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. . J. Fessler
Under-determined inverse problems Eff genCl M

» Applications: compressed sensing MRI, sparse-view CT, PET, inpainting, ...
All have linear forward models for data:

y=Ax+e¢

y: sensor data (e.g., sinogram)
A: wide system matrix (known)
x: latent image (or image series in dynamic problems)
e: noise with known distribution provides likelihood p(y|x)
» Maximum-likelihood estimation (physics-based fitting) is usually non-unique:

x = arg max log p(y|x) = argmin ||Ax — yH%
X X

(for gaussian noise)
> Minimum-norm least-squares solution is unique but usually impractical or useless:
% = Aty = y for inpainting problem
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. J. Fessler
Inverse problem solution methods Eff genCl

» hand-crafted regularizers:
x = argxmin —log p(y|x) +R(x) = arg min — 2 2 |Ax — [ + R(x)

» black-box data-driven supervised methods:

Aty —|NN|— %

» unrolled deep learning methods (PNP, RED, MoDL, ...)

» Bayesian methods (e.g., MAP) based on a prior p(x),
lately (7) relabeled as generative models (or “genAl")
>
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» hand-crafted regularizers:
x = argxmin —log p(y|x) +R(x) = arg min — 2 2 |Ax — [ + R(x)

» black-box data-driven supervised methods:

Aty —|NN|— %

» unrolled deep learning methods (PNP, RED, MoDL, ...)

» Bayesian methods (e.g., MAP) based on a prior p(x),
lately (7) relabeled as generative models (or “genAl")

> Appeal:
o PNP-like training independent of A or p(y|x)
o Strong priors for complex systems with aggressive under-sampling
o Posterior sampling from p(x|y) for uncertainty quantification
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Long history of Bayesian models for inverse problems Eff genCl M

Markov random field models

(e.g.) Geman & Geman 1984 [1]
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Mostly for inference?

MICHIGAN

GEMAN AND GEMAN: STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND BAYESIAN RESTORATION 737

@

Fig. 7. (a) Blurred image (roadside scene). (b) Degraded image: Addi-
tive noise. (c) Restoration including line process; 100 iterations. (d)
Restoration including line process; 1000 iterations.
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Long history of generative models and inverse problems Eff genCl

MRF as generators? [2] T-PAMI 1994

An Empirical Study of the Simulation
of Various Models Used for Images

A. J. Gray, J. W. Kay, and D. M. Titterington

Abstract— Markov random fields are typically used as priors in
Bayesian image restoration methods to represent spatial information
in the image. Commonly used Markov random fields are not in fact
capable of representing the moderate-to-large scale clustering present in
naturally occurring images and can also be time consuming to simulate,
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Local vs global priors Eff genCl M

MICHIGAN

Gray, Kay, Titterington [2] T-PAMI 1994

. the local properties of spatial Markov
models are undoubtedly plausible descrip-
tors of the local associations typical of
many images, which is the way in which
the models are often used. Nevertheless,
it would be reassuring if models used as
priors did in fact provide a realistic rep-
resentation of our prior assumptions and
if their (empirical) properties were more

: Fig. 4. lizations of two-dimensional, one-p logistic Markov
Wlde/y knOWn. Mesh models: (a) binary, second-order model with 3 = log 5; (b) three-color
second-order model with 3 = log5; (c) binary second-order model with

3 = log 10; (d) binary second-order model with 3 = log 3.
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Generative models are hot in imaging / inverse problems Eff genCl

Zhao, Ye, Bresler: Jan. 2023 IEEE SpMag survey paper [3]
» Generative adversarial network (GAN) models
» Variation auto-encoder (VAE) models [4]
» Normalizing flows [5, 6]
» Score-based diffusion models
o Zaccharie Ramzi et al., NeurlPS Workshop 2020 [7]
o Yang Song & Liyue Shen et al., NeurlPS Workshop 2021, ICLR 2022 [8, 9]
o Ajil Jalal et al. ... Jon Tamir, NeurlPS 2021 [10]
o Hyungjin Chung & Jong Chul Ye, MIA, Aug. 2022 [11]
o Luo et al., MRM, 2023 [12]

o ...
» Kazerouni et al. [13] have github catalog, including >20 (!) survey papers
» ... (hopelessly incomplete lists)
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. . . . J. Fessler
Medical example: Low-dose sparse-view X-ray CT imaging ¢ genc| M

