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Under-determined inverse problems J. Fessler
Eff genCI

▶ Applications: compressed sensing MRI, sparse-view CT, PET, inpainting, ...
All have linear forward models for data:

y = Ax + ε

y : sensor data (e.g., sinogram)
A: wide system matrix (known)
x: latent image (or image series in dynamic problems)
ε: noise with known distribution provides likelihood p(y |x)

▶ Maximum-likelihood estimation (physics-based fitting) is usually non-unique:

x̂ = arg max
x

log p(y |x) = arg min
x

∥Ax − y∥2
2︸ ︷︷ ︸

(for gaussian noise)
▶ Minimum-norm least-squares solution is unique but usually impractical or useless:

x̂ = A+y = y for inpainting problem
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Inverse problem solution methods J. Fessler
Eff genCI

▶ hand-crafted regularizers:

x̂ = arg min
x

− log p(y |x) +R(x) = arg min
x

1
2σ2

ε

∥Ax − y∥2
2 + R(x)

▶ black-box data-driven supervised methods:

A+y → NN → x̂

▶ unrolled deep learning methods (PNP, RED, MoDL, ...)
▶ Bayesian methods (e.g., MAP) based on a prior p(x),

lately (?) relabeled as generative models (or “genAI”)
▶

Appeal:
◦ PNP-like training independent of A or p(y |x)
◦ Strong priors for complex systems with aggressive under-sampling
◦ Posterior sampling from p(x|y) for uncertainty quantification
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Long history of Bayesian models for inverse problems J. Fessler
Eff genCI

Markov random field models

(e.g.) Geman & Geman 1984 [1]

Mostly for inference?
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Long history of generative models and inverse problems J. Fessler
Eff genCI

MRF as generators? [2] T-PAMI 1994
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Local vs global priors J. Fessler
Eff genCI

Gray, Kay, Titterington [2] T-PAMI 1994
... the local properties of spatial Markov
models are undoubtedly plausible descrip-
tors of the local associations typical of
many images, which is the way in which
the models are often used. Nevertheless,
it would be reassuring if models used as
priors did in fact provide a realistic rep-
resentation of our prior assumptions and
if their (empirical) properties were more
widely known.
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Generative models are hot in imaging / inverse problems J. Fessler
Eff genCI

Zhao, Ye, Bresler: Jan. 2023 IEEE SpMag survey paper [3]
▶ Generative adversarial network (GAN) models
▶ Variation auto-encoder (VAE) models [4]
▶ Normalizing flows [5, 6]
▶ Score-based diffusion models

◦ Zaccharie Ramzi et al., NeurIPS Workshop 2020 [7]
◦ Yang Song & Liyue Shen et al., NeurIPS Workshop 2021, ICLR 2022 [8, 9]
◦ Ajil Jalal et al. . . . Jon Tamir, NeurIPS 2021 [10]
◦ Hyungjin Chung & Jong Chul Ye, MIA, Aug. 2022 [11]
◦ Luo et al., MRM, 2023 [12]
◦ . . .

▶ Kazerouni et al. [13] have github catalog, including >20 (!) survey papers
▶ . . . (hopelessly incomplete lists)

8 / 64

https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging


Medical example: Low-dose sparse-view X-ray CT imaging J. Fessler
Eff genCI

From Song & Shen et al., ICLR 2022 [9].
Trained with 47K 2D CT images. Recon 23 projection views (≈ 17-fold dose reduction)
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Challenges with Bayesian models J. Fessler
Eff genCI

1. Learning whole-image prior models requires many high-quality training images
Some applications like dynamic MRI have few if any realistic training samples
◦ Curse of dimensionality
◦ Images live near manifolds (unsuitable for traditional density estimators)
◦ Implicit bias of model is crucial

2.

