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General Problem

Determine “best” imaging system parameters

� aperture geometry (parallel / fan / cone)

� aperture openings (resolution vs sensitivity)

� dwell times

� . . .

Image formation model:

Object
Energy�! Sensors

MeasurementsY�! Estimator �! Image ^X

Goal (aka holy grail):

Specify sensor properties/parameters to

“maximize the information in the image about the object.”
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Possible Approaches
� Cramer-Rao Bound

� Fisher information depends on system properties

� Estimator independent

� Unnatural for ill-conditioned problems

� Uniform Cramer-Rao Bound

� Estimator independent

� Allows for regularization-induced bias

� Selection of bias-gradient norm and interpretation nontrivial

� Mutual Information

� Global measure. Indirect relation to reconstruction errors

� Detection Task Performance

� Task dependent

� Estimator performance analysis

� Conclusions are estimator-dependent
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Implicitly Defined Estimators

^X
4

= argmax
x

�(x; Y )

Covariance (IEEE T-IP 5(3) 1996)

Cov
n

^X
o

� [�r20�]�1[r11�]Cov fY g �r11�
�0

[�r20�]�1

Local impulse response (IEEE T-IP 5(9) 1996)

lim
�!0

E[ ^X(Y )jx+ �ej ]�E[ ^X(Y )jx]

�

� [�r20�]�1[r11�]
@E[Y jx]

@xj

� BothCov fY g and� depend on the imaging system

� � depends on the estimator

� Shape and width of local impulse response changes as system

parameters vary!
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Regularized Least Squares

Gaussian measurement model:

Y � N �
A�x
true;K�
�

System matrixA� and covarianceK� depend on system parameters�.

Regularized least-squares estimator:

^X = argmin
x

(Y �A�x)
0
K

�1
� (Y �A�x) + x0Rx

= [F � +Rsym]�1A0�K
�1

� Y
where

� Fisher information matrix:F �

4
= A0�K
�1

� A�

� Symmetric component ofR: Rsym 4
= 1
2
(R+R0)
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Resolution and Noise

For the regularized LS estimator:
E[ ^X] = [F � +Rsym]�1A0�K
�1

� A�x
true = Pxtrue

where thePSF matrixis P

4
= [F � +Rsym]�1F �:

(Thejth column ofP is the local impulse response.)

Cov
n

^X
o

= [F � +Rsym]�1F �[F � +Rsym]�1

We would like to choose the system parameters� so as to minimize the

“noise,” subject to some constraint on spatial resolution.

As we vary�, both the covarianceand the resolution properties change.
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Pre-specified PSF Matrix

(for exactlymatched spatial resolution)

Suppose we insist that the PSF matrix be a pre-determined matrixP 0.

� Can we find a regularizerR that achieves that specification8�?

� How do we minimizeCov
n

^X
o

over� subject to that constraint?

� How does the minimum covariance vary as a function ofP 0?
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Achievability of PSF Specification

RecallP
4

= [F � +Rsym]�1F �.

Rearranging and solving yields the regularization matrix:

R
sym

�

4
= F �[P
�1

0 � I]:

Requirements:

� P 0 must be invertible

� F � +Rsym
� = F �P
�1

0 must be invertible,::: F�1� must exist

�Rsym
� must be symmetric,::: F �P
�1

0 = P�T0 F �,

Sufficient condition:P 0 symmetric andF � andP 0 commute

Otherwiseno regularization matrixR provides the desired PSF matrix.

Counter-intuitive?
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Covariance with Constrained PSF

If above conditions hold, andR� = F �[P
�1

0 � I], then

Cov
n

^X
o

= [F � +Rsym]�1F �[F � +Rsym]�1

= [F � +Rsym]�1F �F
�1

� F �[F � +Rsym]�1

= P 0F
�1

� P
0

0;
a simple function of Fisher informationF � and PSF matrixP 0.

Annoyingly simple, in fact, since it is just the covariance of

post-smoothedunregularizedweighted least squares:

^X = P 0
^XWLS = P 0[A
0

�K

�1
� A�]
�1
A
0

�K

�1
� Y :
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So Why Regularize?

� Faster converging algorithms (better condition number)

� Constraints (e.g.nonnegativity) could change conclusions

� Nonquadratic regularization not equivalent to post-smoothing.

But, it is still disappointing that (under the above assumptions)

regularized least squares / penalized-likelihood / MAP reconstruction
�

post-smoothed least squares

when spatial resolution is exactly matched.
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Pinhole Imaging Problem

Pinhole imaging system with position-sensitive detector.

Input Pinhole Aperture Detector

�(~x) a(~x)

~Xk

Goal: find aperture functiona(~x) that minimizes variance of

reconstructed object estimate, subject to a spatial resolution constraint.

Small pinhole) better resolution, but fewer photons (and vice versa)
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Assumptions

(Big leap to continuous problem)

� Emission process is a Poisson point process with rate�(~x)

� NumberN of detected photons is Poisson

� Shift invariant system responsea(~x) (e.g.scanned pinhole)

� Perfect position-sensitive detector

� System sensitivity/ �R ja(~x)j2 d~x��1 = �R jA(u)j2 du��1

� Kernel-based density estimator:

^�(~x) =

1
N

NX
k=1

g(~x� ~Xk)
... (Optics Express, 1998)
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� Resolution:

E[^�(~x)] = �(~x) � a(~x) � g(~x)

so the PSF isp(~x) = a(~x) � g(~x). In frequency domain:

P (u) = A(u)G(u); ::: G(u) = P (u)=A(u):

� Variance:

Var
n

^�(~x)
o

/
Z ����P (u)A(u)
����
2

du �
Z

jA(u)j2 du:

Minimizing variance with respect toA(u) by variational calculus yields:

jA(u)j =
p

jP0(u)j:
If p0(~x) is Gaussian, thena(~x) is also Gaussian, with FHWM/

p
2.
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Example: Gaussian Pinhole
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1D Simulation

� �(~x) / 9�(x� 146) + rect((x� 208)=64) + 2�((x� 64)=44)

� Target resolution:� = 3 mm.

� a(~x): 1D Gaussian pinhole, FWHMw 2 [0:9; 2:9] mm.

� 4000 realizations per pinhole size

� Mean number of photons per realization:100w

(i.e. the sensitivity increased linearly with pinhole size)

� Gaussian-apodized inverse filter, with FWHM

p
�2 � w2.

� Theoretically predicted variance-minimizing pinhole size is

w = �=
p

2 � 2:1 mm
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Spatial Resolution Check (w=0.9:0.1:2.9)
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Conclusions (?)
� Regularized WLS� post-filtered unregularized WLS when spatial

resolution is exactly matched, with covarianceP 0F
�1

� P
0

0.

Open questions

� How to minimizeP 0F
�1

� P 0 over� for 2d/3d problems?

� How doesmin�P 0F
�1

� P 0 vary with�?

� What happens whenP 0 andF � do not commute?

� What if we relax the PSF matrix specification to be more like filter

design specs?

� Other estimators for pinhole problem?

� Extension of uniform CR bound to nonparametric estimation problems
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