MICHIGAN

From Song & Shen et al., ICLR 2022 [9].
Trained with 47K 2D CT images. Recon 23 projection views (= 17-fold dose reduction)

A=P(A

X Sinogram  diag(A

PSNR: 20.30, SSIM: 0.778 PSNR: 22.94, SSIM: 0.552 PSNR: 22.78, SSIM: 0.603 PSNR: 31.76, SSIM: 0.882 PSNR: 35.23, SSIM: 0.912

(a) FISTA-TV (b) cGAN (c) Neumann  (d) SIN-4c-PRN (e) Ours (f) Ground truth s
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Challenges with Bayesian models Eff genCl M

MICHIGAN

1. Learning whole-image prior models requires many high-quality training images
Some applications like dynamic MRI have few if any realistic training samples
o Curse of dimensionality
o Images live near manifolds (unsuitable for traditional density estimators)
o Implicit bias of model is crucial
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Challenges with Bayesian models Eff genCl [

1. Learning whole-image prior models requires many high-quality training images
Some applications like dynamic MRI have few if any realistic training samples
o Curse of dimensionality
o Images live near manifolds (unsuitable for traditional density estimators)
o Implicit bias of model is crucial

2. Existing models scale poorly to 3D or 3D+time
o GPU memory
o training data requirements

3. Training images should arise from relevant distribution p(x)
Imaging-system aspects like X-ray source spectrum may cause domain shift

4. What does “uncertainty” mean if prior is misspecified?
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Bayesian methods (generative models)

P> Bayesian inference methods use the posterior:

p(xly) = p(ylx) p(x) / p(y)
—_—— —~—

physics prior

» Here the prior p(x) is for quantifying (prior) probability,

not necessarily for generation.
» A model for the posterior p(x|y) opens many doors:
» Maximizing p(x|y) is maximum a posteriori (MAP) estimation

» The conditional mean E[x|y] = [ x p(x|y) dx is the MMSE estimator
» Sampling from the posterior p(x|y) facilitates uncertainty quantification in inference

» All these methods require the prior p(x), i.e., a prior model p(x; 8).

| 2
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Bayesian methods (generative models)

P> Bayesian inference methods use the posterior:

p(xly) = p(ylx) p(x) / p(y)
—_—— —~—

physics prior

» Here the prior p(x) is for quantifying (prior) probability,

not necessarily for generation.
» A model for the posterior p(x|y) opens many doors:
» Maximizing p(x|y) is maximum a posteriori (MAP) estimation

» The conditional mean E[x|y] = [ x p(x|y) dx is the MMSE estimator
» Sampling from the posterior p(x|y) facilitates uncertainty quantification in inference

» All these methods require the prior p(x), i.e., a prior model p(x; 8).

» Or do they?
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Sampling via Langevin dynamics Eff genCl

Sampling from a prior p(x; €) just needs its score function Vy log p(x; @),
using Langevin dynamics, aka stochastic gradient ascent of log-prior:

Xt = X¢—1 + Oétv |Og p(thl; 9) + 61_-./\/’(0, I), t = 1, ey T.
—_——
score function

o Draws samples from p(x; @) for suitable choices of {a:}, {S:}, and (large) T [14].
o If a; =0 and 3; = 3, then akin to (isotropic) diffusion or Brownian motion
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Distribution learning vs score learning Eff genCl

» Typical distribution models: p(x;8) = ﬁe_u(’“e).