Existing models scale poorly to 3D or 3D+time
◦ GPU memory
◦ training data requirements

3. Training images should arise from relevant distribution p(x)
Imaging-system aspects like X-ray source spectrum may cause domain shift

4. What does “uncertainty” mean if prior is misspecified?
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Bayesian methods (generative models) J. Fessler
Eff genCI

▶ Bayesian inference methods use the posterior:

p(x|y) = p(y |x)︸ ︷︷ ︸
physics

p(x)︸︷︷︸
prior

/ p(y)

▶ Here the prior p(x) is for quantifying (prior) probability,
not necessarily for generation.

▶ A model for the posterior p(x|y) opens many doors:
▶ Maximizing p(x|y) is maximum a posteriori (MAP) estimation
▶ The conditional mean E[x|y ] =

∫
x p(x|y) dx is the MMSE estimator

▶ Sampling from the posterior p(x|y) facilitates uncertainty quantification in inference
▶ All these methods require the prior p(x), i.e., a prior model p(x;θ).
▶

Or do they?
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Sampling via Langevin dynamics J. Fessler
Eff genCI

Sampling from a prior p(x;θ) just needs its score function ∇x log p(x;θ),
using Langevin dynamics, aka stochastic gradient ascent of log-prior:

xt = xt−1 + αt∇ log p(xt−1;θ)︸ ︷︷ ︸
score function

+ βtN (0, I), t = 1, . . . , T .

◦ Draws samples from p(x;θ) for suitable choices of {αt}, {βt}, and (large) T [14].
◦ If αt = 0 and βt = β, then akin to (isotropic) diffusion or Brownian motion
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Distribution learning vs score learning J. Fessler
Eff genCI

▶ Typical distribution models: p(x;θ) = 1
Z(θ) e−U(x;θ) .

Goal: learn θ from training data x1, . . . , xT
▶ For IID samples {xt}, one could try to learn θ by ML estimation:

θ̂ = arg max
θ

p(x1, . . . , xT ;θ) = arg max
θ

∑T
t=1

log(p(xt ;θ))

= arg max
θ

(
−TZ (θ) +

∑T
t=1

−U(xt ;θ)
)

.

Typically intractable due to the partition function Z (θ).
▶

In contrast, the score function is easier to handle:

s(x;θ) ≜ ∇x log p(x;θ) = ∇x (− log Z (θ) − U(x; θ)) = −∇xU(x; θ).
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Score matching J. Fessler
Eff genCI

▶ Given training data x1, . . . , xT , learn score function s(x;θ) ?= ∇x log p(x;θ)
▶

Explicit score matching (ESM) (Hyvärinen, 2005 [15])
▶ Implicit score matching (ISM)
▶ Denoising score matching (DSM) (Vincent, 2011 [16])
▶ Noise-conditional score matching (NCSM) (Song, 2019 [17, eqn. (5)]):

ℓ(θ; σ) ≜ 1
2 Eq0(x)

[
Egσ(z)

[∥∥∥∥s(x + z;θ, σ) + z
σ2

∥∥∥∥2

2

]]
, L(θ; {σl}) = 1

L

L∑
l=1

σ2
l ℓ(θ; σl),

where s(x;θ, σ) denotes a noise-conditional score network (NCSN).
▶ d(x;θ) ≜ x + σ2s(x;θ, σ) : equivalent image denoiser by Tweedie’s formula [18]
▶ Recommended choice [19]: s(x;θ, σ) ≜ s̃(x;θ)/σ, where s̃ is unitless
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Noise-conditional score network training / sampling J. Fessler
Eff genCI

Shen & Song et al., NeurIPS 2021 [8]
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Score-based diffusion models: trade-offs J. Fessler
Eff genCI

▶ No adversarial training needed
▶ High quality sample generation (if enough training data)
▶

Expensive sample generation (vs GAN models)
◦ Distillation methods [20]
◦ Consistency models [21]
◦ Geometric decomposition [22]
◦ Multi-scale [23, 24] and pyramidal [25] and coarse-to-fine [26] models
◦ Faster ODE solvers [27]
◦ Warm starts [28]
◦ Latent diffusion models: use VAE and diffuse in latent space [29–31].

