Comparing Estimator Covariances at Matched Spatial Resolutions for Imaging System Design

Jeffrey A. Fessler and Alfred O. Hero

EECS Department The University of Michigan

1999 IEEE Information Theory Workshop on Detection, Estimation, Classification and Imaging (DECI)

Feb. 24, 1999

General Problem

Determine "best" imaging system parameters

- aperture geometry (parallel / fan / cone)
- aperture openings (resolution vs sensitivity)
- dwell times
- . . .

Image formation model:

 $\fboxline \texttt{Object} \overset{\texttt{Energy}}{\longrightarrow} \vspace{-1mm} \texttt{Sensors} \overset{\texttt{Measurements}}{\longrightarrow} \overset{\underline{Y}}{\longrightarrow} \vspace{-1mm} \texttt{Estimator} \longrightarrow \texttt{Image} \, \underline{\hat{X}}$

Goal (aka holy grail):

Specify sensor properties/parameters to

"maximize the information in the image about the object."

Possible Approaches

- Cramer-Rao Bound
 - Fisher information depends on system properties
 - Estimator independent
 - Unnatural for ill-conditioned problems
- Uniform Cramer-Rao Bound
 - Estimator independent
 - Allows for regularization-induced bias
 - Selection of bias-gradient norm and interpretation nontrivial
- Mutual Information
 - Global measure. Indirect relation to reconstruction errors
- Detection Task Performance
 - Task dependent
- Estimator performance analysis
 - Conclusions are estimator-dependent

Implicitly Defined Estimators

$$\underline{\hat{X}} \stackrel{\triangle}{=} \arg \max_{\underline{x}} \Phi(\underline{x}, \underline{Y})$$

Covariance (IEEE T-IP 5(3) 1996)

$$\operatorname{Cov}\left\{\underline{\hat{X}}\right\} \approx \left[-\nabla^{20}\Phi\right]^{-1} \left[\nabla^{11}\Phi\right] \operatorname{Cov}\left\{\underline{Y}\right\} \left[\nabla^{11}\Phi\right]' \left[-\nabla^{20}\Phi\right]^{-1}$$

Local impulse response (IEEE T-IP 5(9) 1996)

$$\lim_{\delta \to 0} \frac{E[\underline{\hat{X}}(\underline{Y})|\underline{x} + \delta \underline{e}_j] - E[\underline{\hat{X}}(\underline{Y})|\underline{x}]}{\delta} \approx [-\nabla^{20}\Phi]^{-1} [\nabla^{11}\Phi] \frac{\partial E[\underline{Y}|\underline{x}]}{\partial x_j}$$

- Both $\operatorname{Cov} \{\underline{Y}\}$ and Φ depend on the imaging system
- $\bullet \ \Phi$ depends on the estimator
- Shape and width of local impulse response changes as system parameters vary!

Regularized Least Squares

Gaussian measurement model:

$$\underline{Y} \sim \mathcal{N}(\boldsymbol{A}_{\alpha} \underline{x}^{\mathrm{true}}, \boldsymbol{K}_{\alpha})$$

System matrix A_{α} and covariance K_{α} depend on system parameters α .

Regularized least-squares estimator:

$$\frac{\hat{X}}{\underline{X}} = \arg \min_{\underline{x}} (\underline{Y} - A_{\alpha} \underline{x})' K_{\alpha}^{-1} (\underline{Y} - A_{\alpha} \underline{x}) + \underline{x}' R \underline{x}$$

$$= [F_{\alpha} + R^{\text{sym}}]^{-1} A_{\alpha}' K_{\alpha}^{-1} \underline{Y}$$

where

- Fisher information matrix: $\boldsymbol{F}_{\alpha} \stackrel{\triangle}{=} \boldsymbol{A}_{\alpha}' \boldsymbol{K}_{\alpha}^{-1} \boldsymbol{A}_{\alpha}$
- Symmetric component of \mathbf{R} : $\mathbf{R}^{\text{sym}} \stackrel{\triangle}{=} \frac{1}{2}(\mathbf{R} + \mathbf{R}')$