Goal: learn @ from training data xy, ..., X7

» For IID samples {x;}, one could try to learn 8 by ML estimation:

n

0 = argmax p(xy,...,x7;60) = arg maxz log(p(x¢; 0))
o

= arg max ( Z U(x:; 0 ) .
0

Typically intractable due to the partition function Z(0).
>
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Distribution learning vs score learning Eff genCl

» Typical distribution models: p(x;0) = ﬁe_u(’“e).
Goal: learn @ from training data xy, ..., X7

» For IID samples {x;}, one could try to learn 8 by ML estimation:

n

0 = argmax p(xy,...,x7;60) = arg maxz log(p(x¢; 0))
o
= arg max ( Z U(x:; 6 ) )
o

Typically intractable due to the partition function Z(0).

» |n contrast, the score function is easier to handle:

s(x;0) = Vylogp(x;0) = Vx (—log Z(0) — U(x;0)) = —VxU(x; 0).
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Score matching Eff genCl M

MICHIGAN

?
» Given training data xi,...,xT, learn score function s(x;0) = Vy log p(x; 8)
>
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Score matching Eff genCl

vVvyYyyvyy

J. Fessler

Given training data xy, ..., xT, learn score function s(x; ) LV, log p(x; 6)
Explicit score matching (ESM) (Hyvérinen, 2005 [15])

Implicit score matching (ISM)

Denoising score matching (DSM) (Vincent, 2011 [16])

Noise-conditional score matching (NCSM) (Song, 2019 [17, eqn. (5)]):

s(x+2z0,0)+

1 z|?
0(0;0) £ 5 Eqo(x) [Ego(z) [ s 2H , L(0;{0/}) = ZO’/ (0;0),
where s(x; 0, 0) denotes a noise-conditional score network (NCSN).
d(x;0) = x + 0°s(x; 0,0) : equivalent image denoiser by Tweedie's formula [18]

Recommended choice [19]: s(x; 8,0) £ 3(x; 8)/c, where § is unitless
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. .- . . . J. Fessler
Noise-conditional score network training / sampling Eff genCl M

Shen & Song et al., NeurlPS 2021 [8]
Data Forward SDE Noise

X0 dx; = f(t)x: dt + g(t) dw,

Y

X1

re function

dx, = [f(t)x: — g(t)* th 10gpt(xt)! 1dt + g(t) dw,

Samples Reverse-time SDE Prior
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Score-based diffusion models: trade-offs Eff genCl M

» No adversarial training needed
» High quality sample generation (if enough training data)
>
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. . J. Fessler
Score-based diffusion models: trade-offs Eff genCl

» No adversarial training needed
» High quality sample generation (if enough training data)

» Expensive sample generation (vs GAN models)
o Distillation methods [20]
o Consistency models [21]
o Geometric decomposition [22]
o Multi-scale [23, 24] and pyramidal [25] and coarse-to-fine [26] models
o Faster ODE solvers [27]
o Warm starts [28]
o Latent diffusion models: use VAE and diffuse in latent space [29-31].
Used in Stable Diffusion by start-up Stability Al
o 3D image reconstruction using 2D models [32, 33]

» Learning 3D (or 3D+T) whole-image generative models is challenging
(training data, GPU memory, ...)
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Whole images vs patches? Eff genCl

Jan. 2023 survey paper on generative models [3] does not mention “patch” once!?

MRI k-space sampling:

s [35] [36]

Patch-based models have long history in inverse problems, e.g.,
patch GAN [37-39]

patch dictionary models [40, 41]
non-local means, BM3D

Wasserstein patch prior [42, 43] ...
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Motivating questions Eff genCl

» Can patch-based generative models be effective priors for inverse problems in
applications with very limited training data?
e.g., dynamic MRI

» Can patch-based generative models provide better robustness to distribution shifts,
perhaps at the cost of reduced in-distribution performance?

» Can we use the “latest” generative models, e.g., score-based models, for patches?