Used in Stable Diffusion by start-up Stability AI
◦ 3D image reconstruction using 2D models [32, 33]

▶ Learning 3D (or 3D+T) whole-image generative models is challenging
(training data, GPU memory, ...)

16 / 64
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Challenge 1: Data availability



Whole images vs patches? J. Fessler
Eff genCI

Jan. 2023 survey paper on generative models [3] does not mention “patch” once!?

MRI k-space sampling:

[34] [35] [36]

Patch-based models have long history in inverse problems, e.g.,
• patch GAN [37–39]
• patch dictionary models [40, 41]
• non-local means, BM3D
• Wasserstein patch prior [42, 43] . . . 18 / 64



Motivating questions J. Fessler
Eff genCI

▶ Can patch-based generative models be effective priors for inverse problems in
applications with very limited training data?
e.g., dynamic MRI

▶ Can patch-based generative models provide better robustness to distribution shifts,
perhaps at the cost of reduced in-distribution performance?

▶ Can we use the “latest” generative models, e.g., score-based models, for patches?

19 / 64



Patch diffusion model: Simple version J. Fessler
Eff genCI

Warm up:
simple, but less effective, approach:
• Fixed patch size
• Fixed patch grid
• No position information

(Fessler, Hu, Xu, BASP 2023 [46])
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Patch-based score modeling J. Fessler
Eff genCI

▶ Start with MRF formulation, aka fields of experts model [51–53] for image x:

p(x;θ) = 1
Z (θ) e−

∑
c Vc(x;θ) = 1

Z (θ)
∏
c

e−Vc(x;θ) .

• θ : parameter vector that describes the prior
• Vc : clique potential for the cth image patch
• Z (θ) : (intractable) partition function

▶ Assume (temporarily) statistical spatial stationarity (image shift invariance):

Vc(x;θ) = V (Gcx;θ)

• Gc : wide binary matrix that grabs pixels of the cth patch from image x
• V (v ;θ) : common patch clique function
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Patch-based score modeling (simple) J. Fessler
Eff genCI

▶ Resulting log-prior:

log p(x;θ) = − log Z (θ) −
∑

c
V (Gcx;θ)

▶ Corresponding overall image score function arises from patch score function:

s(x;θ) ≜ ∇x log p(x;θ) =
∑

c
G ′

csV (Gcx;θ), sV (v ;θ) ≜ −∇vV (v ;θ).

▶ All we must learn is the patch score function sV (v ;θ) : Rn 7→ Rn, e.g., a UNet.
▶ For non-overlapping patches:∥∥∥s(x + z;θ) + z/σ2

∥∥∥2

2︸ ︷︷ ︸
image “denoise”

=
∥∥∥∑c

G ′
csV (Gc(x + z);θ) + z/σ2

∥∥∥2

2

=
∑

c

∥∥∥sV (xc + zc);θ) + zc/σ2
∥∥∥2

2︸ ︷︷ ︸
patch “denoise”

, zc ≜ Gcz
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Patch-based score learning (simple) J. Fessler
Eff genCI

▶ For training image patches {v1, . . . , vT }, apply denoising score matching (DSM) of
Vincent, 2011 [16], typically for a range of noise variances σ2 [14]:

θ̂ = arg min
θ

1
T
∑T

t=1
Eσ∼p(σ)

[
σ2 Ez∼N (0,σ2In)

[
1
2

∥∥∥∥sV (vt + z;θ, σ) + z
σ2

∥∥∥∥2

2

]]
.

▶ Final patch score model is sV (v ; θ̂, σmin).
▶

Network input is just image patches, never the entire image
=⇒ scales to large 2D images, 3D, 4D, etc.