Resolution and Noise

For the regularized LS estimator:

$$E[\underline{\hat{X}}] = [\boldsymbol{F}_{\alpha} + \boldsymbol{R}^{\text{sym}}]^{-1} \boldsymbol{A}_{\alpha}' \boldsymbol{K}_{\alpha}^{-1} \boldsymbol{A}_{\alpha} \underline{x}^{\text{true}} = \boldsymbol{P} \underline{x}^{\text{true}}$$

where the *PSF matrix* is $P \stackrel{\triangle}{=} [F_{\alpha} + R^{\text{sym}}]^{-1} F_{\alpha}$. (The *j*th column of **P** is the local impulse response.)

$$\operatorname{Cov}\left\{\underline{\hat{X}}\right\} = [\boldsymbol{F}_{\alpha} + \boldsymbol{R}^{\operatorname{sym}}]^{-1}\boldsymbol{F}_{\alpha}[\boldsymbol{F}_{\alpha} + \boldsymbol{R}^{\operatorname{sym}}]^{-1}$$

We would like to choose the system parameters α so as to minimize the "noise," subject to some constraint on spatial resolution.

As we vary α , both the covariance *and* the resolution properties change.

Pre-specified PSF Matrix

(for *exactly* matched spatial resolution)

Suppose we insist that the PSF matrix be a pre-determined matrix P_0 .

- Can we find a regularizer R that achieves that specification $\forall \alpha$?
- How do we minimize $\operatorname{Cov}\left\{\underline{\hat{X}}\right\}$ over α subject to that constraint?
- How does the minimum covariance vary as a function of P_0 ?

Achievability of PSF Specification

Recall
$$\boldsymbol{P} \stackrel{\triangle}{=} [\boldsymbol{F}_{\alpha} + \boldsymbol{R}^{\mathrm{sym}}]^{-1} \boldsymbol{F}_{\alpha}$$

Rearranging and solving yields the regularization matrix:

$$oldsymbol{R}^{\mathrm{sym}}_lpha \stackrel{ riangle}{=} oldsymbol{F}_lpha[oldsymbol{P}_0^{-1}-oldsymbol{I}].$$

Requirements:

- P_0 must be invertible
- $F_{\alpha} + R_{\alpha}^{\text{sym}} = F_{\alpha}P_{0}^{-1}$ must be invertible, $\therefore F_{\alpha}^{-1}$ must exist
- $\mathbf{R}_{\alpha}^{\text{sym}}$ must be symmetric, $\therefore \mathbf{F}_{\alpha}\mathbf{P}_{0}^{-1} = \mathbf{P}_{0}^{-T}\mathbf{F}_{\alpha}$, Sufficient condition: \mathbf{P}_{0} symmetric and \mathbf{F}_{α} and \mathbf{P}_{0} commute

Otherwise *no* regularization matrix *R* provides the desired PSF matrix. Counter-intuitive?

Covariance with Constrained PSF

If above conditions hold, and $\boldsymbol{R}_{\alpha} = \boldsymbol{F}_{\alpha} [\boldsymbol{P}_{0}^{-1} - \boldsymbol{I}]$, then

$$\operatorname{Cov}\left\{\underline{\hat{X}}\right\} = [\boldsymbol{F}_{\alpha} + \boldsymbol{R}^{\operatorname{sym}}]^{-1} \boldsymbol{F}_{\alpha} [\boldsymbol{F}_{\alpha} + \boldsymbol{R}^{\operatorname{sym}}]^{-1}$$
$$= [\boldsymbol{F}_{\alpha} + \boldsymbol{R}^{\operatorname{sym}}]^{-1} \boldsymbol{F}_{\alpha} \boldsymbol{F}_{\alpha}^{-1} \boldsymbol{F}_{\alpha} [\boldsymbol{F}_{\alpha} + \boldsymbol{R}^{\operatorname{sym}}]^{-1}$$
$$= \boldsymbol{P}_{0} \boldsymbol{F}_{\alpha}^{-1} \boldsymbol{P}_{0}',$$

a simple function of Fisher information F_{α} and PSF matrix P_0 . Annoyingly simple, in fact, since it is just the covariance of post-smoothed *unregularized* weighted least squares:

$$\underline{\hat{X}} = \boldsymbol{P}_0 \underline{\hat{X}}_{WLS} = \boldsymbol{P}_0 [\boldsymbol{A}_{\alpha}' \boldsymbol{K}_{\alpha}^{-1} \boldsymbol{A}_{\alpha}]^{-1} \boldsymbol{A}_{\alpha}' \boldsymbol{K}_{\alpha}^{-1} \boldsymbol{Y}.$$

So Why Regularize?