19/64



Patch diffusion model: Simple version

Warm up:
simple, but less effective, approach:
Fixed patch size
Fixed patch grid
No position information
(Fessler, Hu, Xu, BASP 2023 [46])

J. Fessler
Eff genCl
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Patch-based score modeling Eff genCl

» Start with MRF formulation, aka fields of experts model [51-53] for image x:

L 3 vex0) 1 ~Ve(x:0)
p(x;0) = 0 2o Velxi6) e~ Ve,
Z(0) Z(9) 1:[
0 : parameter vector that describes the prior
V. : clique potential for the cth image patch
Z(0) : (intractable) partition function

» Assume (temporarily) statistical spatial stationarity (image shift invariance):
Ve(x;0) = V(Gex; 0)

G, : wide binary matrix that grabs pixels of the cth patch from image x

V(v; 0) : common patch clique function

21/64



. . J. Fessler
Patch-based score modeling (simple) EfF genCl

P Resulting log-prior:
log p(x;0) = —log Z(0) — ZC V(Gcx; 0)
» Corresponding overall image score function arises from patch score function:
s(x;0) = Vxlogp(x; 0) Z Gl.sy(Gcx;0), sy(v;0) £ =V, V(v; ).

» All we must learn is the patch score function sy (v;0) : R” — R", e.g., a UNet.
» For non-overlapping patches:

Hs(x—kz 0) + z/o? H = HZ G.sy(G, );9)+z/g2H§

image “denoise” A
y Ze = Gcz

= ZC Hsv(xc +2.); 0) + 25/02‘ z

patch “denoise”
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Patch-based score learning (simple) Eff genCl

» For training image patches {vi,...,vr}, apply denoising score matching (DSM) of
Vincent, 2011 [16], typically for a range of noise variances o2 [14]:
2
2‘|‘| '

n

1l T 2 1
6 = argmin T thl Eg'Np(a') lff EzNN(O,a2ln) [2

z
sv(vi+2,0,0) + —
7]

g

> Final patch score model is sy (v; 8, omin).
>
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Patch-based score learning (simple) Eff genCl

» For training image patches {vi,...,vr}, apply denoising score matching (DSM) of
Vincent, 2011 [16], typically for a range of noise variances o2 [14]:
2
2‘|‘| '

n

1l T 2 1
6 = argmin T thl Eg'Np(a') lff EzNN(O,a2ln) [2

V4
SV(Vt‘|‘Z;030)‘|'72
0

g

» Final patch score model is sy (v; é,amin).

> Network input is just image patches, never the entire image
= scales to large 2D images, 3D, 4D, etc.

>
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. . J. Fessler
Patch-based score learning (simple) Eff genCl M

» For training image patches {vi,...,vr}, apply denoising score matching (DSM) of
Vincent, 2011 [16], typically for a range of noise variances o2 [14]:
2
2]‘| '

0 = argmin ? Zt:l anp(a) [O‘ EZNN(O,JZI,,) [2 Sv(Vt +z0, U) + ;

0

» Final patch score model is sy (v; é,amin).
> Network input is just image patches, never the entire image
= scales to large 2D images, 3D, 4D, etc.

» Drawbacks:
o Visible patch boundaries
o Fixed patch size slows learning
o Suboptimal stationarity assumption (cf. vertebrae)
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Improved patch modeling Eff genCl

P> zero-pad image x A

» use multiple grid locations

7

Random
patch
location

N+2M

Inspirations:

o Wavelet ‘“cycle spinning”

[47, 54-57]
o Wang, NeurlPS 2023 [58]
V
< =
N+2M
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J. Fessler

Probability model with padding & grids & positions Eff genCl

> N; x Ny : original image size

» P; X P, : patch size
> K; 21+ |N;/P;|, i =1,2: # non-overlapping patches for original image

» (Ny +2M) x (No 4 2M,) : padded image size; M; = K;P; — N;
» Product probability model:

£ - X ym,
== pm,B(xm,B) pm7k(xm7k)> = — e m, kT
z m=1 k=1

p(x) = -
m=1 k=1 .
—— border position
grid region patches encoding
shifts

o Xm g : border pixels for mth shift (all zero)
© Xm k : kth patch for mth shift

| 2
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Probability model with padding & grids & positions Eff genCl

> N; x Ny : original image size

» P; X P, : patch size
> K; 21+ |N;/P;|, i =1,2: # non-overlapping patches for original image

» (Ny +2M) x (No 4 2M,) : padded image size; M; = K;P; — N;
» Product probability model:

£ - X ym,
== pm,B(xm,B) pka(mek)> = — e m, kT
z m=1 k=1

p(x) = -
m=1 k=1 .
—— border position
grid region patches encoding
shifts

o Xm g : border pixels for mth shift (all zero)
© Xm k : kth patch for mth shift

» Learn position-dependent patch score function s(v; 0, m, k) = -V, V(v; m, k)
25 /64



Patch Diffusion Inverse Solver (PaDIS): Training é'fnge:fg M

MICHIGAN

NeurlPS 2024 [60]

Training arXiv 2406.02462

Denoising ¢ .
score —

matching

\ Y position
1
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http://arxiv.org/abs/2406.02462

. . . J. Fessler
Training images (CT) Eff genCl

AAPM 2016 CT chal-
lenge data [61];
10 3D volumes,
rescaled to 2563

Example slices:

27 /64



. . . . J. Fessler
Image generation (unconditional sampling from prior) Eff genCl

o Top: generation with a network trained on whole images (2D...)
o Middle: patch-only version of [58] (non-overlapping patches).
o Bottom: generation with proposed PaDIS prior.
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Training time results Eff genCl

2 A40 GPUs using PyTorch and ADAM
» whole image model: 24 — 36 hours
» patch-based model: =~ 12 hours
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Patch Diffusion Inverse Solver (PaDIS): Reconstruction Eff ;Zié] M

MICHIGAN

Reconstruction

=B
11

=T Measurement

Final output

Measurement

= Em
B2
L 4

Diffusion posterior sampling (DPS) (Chung et al., ICLR 2023 [62]) with Langevin
dynamics, modified to use patch score with random grid shifts.
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PaDIS algorithm (modified from DPS) JE'ffF;:iIg

Input: y, A, T, 01 <0< ...<or,e>0, {¢t >0}, P, P, My, My,
trained noise-conditional, position-encoded patch denoiser d(-; 6., m, k, o)
Initialize random image x ~ N(0,031)
fort=T:1do
Randomly select grid integer m € {1,..., M; My}
for k =1: (K1K2) do (parallelizable)
Extract patch x, «
Denoise patch: dp, « = d(Xm k; 0+, m, k, o)
end for
Combine denoised patches to get denoised image d
Compute image score function: s = (d — x)/o?
Data term: x := x — (:Vx||A d(x) — y||3
Sample z ~ N(0,021)
Step size a; = €o?
Langevin update: x := x + %'s + \/a;z
end for

31/64



. J. Fessler
CT Experiments Eff genCl

Default setup:
9 of 10 volumes for training = 2304 slices

25 slices of 10th volume for testing

512 element parallel-beam CT detector

A from Operator Discretization Library (ODL)
56 x 56 patch size

U-Net of Karras 2022 [59]

Step size ¢ = ¢/||Ad(x¢) — y/|2

1000 neural function evaluations (NFEs) [59]
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Quantitative results on three different inverse problems Eff genCl M

MICHIGAN

Method CT, 20 Views CT, 8 Views Deblurring Superresolution
PSNRt SSIM?T | PSNRT  SSIM?T | PSNRT  SSIM1 | PSNRtT  SSIM1
Baseline 24.93 0.595 | 21.39 0.415 | 24.54 0.688 | 25.86 0.739
ADMM-TV 26.82 0.724 | 23.09 0.555 | 28.22 0.792 | 25.66 0.745
PnP-ADMM [63] 26.86 0.607 | 22.39 0.489 | 28.82 0.818 | 26.61 0.785
PnP-RED [64] 27.99 0.622 | 23.08 0.441 | 29.91 0.867 | 26.36 0.766