▶ Drawbacks:
◦ Visible patch boundaries
◦ Fixed patch size slows learning
◦ Suboptimal stationarity assumption (cf. vertebrae)
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Improved patch modeling J. Fessler
Eff genCI

▶ zero-pad image x
▶ use multiple grid locations

Inspirations:
◦ Wavelet “cycle spinning”

[47, 54–57]
◦ Wang, NeurIPS 2023 [58]
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Probability model with padding & grids & positions J. Fessler
Eff genCI

▶ N1 × N2 : original image size
▶ P1 × P2 : patch size
▶ Ki ≜ 1 + ⌊Ni/Pi⌋, i = 1, 2 : # non-overlapping patches for original image
▶ (N1 + 2M1) × (N2 + 2M2) : padded image size; Mi ≜ KiPi − Ni
▶ Product probability model:

p(x) ≜ 1
Z

M1M2∏
m=1︸ ︷︷ ︸
grid

shifts

(
pm,B(xm,B)︸ ︷︷ ︸

border
region

K1K2∏
k=1

pm,k(xm,k)︸ ︷︷ ︸
patches

)
= 1

Z

M1M2∏
m=1

K1K2∏
k=1

e−V (xm,k ;m,k)︸ ︷︷ ︸
position
encoding

◦ xm,B : border pixels for mth shift (all zero)
◦ xm,k : kth patch for mth shift

▶

Learn position-dependent patch score function s(v ;θ, m, k) = −∇vV (v ; m, k)
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Patch Diffusion Inverse Solver (PaDIS): Training J. Fessler
Eff genCI

NeurIPS 2024 [60]
arXiv 2406.02462

26 / 64
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Training images (CT) J. Fessler
Eff genCI

AAPM 2016 CT chal-
lenge data [61];
10 3D volumes,
rescaled to 2563

Example slices:
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Image generation (unconditional sampling from prior) J. Fessler
Eff genCI

◦ Top: generation with a network trained on whole images (2D...)
◦ Middle: patch-only version of [58] (non-overlapping patches).
◦ Bottom: generation with proposed PaDIS prior.
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Training time results J. Fessler
Eff genCI

2 A40 GPUs using PyTorch and ADAM
▶ whole image model: 24 − 36 hours
▶ patch-based model: ≈ 12 hours
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Patch Diffusion Inverse Solver (PaDIS): Reconstruction J. Fessler
Eff genCI

Diffusion posterior sampling (DPS) (Chung et al., ICLR 2023 [62]) with Langevin
dynamics, modified to use patch score with random grid shifts.
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PaDIS algorithm (modified from DPS) J. Fessler
Eff genCI

Input: y , A, T , σ1 < σ2 < . . . < σT , ϵ > 0, {ζt > 0} , P1, P2, M1, M2,
trained noise-conditional, position-encoded patch denoiser d(·;θ∗, m, k, σ)

Initialize random image x ∼ N (0, σ2
T I)

for t = T : 1 do
Randomly select grid integer m ∈ {1, . . . , M1M2}
for k = 1 : (K1K2) do (parallelizable)

Extract patch xm,k
Denoise patch: dm,k ≜ d(xm,k ;θ∗, m, k, σt)

end for
Combine denoised patches to get denoised image d
Compute image score function: s = (d − x)/σ2

t
Data term: x := x − ζt∇x∥A d(x) − y∥2

2
Sample z ∼ N (0, σ2

t I)
Step size αt ≜ ϵ σ2

t
Langevin update: x := x + αt

2 s + √
αtz

end for 31 / 64



CT Experiments J. Fessler
Eff genCI

Default setup:
• 9 of 10 volumes for training =⇒ 2304 slices
• 25 slices of 10th volume for testing
• 512 element parallel-beam CT detector
• A from Operator Discretization Library (ODL)
• 56 × 56 patch size
• U-Net of Karras 2022 [59]
• Step size ζt = ζ/∥Ad(xt) − y∥2

• 1000 neural function evaluations (NFEs) [59]

