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OUTLINE

� Problem Description

� Huber Algorithm

� Optimization Transfer

� Convex Algorithm (ala Lange / De Pierro)

� Grouped Coordinate Descent (GCD) Algorithm

� Anecdotal Results

� Summary
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\LINEAR" INVERSE PROBLEM

y = Ax + noise

� y: noisy measurements (blurred image or sinogram)

� x: unknown object (true image)

� A: known system model
(each column is a point response function)

� Errors in A partially motivate robust methods

Goal: recover an estimate x̂ of x from y.
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DATA-FIT COST FUNCTION

Want x̂ to \�t the data," i.e. y � Ax̂

Natural cost function for independent measurement errors:

�data(x) =
m1X
i=1
 data
i ([y �Ax]i)

� [y �Ax]i = yi �
pX
j=1

aijxj

� m1: length of y
�  i: convex function.

Traditional choice:  i(t) = t2=2, which is appropriate for Gaussian

noise, but is not robust to noise with heavy-tailed distributions.
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ROBUST DATA-FIT COST FUNCTION
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ROBUST ESTIMATORS

Generalized-Gaussian family of pdfs with unit variance:

fX(x;�; p) =
p

2

1

�(1=p)

p
rp exp

�
�jx� �jprp=2p

�
where rp =

�(3=p)

�(1=p)
:

Asymptotic variance of the sample median estimator for � is:

1

4nf 2(�)
=

1

n

�2(1=p)

p2rp
(cf 1=n for the sample mean).

CR bound for estimating �: �2�̂ �
1

n

1

p2rp

�(1=p)

�(2� 1=p)
:
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REGULARIZATION

Minimizing �data is inadequate for ill-conditioned inverse problems.

Prior \knowledge" of piece-wise smoothness:
� xj � xj�1 � 0 (piece-wise constant)

� xj�1 � 2xj + xj+1 � 0 (piece-wise linear)
� xj � 0 (support constraints)
� : : : Combining: Cx � z

Regularized cost function: �(x) = �data(x) + �penalty(x);

�penalty(x) =
m2X
i=1
 penalty
i ([Cx� z]i)
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EXAMPLE: ROUGHNESS PENALTY
(AKA GIBBS PRIOR)

Dn =

2
666666664

1 �1 0 0 0
0 1 �1 0 0

. . . . . .

0 0 0 1 �1

3
777777775

C =

2
64 Iny 
Dnx

Dny 
 Inx

3
75

where 
 denotes the Kronecker matrix product.

If z = 0 and Nj is the four pixel neighborhood of pixel j, then

�penalty(x) =
X
j

X
k2Nj

 j;k(xj � xk)

Conventional (Tikhonov-Miller) regularization:  (t) = t2=2.

(Gaussian prior)

For edge-preserving image recovery, need non-quadratic  (�),
such as Huber function.
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UNIFIED COST FUNCTION

�(x) =
mX
i=1
 i([Bx� c]i)

Regularized edge-preserving cost function is a special case:

�(x) = �data(x) + �penalty(x); B =

2
64 A
C

3
75 ; c =

2
64 y
z

3
75

Optimization problem:

x̂ = argmin
x

�(x) or x̂ = argmin
x� 0

�(x):
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OPTIMIZATION

Simple in quadratic case where  i(t) = t2=2 8i
x̂ = (B0

B)�1B0c

Good algorithms:
� Preconditioned conjugate gradients
� Coordinate descent (Gauss-Siedel)

Challenging for non-quadratic  i's
Very challenging for non-convex  i's

Proposition: algorithms tailored to structure of � can outperform
general purpose optimization methods.

but cannot solve it all...
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ASSUMPTIONS

B has full column rank, soM > 0 ) B
0
MB > 0

(Easily achieved with sensible regularization design)

�  is symmetric

�  is everywhere di�erentiable (and therefore continuous)

� _ (t) = d=dt  (t) is non-decreasing (and hence  is convex)

� ! (t) = _ (t)=t is non-increasing for t � 0

� ! (0) = limt!0
_ (t)=t is �nite and nonzero, i.e. 0 < ! (0) <1

� has a unique minimizer
(Easily ensured with perturbation of regularizer)

rules out entropy, jtjp to understand !, look at...
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UNCONSTRAINED SOLUTION

�(x) =
mX
i=1
 i([Bx� c]i)

Column gradient:

r�(x) = B0

(x)(Bx� c); r�(x)jx=x̂ = 0

where 
(x) = diagf! i([Bx� c]i)g
Unconstrained solution:

x̂ = [B0

(x̂)B]�1B0


(x̂)c

= argmin
x

1

2
(c �Bx)0
(x̂)(c �Bx)

(ala WLS, but weights depend on estimate x̂, hence nonlinear)

Therefore need iterative algorithm...