Whole image diffusion | 32.84 0.835 | 25.74 0.706 | 30.19 0.853 | 29.17 0.827
Langevin dynamics [17] | 33.03 0.846 | 27.03 0.689 | 30.60 0.867 | 26.83 0.744
Predictor-corrector [11] | 32.35  0.820 | 23.65 0546 | 2842 0.724 | 2697 0.685

VE-DDNM [65] 31.98 0.861 | 27.71 0.759 | - - 26.01 0.727
Patch Averaging [50] 33.35 0.850 | 28.43 0.765 | 29.41 0.847 | 27.67 0.802
Patch Stitching 32.87 0.837 | 26.71 0.710 | 29.69 0.849 | 27.50 0.780
PaDIS (Ours) 33.57 0.854 | 29.48 0.767 | 30.80 0.870 | 29.47 0.846

(Averages across all test images.)
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More inverse problem experiments

J. Fessler
Eff genCl

Method CT, 60 Views CT, Fan Beam | Heavy Deblurring
PSNRT SSIM?T | PSNRT  SSIM1T | PSNRT  SSIM1
Baseline 25.89 0.746 | 20.07 0.5621 | 21.14 0.569
ADMM-TV 30.93 0.833 | 25.78 0.719 | 26.03 0.724
Whole image diffusion | 35.83 0.894 | 26.89 0.835 | 28.35 0.808
PaDIS (Ours) 39.28 0.941 | 29.91 0.932 | 28.91 0.818
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. J. Fessler
Example images Eff genCl

whole image
diffusion

baseline FBP ADMM-TV PaDIS ground truth

Top: 60 view CT
Bottom: fan-beam CT ~ 400 HU window width
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Effect of patch size P and positional encoding: CT

J. Fessler

Patchsize

P PSNRtT SSIM?T
8 32.57 0.844
16 32.57 0.829
32 32.72 0.853
56 33.57 0.854
96 33.36 0.854
256  32.84 0.835

Eff genCl
Positional encoding
PSNRt SSIMt
no position enc. 23.25 0.459
no position+init 2451 0.518
with position enc.  33.57  0.854
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J. Fessler

Effect of training dataset size on CT reconstruction Eff genCl
Dataset Patches Whole image
size 56 x 56 256 x 256
PSNRT SSIMt | PSNRT  SSIMT
144 3228 0.841 | 2912  0.804
288 32.43 0.837 31.09 0.829
576 33.03 0.846 31.81 0.835
1152 33.01 0.849 31.36 0.834
2304 33.57 0.854 32.84 0.835
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J. Fessler

20 view CT reconstruction: training dataset sizes Eff genCl

Size=144 Size=288 Size=576 Size=1152 Size=2304 Ground truth

Top : PaDIS
Bottom : whole image diffusion model
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Challenge 2: Data dimensions & scaling to 3D (and 4D)



3D “patches” with DiffusionBlend

arXiv 2406.10211 (NeurlPS 2024) [66]

DDS/DiffusionMBIR

s N
-1 L T " ) il L) -
Ty Ty v
1TV
S/ alealehy)
T, > Ty f)
1TV
i+l i+l
. i . .
t > -1

J. Fessler
Eff genCl

DiffusionBlend(++) (Ours)

p(=i 12hai0)

i—1 i—1
Ty j T Ti1
3 p(ei_y |2t 2l ok y) i

2Tt
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3D prior models for X-ray CT Eff genCl
Method Distribution Model
DiffusionMBIR (2D) [32] 3 1L, p(x[:, 1))
TPDM (L 2D) [33] 2 (T qo (L D)) (T g (xlis s D)°)
DiffusionBlend L T, p(X[ o X[ i — o i — 1], X[ i+ 1 i+ 4])
DiffusionBlend++ 2111 p(x[:,:, S1))
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DiffusionBlend for 3D limited-angle CT Eff genCl