32 / 64

https://github.com/odlgroup/odl


Quantitative results on three different inverse problems J. Fessler
Eff genCI

Method CT, 20 Views CT, 8 Views Deblurring Superresolution
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Baseline 24.93 0.595 21.39 0.415 24.54 0.688 25.86 0.739
ADMM-TV 26.82 0.724 23.09 0.555 28.22 0.792 25.66 0.745
PnP-ADMM [63] 26.86 0.607 22.39 0.489 28.82 0.818 26.61 0.785
PnP-RED [64] 27.99 0.622 23.08 0.441 29.91 0.867 26.36 0.766
Whole image diffusion 32.84 0.835 25.74 0.706 30.19 0.853 29.17 0.827
Langevin dynamics [17] 33.03 0.846 27.03 0.689 30.60 0.867 26.83 0.744
Predictor-corrector [11] 32.35 0.820 23.65 0.546 28.42 0.724 26.97 0.685
VE-DDNM [65] 31.98 0.861 27.71 0.759 - - 26.01 0.727
Patch Averaging [50] 33.35 0.850 28.43 0.765 29.41 0.847 27.67 0.802
Patch Stitching 32.87 0.837 26.71 0.710 29.69 0.849 27.50 0.780
PaDIS (Ours) 33.57 0.854 29.48 0.767 30.80 0.870 29.47 0.846

(Averages across all test images.)
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More inverse problem experiments J. Fessler
Eff genCI

Method CT, 60 Views CT, Fan Beam Heavy Deblurring
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Baseline 25.89 0.746 20.07 0.521 21.14 0.569
ADMM-TV 30.93 0.833 25.78 0.719 26.03 0.724
Whole image diffusion 35.83 0.894 26.89 0.835 28.35 0.808
PaDIS (Ours) 39.28 0.941 29.91 0.932 28.91 0.818
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Example images J. Fessler
Eff genCI

baseline FBP ADMM-TV whole image
diffusion PaDIS ground truth

1

0

Top: 60 view CT
Bottom: fan-beam CT ≈ 400 HU window width
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Effect of patch size P and positional encoding: CT J. Fessler
Eff genCI

Patchsize

P PSNR↑ SSIM↑
8 32.57 0.844
16 32.57 0.829
32 32.72 0.853
56 33.57 0.854
96 33.36 0.854
256 32.84 0.835

Positional encoding

PSNR↑ SSIM↑
no position enc. 23.25 0.459
no position+init 24.51 0.518

with position enc. 33.57 0.854
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Effect of training dataset size on CT reconstruction J. Fessler
Eff genCI

Dataset
size

Patches
56 × 56

Whole image
256 × 256

PSNR↑ SSIM↑ PSNR↑ SSIM↑
144 32.28 0.841 29.12 0.804
288 32.43 0.837 31.09 0.829
576 33.03 0.846 31.81 0.835
1152 33.01 0.849 31.36 0.834
2304 33.57 0.854 32.84 0.835
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20 view CT reconstruction: training dataset sizes J. Fessler
Eff genCI

Top : PaDIS
Bottom : whole image diffusion model
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Challenge 2: Data dimensions & scaling to 3D (and 4D)



3D “patches” with DiffusionBlend J. Fessler
Eff genCI

arXiv 2406.10211 (NeurIPS 2024) [66]
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DiffusionBlend models groups of slices J. Fessler
Eff genCI
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3D prior models for X-ray CT J. Fessler
Eff genCI

Method Distribution Model

DiffusionMBIR (2D) [32] 1
Z
∏H

i=1 p(x[:, :, i ])

TPDM (⊥ 2D) [33] 1
Z

(∏N
i=1 qθ(x[:, :, i ])α

) (∏N
j=1 qϕ(x[j , :, :])β

)
DiffusionBlend 1

Z
∏H

i=1 p(x[:, :, i ]|x[:, :, i − j : i − 1], x[:, :, i + 1 : i + j])

