and noise)

Choices

- separable vs nonseparable
- quadratic vs nonquadratic
- convex vs nonconvex

This topic is actively debated!

Nonseparable Penalty Function Example

Example

x_{1}	x_{2}	x_{3}
x_{4}	x_{5}	

$$
\begin{aligned}
R(\underline{x})= & \left(x_{2}-x_{1}\right)^{2}+\left(x_{3}-x_{2}\right)^{2}+\left(x_{5}-x_{4}\right)^{2} \\
& +\left(x_{4}-x_{1}\right)^{2}+\left(x_{5}-x_{2}\right)^{2}
\end{aligned}
$$

2	2	2
2	1	
	$(\underline{x})=1$	

3	3	1
2	2	

Rougher images \Rightarrow greater $R(\underline{x})$

Penalty Functions: Quadratic vs Nonquadratic

Phantom

Quadratic Penalty

Huber Penalty

Summary of Modeling Choices

1. Object parameterization: $\lambda(\underline{x})$ vs $\underline{\lambda}$
2. System physical model: $s_{i}(\underline{x})$
3. Measurement statistical model $Y_{i} \sim$?
4. Objective function: data-fit / regularization / constraints

Reconstruction Method = Objective Function + Algorithm

5. Iterative algorithm

ML-EM, MAP-OSL, PL-SAGE, PWLS+SOR, PWLS-CG, ...

Choice 5. Algorithms

Deterministic iterative mapping: $\underline{x}^{n+1}=\mathcal{M}\left(\underline{x}^{n}\right)$
All algorithms are imperfect. No single best solution.

Ideal Algorithm

$$
\underline{x}^{\star} \triangleq \arg \max _{\underline{x} \geq \underline{0}} \Phi(\underline{x}) \quad \text { (global maximum) }
$$

stable and convergent converges quickly globally convergent fast
robust
user friendly monotonic parallelizable simple flexible
$\left\{\underline{x}^{n}\right\}$ converges to \underline{x}^{\star} if run indefinitely
$\left\{\underline{x}^{n}\right\}$ gets "close" to \underline{x}^{\star} in just a few iterations
$\lim _{n} x^{n}$ independent of starting image
requires minimal computation per iteration
insensitive to finite numerical precision
nothing to adjust (e.g. acceleration factors)
$\Phi\left(\underline{x}^{n}\right)$ increases every iteration
(when necessary)
easy to program and debug
accommodates any type of system model (matrix stored by row or column or projector/backprojector)
Choices: forgo one or more of the above

Optimization Transfer Illustrated

Convergence Rate: Fast

Slow Convergence of EM

Paraboloidal Surrogates

- Not separable (unlike EM)
- Not self-similar (unlike EM)
- Poisson log-likelihood replaced by a series of least squares problems.
- Maximize each quadratic problem easily using coordinate ascent.

Advantages

- Fast converging
- Instrinsically monotone global convergence
- Fairly simple to derive / implement
- Nonnegativity easy (with coordinate ascent)

Disadvantages

- Coordinate ascent .: column-stored system matrix

Convergence rate: PSCA vs EM

Ordered Subsets Algorithms

- The backprojection operation appears in every algorithm.
- Intuition: with half the angular sampling, the backprojection would look fairly similar.
- To "OS-ize" an algorithm, replace all backprojections with partial sums.

Problems with OS-EM

- Non-monotone
- Does not converge (may cycle)
- Byrne's RBBI approach only converges for consistent (noiseless) data
- . unpredictable
- What resolution after n iterations?
- Object-dependent, spatially nonuniform
- What variance after n iterations?
- ROI variance? (e.g. for Huesman's WLS kinetics)

OSEM vs Penalized Likelihood

- 64×62 image
- 66×60 sinogram
- 10^{6} counts
- 15% randoms/scatter
- uniform attenuation
- contrast in cold region
- within-region σ opposite side

Contrast-Noise Results

Noise Properties

$$
\operatorname{Cov}\{\underline{\hat{x}}\} \approx\left[\nabla^{20} \Phi\right]^{-1}\left[\nabla^{11} \Phi\right] \operatorname{Cov}\{\underline{Y}\}\left[\nabla^{11} \Phi\right]^{T}\left[\nabla^{20} \Phi\right]^{-1}
$$

- Enables prediction of noise properties
- Useful for computing ROI variance for kinetic fitting

IEEE Tr. Image Processing, 5(3):493 1996

Summary

- General principles of statistical image reconstruction
- Optimization transfer
- Principles apply to transmission reconstruction
- Predictability of resolution / noise and controlling spatial resolution argues for regularized objective-function
- Still work to be done...

An Open Problem

Still no algorithm with all of the following properties:

- Nonnegativity easy
- Fast converging
- Intrinsically monotone global convergence
- Accepts any type of system matrix
- Parallelizable