90° angular range

FBP-UNet DiffusionMBIR TPDM DDS DiffusionBlend DiffusionBlend++ Ground truth

Improved quality both qualitatively and quantitively with strong prior.
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3D limited-angle CT results Eff genCl
AAPM Dataset LIDC Dataset

Method Axial Sagittal Coronal Axial Sagittal Coronal
PSNR? SSIMT|PSNR?T SSIMT|PSNRT SSIMT|{PSNRT SSIM7T|PSNR?T SSIMT|PSNR?t SSIM1
FBP 16.36 0.643 |16.36 0.524 |15.62 0.531 |18.79 0.672 |19.84 0.675 |20.01 0.676
FBP-UNet 27.38 0.910 |27.81 0.918 |28.44 0.930 |29.42 0.885 [29.50 0.884 |29.54 0.887
DiffusionMBIR 25.98 0.872 |27.14 0.877 |27.74 0.903 |30.52 0.906 [30.57 0.906 |30.68 0.907
TPDM - - - - - - 14.44 0.141 (14.06 0.141 |14.54 0.313
DDS 2D 28.05 0.916 |27.99 0.916 |28.82 0.922 |27.92 0.843 [27.89 0.835 |27.96 0.842
DDS 28.20 0.918 |28.17 0.926 |29.03 0.934 |28.12 0.865 [28.06 0.869 |28.13 0.879
DiffusionBlend (Ours) 35.38 0.971 |35.85 0.972 |37.62 0.972 [30.43 0.917 |31.24 0.920 (31.02 0.924
DiffusionBlend++ (Ours)|35.86 0.975 |36.03 0.976 |37.45 0.976 |34.33 0.957 |34.48 0.957 |34.64 0.956

[66, Table 4]
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J. Fessler

Distribution shifts & DIP Eff genCl

Test-time latent x far from training distribution:
y=Ax+e, x~p()#p()

» Non-Bayes approach
Abandon training via self-supervision, e.g., deep image prior (DIP) [67]:

X = fé(z), b = argemin lly — Afg(Z)H%, z~N(0,1

Neural network fg(+) acts as implicit regularizer.
DIP is prone to overfitting of noisy measurements [67];
remedies such as early stopping, regularization, network initialization [68-70].
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Distribution shifts & test-time adaptation Eff ;fjé]

» Self-supervised (whole-image) diffusion models [71, 72]
“Deep diffusion image prior” (DDIP) or “steerable conditional diffusion:”

L(6) = |ly — ACG(%oje(x:: 6))13

N e 1 "
CG(50je) = argmin 2 lly — Ax|3 + 3 1x — o

Conjugate gradient (CG) descent is used to enforce data fidelity.
Still requires early stopping to avoid over-fitting.

47 /64



: : J. Fessl|
Patch-based test-time adaptation | Eff ;ﬁjéﬁ

» Patch-based test-time adaptation [73, 74] arXiv 2410.11730 (IEEE T-Cl, in-press)
Test-time loss for diffusion model adaptation:

L(6)= ||y ~ AY, GLDo(Gexe, cly)

Patch-based denoiser for diffusion model

DG(X) = Z G:/:De(chv C)7
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Patch-based test-time adaptation |l Eff genCl
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Patch-based test-time adaptation Il