DiffusionBlend++ 1
Z
∏r

i=1 p(x[:, :, Si ])
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DiffusionBlend for 3D limited-angle CT J. Fessler
Eff genCI

90◦ angular range

Improved quality both qualitatively and quantitively with strong prior.
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3D limited-angle CT results J. Fessler
Eff genCI

Method
AAPM Dataset LIDC Dataset

Axial Sagittal Coronal Axial Sagittal Coronal
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

FBP 16.36 0.643 16.36 0.524 15.62 0.531 18.79 0.672 19.84 0.675 20.01 0.676
FBP-UNet 27.38 0.910 27.81 0.918 28.44 0.930 29.42 0.885 29.50 0.884 29.54 0.887
DiffusionMBIR 25.98 0.872 27.14 0.877 27.74 0.903 30.52 0.906 30.57 0.906 30.68 0.907
TPDM - - - - - - 14.44 0.141 14.06 0.141 14.54 0.313
DDS 2D 28.05 0.916 27.99 0.916 28.82 0.922 27.92 0.843 27.89 0.835 27.96 0.842
DDS 28.20 0.918 28.17 0.926 29.03 0.934 28.12 0.865 28.06 0.869 28.13 0.879
DiffusionBlend (Ours) 35.38 0.971 35.85 0.972 37.62 0.972 30.43 0.917 31.24 0.920 31.02 0.924
DiffusionBlend++ (Ours) 35.86 0.975 36.03 0.976 37.45 0.976 34.33 0.957 34.48 0.957 34.64 0.956

[66, Table 4]
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Challenge 3: Distribution shifts



Distribution shifts & DIP J. Fessler
Eff genCI

Test-time latent x far from training distribution:

y = Ax + ε, x ∼ p̃(·) ̸= p(·)

▶ Non-Bayes approach
Abandon training via self-supervision, e.g., deep image prior (DIP) [67]:

x̂ = fθ̂(z), θ̂ = arg min
θ

∥y − Afθ(z)∥2
2, z ∼ N (0, I)

Neural network fθ(·) acts as implicit regularizer.
DIP is prone to overfitting of noisy measurements [67];
remedies such as early stopping, regularization, network initialization [68–70].
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Distribution shifts & test-time adaptation J. Fessler
Eff genCI

▶ Self-supervised (whole-image) diffusion models [71, 72]
“Deep diffusion image prior” (DDIP) or “steerable conditional diffusion:”

L(θ) = ∥y − A CG(x̂0|t(xt ;θ))∥2
2

CG(x̂0|t) ≜ arg min
x

γ

2 ∥y − Ax∥2
2 + 1

2∥x − x̂0|t∥2
2

Conjugate gradient (CG) descent is used to enforce data fidelity.
Still requires early stopping to avoid over-fitting.
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Patch-based test-time adaptation I J. Fessler
Eff genCI

▶ Patch-based test-time adaptation [73, 74] arXiv 2410.11730 (IEEE T-CI, in-press)
Test-time loss for diffusion model adaptation:

L(θ) =
∥∥∥y − A

∑
c

G ′
cDθ(Gcxt , c|y)

∥∥∥2

2

Patch-based denoiser for diffusion model

Dθ(x) =
∑

c
G ′

cDθ(Gcx, c),
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Patch-based test-time adaptation II J. Fessler
Eff genCI

1200

800

FBP ADMM-TV PnP-ADMM Whole image

Patches Whole+SS Patches+SS Ground truth

No in-distribution training data. Pre-trained with random ellipses.
Results of 60-view CT reconstruction using self supervised (SS) loss.
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Patch-based test-time adaptation III J. Fessler
Eff genCI