- Faster converging algorithms (better condition number)
- Constraints (*e.g.* nonnegativity) could change conclusions
- Nonquadratic regularization not equivalent to post-smoothing.

But, it is still disappointing that (under the above assumptions)

regularized least squares / penalized-likelihood / MAP reconstruction

post-smoothed least squares

 \equiv

when spatial resolution is exactly matched.

Pinhole Imaging Problem

Pinhole imaging system with position-sensitive detector.

Goal: find aperture function $a(\vec{x})$ that minimizes variance of reconstructed object estimate, subject to a spatial resolution constraint. Small pinhole \Rightarrow better resolution, but fewer photons (and vice versa)

Assumptions

(Big leap to continuous problem)

- Emission process is a Poisson point process with rate $\lambda(\vec{x})$
- \bullet Number N of detected photons is Poisson
- Shift invariant system response $a(\vec{x})$ (*e.g.* scanned pinhole)
- Perfect position-sensitive detector
- System sensitivity $\propto \left[\int |a(\vec{x})|^2 d\vec{x}\right]^{-1} = \left[\int |A(u)|^2 du\right]^{-1}$
- Kernel-based density estimator:

$$\hat{\lambda}(\vec{x}) = \frac{1}{N} \sum_{k=1}^{N} g(\vec{x} - \vec{X}_k)$$

... (Optics Express, 1998)

• Resolution:

$$E[\hat{\lambda}(\vec{x})] = \lambda(\vec{x}) * a(\vec{x}) * g(\vec{x})$$

so the PSF is $p(\vec{x}) = a(\vec{x}) * g(\vec{x})$. In frequency domain:

$$P(u) = A(u)G(u), :: G(u) = P(u)/A(u).$$

• Variance:

$$\operatorname{Var}\left\{\hat{\lambda}(\vec{x})\right\} \propto \int \left|\frac{P(u)}{A(u)}\right|^2 \, du \cdot \int |A(u)|^2 \, du$$

Minimizing variance with respect to A(u) by variational calculus yields:

$$|A(u)| = \sqrt{|P_0(u)|}.$$

If $p_0(\vec{x})$ is Gaussian, then $a(\vec{x})$ is also Gaussian, with FHWM/ $\sqrt{2}$.

1D Simulation

- $\lambda(\vec{x}) \propto 9\delta(x 146) + \operatorname{rect}((x 208)/64) + 2\Lambda((x 64)/44)$
- Target resolution: $\beta = 3$ mm.
- $a(\vec{x})$: 1D Gaussian pinhole, FWHM $w \in [0.9, 2.9]$ mm.
- 4000 realizations per pinhole size
- Mean number of photons per realization: 100w

(*i.e.* the sensitivity increased linearly with pinhole size)

- Gaussian-apodized inverse filter, with FWHM $\sqrt{\beta^2 w^2}$.
- Theoretically predicted variance-minimizing pinhole size is $w = \beta/\sqrt{2} \approx 2.1 \text{ mm}$

Conclusions (?)

• Regularized WLS \equiv post-filtered unregularized WLS when spatial resolution is exactly matched, with covariance $P_0 F_{\alpha}^{-1} P'_0$.

Open questions

- How to minimize $P_0 F_{\alpha}^{-1} P_0$ over α for 2d/3d problems?
- How does $\min_{\alpha} \boldsymbol{P}_0 \boldsymbol{F}_{\alpha}^{-1} \boldsymbol{P}_0$ vary with α ?
- What happens when P_0 and F_{α} do not commute?
- What if we relax the PSF matrix specification to be more like filter design specs?
- Other estimators for pinhole problem?
- Extension of uniform CR bound to nonparametric estimation problems