J. Fessler
Eff genCl

Method CT, 20 Views CT, 60 Views Deblurring Superresolution
PSNR?T SSIM? | PSNRT  SSIM1 | PSNRT  SSIM1 | PSNRT  SSIM1
Baseline 24.93 0.613 | 30.15 0.784 | 23.93 0.666 | 25.42 0.724
ADMM-TV 26.81 0.750 | 31.14 0.862 | 27.58 0.773 | 25.22 0.729
PnP-ADMM [63] 30.20 0.838 | 36.75 0.932 | 28.98 0.815 | 27.29 0.796
PnP-RED [64] 27.12 0.682 | 32.68 0.876 | 28.37 0.793 | 27.73 0.809
Whole image 28.11 0.800 | 33.10 0.911 | 25.85 0.742 | 25.65 0.742
Patches [60] 27.44 0.719 | 33.97 0.934 | 26.77 0.782 | 26.12 0.759
Whole+SS [72] 33.19 0.861 | 40.47 0.957 | 29.50 0.831 | 27.07 0.701
Patches+SS (Ours) | 33.77 0.874 | 41.45 0.969 | 30.34 0.860 | 28.10 0.827

“SS" = self-supervision, aka test-time adaptation
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Patch-based test-time adaptation IV
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Towards a “universal” diffusion model Eff genCl

P> Extension to cases where # of channels at test time differs from training data, e.g.,
MR reconstruction (real/imag) from patch-based diffusion model pre-trained on

color (RGB) natural images and grayscale CT images [75]

Inverse Problem Solving

ﬁiwal Image Reconstruction Natural Image Restora(h i i
‘ ‘ - . u m l ‘ Run-time domain adaptation -

DM(CT) DM (MRI) DM (Cele) DM (Place) DM (Dog) through self-supervised loss

{6cr, Acr} {0 Aum) (9< tebs Aceteb} {Opiace; Aplace}  {Opoz: Anox

L3 @ g M
\
Pre- Tralnlng Pre-Training
Previous Works: Pre-training models and datasets need to Ours: Pre-training models and dataset can be
match the imaging modality in each inverse problem. completely off-the-shelf.

2 §
<}

-
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SPAR results Eff genCl

Baseline PnP-ADMM PaDIS Proposed Ground truth

Deblur CS-MRI Fan Beam CT

Superresolution
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SPAR results Eff genCl

Comparison of quantitative results on four different medical imaging inverse problems.
PBCT, 60 Views FBCT, 40 Views 512 x512 CT CS-MRI, 7x

Method PSNRT SSIMt PSNRt SSIMf PSNRt SSIMt PSNRT  SSIMf
Baseline 30.15 0784  17.86 0381  28.33 0700 33.94 0.894
ADMM-TV 3114  0.862 2420  0.628 29.36 0788 3674  0.924

PnP-ADMM [63] 36.75 0.932 28.86 0.747 3748 0910 3577  0.907
PaDIS+FC [60] 39.16 0.942 27.91 0.796 33.11 0.831 35.17  0.904

SCD [72] 41.16 0.962 21.28 0.463 - - - -
Ours (SPAR) 42.72 0.972 36.11 0.918 38.81 0.929 39.15 0.949
Ideal* 42.82 0.973 36.34 0.923 3894 0930 39.42  0.953

*not available in practice with a single diffusion model
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Summary / future directions Eff genCl

» Challenges
» Dearth of data
» Dimensionality
» Distribution shifts
» Promise

P> Generative models are promising for under-determined inverse problems
» Learning patch score models is feasible with denoising score matching
» For limited training data, patch-models can outperform whole-image models

» Future steps

> Integrate invariances: amplitude scale / rotation / flip / DC offset ...
» Explore trade-offs between generalizability and in-distribution performance
» Extend to 3D, 3D+Time, 3D+Multicontrast

Tutorial Julia code: https://github.com/JeffFessler/ScoreMatching. jl
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Book

Linear Algebra amt
Data Science,

Machine Learning,
Signal Processing

JEFFREY A. FESSLER
BEEEE  RAJRAO NADAKUDITI

J. Fessler M

Eff genCl e

Online demos:
https://github.com/JeffFessler/
book-la-demo

Topics include: low-rank matrix approximation,
robust PCA, photometric stereo,

video foreground/background separation,
spectral clustering, matrix completion, ...

Cambridge Univ. Press, 2024
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J. Fessler
Resources Eff genCl

Talk and code available online at
http://web.eecs.umich.edu/~fessler
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