12



WEIGHTING FUNCTIONS ! 
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NEWTON-RAPHSON ALGORITHM

xn+1 = xn � [B0
�(xn)B]�1r�(xn)

where

�(xn) = diag
�
� i([Bx� c]i)

�

Advantage:
� Super-linear convergence rate (if convergent)

Disadvantages:
� Requires twice-di�erentiable  i's

� Not guaranteed to converge
� Not guaranteed to monotonically decrease �
� Does not enforce nonnegativity constraint

� Impractical for image recovery due to matrix inverse

General purpose remedy: bound-constrained Quasi-Newton algorithms
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HUBER ALGORITHM (1981)

Recall x̂ = [B0

(x̂)B]�1B0


(x̂)c = x̂� [B0

(x̂)B]�1r�(x̂)

Successive Substitutions:

xn+1 = xn � [B0

(xn)B]�1r�(xn)

Advantages:

� Monotonically decreases �
� Converges globally to unique minimizer (not shown by Huber)

Disadvantages:
� Does not enforce nonnegativity constraint
� Impractical for image recovery due to matrix inverse

Successive substitutions is often not convergent. Why here?
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OPTIMIZATION TRANSFER

xn+1 = arg min
x
�Huber(x;xn)

�Huber(x;xn) =
1

2
(c �Bx)0
(xn)(c �Bx)

-

6

x

�(x)

�(x;xn)

xnxn+1 � � �

Minimizing surrogate function � ensures a monotone decrease in � if:
� �(xn;xn) = �(xn)

� rx�(x;xn)jx=xn = r�(x)jx=xn
� �(x) � �(x;xn):

These 3 (su�cient) conditions are satis�ed by �Huber
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OPTIMIZATION TRANSFER IN 2D
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GENERALIZED HUBER ALGORITHM

xn+1 = xn �M�1
n r�(xn)

where

Mn � B0

(xn)B

Advantages:

� Monotonically decreases �
� Converges globally to unique minimizer
� Can chooseMn to be easily invertible, e.g. diagonal.

(Or splitting matrices more generally)

Disadvantages:
� Does not enforce nonnegativity constraint

� Converges slower than Huber algorithm
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CONVERGENCE RATE

High Curvature
Small Steps
Slow Convergence

Fast Convergence
Large Steps
Low Curvature
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can we beat this tradeo�?
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USING THE STRUCTURE OF �

De Pierro's decomposition (uses form of argument of  i):

Bx� c =
pX
j=1

�ij

2
64 bij
�ij

(xj � xnj ) +Bx
n � c

3
75

provided �ij � 0 and
Pp
j=1 �ij = 1; 8i:

The �ij's are algorithm design factors.

Natural choice is �ij = jbijj=Ppj=1 jbikj:

By convexity of  i:

 i([Bx� c]i) �
pX
j=1

�ij i

0
B@ bij
�ij

(xj � xnj ) +Bx
n � c

1
CA

Construct surrogate function:

�(x) =
mX
i=1
 i([Bx� c]i) � �LDC(x;xn)

�LDC(x;xn) =
pX
j=1

�j(xj;x
n);

�j(xj;x
n) =

mX
i=1
�ij i

0
B@ bij
�ij

(xj � xnj ) +Bx
n � c

1
CA

�LDC satis�es the 3 conditions for monotonicity
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LANGE / DE PIERRO CONVEX ALGORITHM

xn+1 = argmin
x
�LDC(x;xn)

xn+1
j = arg min

xj�0
�j(xj ;x

n)

= arg min
xj�0

mX
i=1
�ij i

0
B@ bij
�ij

(xj � xnj ) +Bx
n � c

1
CA

Advantages:
� Monotonically decreases �
� Converges globally to unique minimizer

� No matrix inversion required
� Can enforce nonnegativity constraint
� Parallelizable (all pixels updated simultaneously)

Disadvantages:
� Requires subiteration for minimization

Solution: use 1-D Huber algorithm
� Very slow convergence (ala EM algorithm)

Solution: update only a subset of the pixels simultaneously
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GROUPED COORDINATE DESCENT
ALGORITHM

Construct surrogate function using Lange / De Pierro convexity method
but for only a (large) subset of the pixels.

Pixels separated => decoupled => fast convergence
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Many pixels per subiteration => parallelizable

Retains advantages of Convex Algorithm, but converges faster.

Disadvantages:

� Slightly less parallelizable.
� Slightly more complicated implementation
� Di�cult to exploit structure of B

(e.g. FFTs for shift-invariant PSF, separable blur in PET)
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SIMULATION EXAMPLE

True object x:

With 5 pixel horizontal motion blur and Gaussian noise, y is:
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RESTORED IMAGE

Wiener �lter:

Edge-preserving restoration x̂:

Huber function used for  i's for piece-wise smoothness.
15 iterations of Grouped Coordinate Descent.
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CONVERGENCE RATES
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LBFGS: Limited Memory Bound Constrained Quasi-Newton Method

(R. Byrd, P. Lu, J. Nocedal, R. Schnabel, C. Zhu)
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NORMALIZED RMS DISTANCE

kxn � x1k
kx1k
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x1: 400 iterations of single-coordinate descent

(Thanks to Web Stayman for interfacing LBFGS with ASPIRE.)

26



SUMMARY

Grouped Coordinate Descent Algorithm

� Accommodates non-quadratic cost function
(for noise robustness and preserving edges)

� Monotonically decreases �

� Converges globally to unique minimizer

� Easily accommodates nonnegativity constraint

� Parallelizable

� Converges faster than a general-purpose optimization method

Future Work:

Extend convergence proofs for multiple global minimizers:

x

Φ

Slides and paper available from:
http://www.eecs.umich.edu/~fessler/
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