Method CT, 20 Views CT, 60 Views Deblurring Superresolution
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Baseline 24.93 0.613 30.15 0.784 23.93 0.666 25.42 0.724
ADMM-TV 26.81 0.750 31.14 0.862 27.58 0.773 25.22 0.729
PnP-ADMM [63] 30.20 0.838 36.75 0.932 28.98 0.815 27.29 0.796
PnP-RED [64] 27.12 0.682 32.68 0.876 28.37 0.793 27.73 0.809
Whole image 28.11 0.800 33.10 0.911 25.85 0.742 25.65 0.742
Patches [60] 27.44 0.719 33.97 0.934 26.77 0.782 26.12 0.759
Whole+SS [72] 33.19 0.861 40.47 0.957 29.50 0.831 27.07 0.701
Patches+SS (Ours) 33.77 0.874 41.45 0.969 30.34 0.860 28.10 0.827

“SS” = self-supervision, aka test-time adaptation
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Patch-based test-time adaptation IV J. Fessler
Eff genCI
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Towards a “universal” diffusion model J. Fessler
Eff genCI

▶ Extension to cases where # of channels at test time differs from training data, e.g.,
MR reconstruction (real/imag) from patch-based diffusion model pre-trained on
color (RGB) natural images and grayscale CT images [75]

DM (CT)

Previous Works: Pre-training models and datasets need to 

match the imaging modality in each inverse problem.

Medical Image Reconstruction Natural Image Restoration

Pre-Training

Inverse Problem Solving

DM (MRI) DM (Celeb) DM (Place) DM (Dog)

Ours: Pre-training models and dataset can be 

completely off-the-shelf.

Pre-Training

Run-time domain adaptation 

through self-supervised loss

52 / 64



SPAR results J. Fessler
Eff genCI

1

0
1

0

Baseline PnP-ADMM PaDIS Proposed Ground truth

Fa
n 

Be
am

 C
T

CS
-M

RI
D

eb
lu

r
Su

pe
rr

es
ol

ut
io

n

53 / 64



SPAR results J. Fessler
Eff genCI

Comparison of quantitative results on four different medical imaging inverse problems.
Method PBCT, 60 Views FBCT, 40 Views 512 × 512 CT CS-MRI, 7×

PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑
Baseline 30.15 0.784 17.86 0.381 28.33 0.700 33.94 0.894
ADMM-TV 31.14 0.862 24.20 0.628 29.36 0.788 36.74 0.924
PnP-ADMM [63] 36.75 0.932 28.86 0.747 37.48 0.910 35.77 0.907
PaDIS+FC [60] 39.16 0.942 27.91 0.796 33.11 0.831 35.17 0.904
SCD [72] 41.16 0.962 21.28 0.463 – – – –
Ours (SPAR) 42.72 0.972 36.11 0.918 38.81 0.929 39.15 0.949
Ideal∗ 42.82 0.973 36.34 0.923 38.94 0.930 39.42 0.953

*not available in practice with a single diffusion model
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Summary / future directions J. Fessler
Eff genCI

▶ Challenges
▶ Dearth of data
▶ Dimensionality
▶ Distribution shifts

▶ Promise
▶ Generative models are promising for under-determined inverse problems
▶ Learning patch score models is feasible with denoising score matching
▶ For limited training data, patch-models can outperform whole-image models

▶ Future steps
▶ Integrate invariances: amplitude scale / rotation / flip / DC offset ...
▶ Explore trade-offs between generalizability and in-distribution performance
▶ Extend to 3D, 3D+Time, 3D+Multicontrast

Tutorial Julia code: https://github.com/JeffFessler/ScoreMatching.jl

55 / 64

https://github.com/JeffFessler/ScoreMatching.jl


Book J. Fessler
Eff genCI

• Online demos:
https://github.com/JeffFessler/
book-la-demo

• Topics include: low-rank matrix approximation,
robust PCA, photometric stereo,
video foreground/background separation,
spectral clustering, matrix completion, ...

• Cambridge Univ. Press, 2024
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Resources J. Fessler
Eff genCI

Talk and code available online at
http://web.eecs.umich.edu/~fessler
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