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Most obvious place for machine learning is in post-processing (image analysis).
Numerous special issues and surveys in medical imaging journals, e.g., [1–9].
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Machine learning for scan design (k-space sampling):
▶ Choose best k-space phase encoding locations (usually Cartesian sampling)
▶ Uses “ground truth” (fully sampled) training images
▶ Hot topic in MRI research recently, e.g., [10–15]
▶ Precursor by Yue Cao and David Levin, MRM Sep. 1993 [16–18]
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Machine learning in medical image reconstruction:
▶ June 2018 special issue of IEEE Trans. on Medical Imaging [19].
▶ Surveys: [20–27]
▶ Possibly easier than diagnosis due to lower bar:

• current reconstruction methods based on simplistic image models;
• human eyes are better at detection than at solving inverse problems.
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ML-based
“magic”

A holy grail for machine learning in medical imaging?
▶ CT sinogram to vessel diameter [28, 29]
▶ k-space to ???
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“B-spline parameterized joint optimization of reconstruction and k-space trajectories
(BJORK) for accelerated 2D MRI,” arXiv 2101.11369 [30] IEEE T-MI 2022 [31]
Guanhua Wang, T. Luo, J.-F. Nielsen, D. Noll, J. Fessler
“Stochastic optimization of 3D non-Cartesian sampling trajectory (SNOPY),” MRM 2023 (in press)

Preview:

Related work: “PILOT” by Weiss et al. [32]; J-MoDL work of Aggarwal et al. [14].
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MR sampling and under-sampling J. Fessler
Joint Opt

All clinical MRI scans currently use “hand-crafted” sampling patterns:

▶ Reducing k-space sampling =⇒ reduced scan time / improved temporal resolution
▶ Under-sampled data benefits from advanced reconstruction methods
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Deep-learning approaches to image reconstruction J. Fessler
Joint Opt

Overview:
▶ image-domain learning [33–35]...
▶ k-space or data-domain learning

e.g., [36], [37], [38]
▶ transform learning (direct from k-space to image)

e.g., AUTOMAP [39], [40–42]
▶ hybrid-domain learning (unrolled loop, e.g., variational network)

alternate between denoising/dealiasing and reconstruction from k-space
e.g., [37, 43–47] ...
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DL for IR: image-domain learning J. Fessler
Joint Opt

Figure courtesy of Jong Chul Ye, KAIST University.

+ simple and fast
− aliasing is spatially widespread, requires deep network
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Dangers of image-domain learning: Method J. Fessler
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[48] ISMRM 2020 Workshop on Data Sampling & Image Reconstruction
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Dangers of image-domain learning: Result J. Fessler
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Image-domain learning variations J. Fessler
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▶ Use NN output as a “prior” for iterative reconstruction [33, 49]:

x̂β = arg min
x

∥Ax − y∥2
2 + β ∥x − xNN∥2

2 = (A′A + βI)−1(A′y + βxNN)

▶ For single-coil Cartesian case:
• no iterations are needed (solve with FFTs)
• limβ→0 x̂β replaces missing k-space data with FFT of xNN

▶ Iterations needed for parallel MRI and/or non-Cartesian sampling (PCG)

▶ Learn residual (aliasing artifacts), then subtract [50, 51]
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DL for IR: k-space / sinogram domain learning J. Fessler
Joint Opt

Figure courtesy of Jong Chul Ye, KAIST University.

+ simple and fast (“nonlinear GRAPPA”)
+ “database-free” : learn from auto-calibration data [36], [37], [38]
− perhaps harder to represent local image features?
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DL for IR: transform learning J. Fessler
Joint Opt

Figure courtesy of Jong Chul Ye, KAIST University.

+ in principle, purely data driven; potential to avoid model mismatch
− high memory requirement for fully connected layers [39]
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DL for IR: hybrid domain learning (unrolled loop) J. Fessler
Joint Opt

Figure courtesy of Jong Chul Ye, KAIST University.

+ physics-based use of k-space data & image-domain priors, e.g., [37, 43–47, 52, 53] ...

+ interpretable connections to optimization approaches
+ best results in MRI recon challenges [54–56]
− more computation to due to “iterations” (hyper-layers) and repeated Ax, A′ r
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DL for MRI: a taxonomy J. Fessler
Joint OptIEEE SIGNAL PROCESSING MAGAZINE, AUGUST 2022 2

 Data Driven Models 
 for Fast MRI

 Supervised model

 CNN

 Unrolling

 Aggarwal et al. [3] (2019)  MoDL: Model-Based Deep Learning Architecture 
 for Inverse Problems

 Non-unrolling

 Non-GAN

 Wang et al. [5] (2016)  Accelerating Magnetic Resonance Imaging 
 via Deep Learning

 Eo et al. [6] (2018)
 KIKI-Net: Cross-Domain Convolutional 
 Neural Networks for Reconstructing 
 Undersampled Magnetic Resonance Images

 Han et al. [7] (2018)  Deep Learning with Domain Adaptation for 
 Accelerated Projection-Reconstruction MR

 Hyun et al. [8] (2018)  Deep Learning for Undersampled MRI 
 Reconstruction

 Lee et al. [9] (2018)  Deep Residual Learning for Accelerated MRI 
 Using Magnitude and Phase Networks

 Yoon et al. [10] (2018)  Quantitative Susceptibility Mapping Using Deep 
 Neural Network: QSMnet

 Zhu et al. [11] (2018)  Image Reconstruction by Domain-Transform 
 Manifold Learning

 Akçakaya et al. [12] (2019)
 Scan-Specific Robust Artificial-Neural-Networks for 
 K-Space Interpolation (RAKI) Reconstruction: 
 Database-Free Deep Learning for Fast Imaging*

 Hauptmann et al. [13] (2019)
 Real-Time Cardiovascular MR with Spatio-Temporal 
 Artifact Suppression Using Deep Learning–Proof of 
 Concept in Congenital Heart Disease

 Wang et al. [14] (2019)
 DIMENSION: Dynamic MR Imaging with Both
 K-Space and Spatial Prior Knowledge Obtained via 
 Multi-Supervised Network Training

 Han et al. [15] (2020)  K-Space Deep Learning for Accelerated MRI*

 GAN

 Quan et al. [16] (2018)  Compressed Sensing MRI Reconstruction Using a 
 Generative Adversarial Network With a Cyclic Loss

 Yang et al. [17] (2018)  DAGAN: Deep De-Aliasing Generative Adversarial 
 Networks for Fast Compressed Sensing MRI Reconstruction

 Mardani et al. [18] (2019)  Deep Generative Adversarial Neural Networks for 
 Compressive Sensing MRI

 Transformer

 Schlemper et al. [2] (2018)  A Deep Cascade of Convolutional Neural Networks 
 for Dynamic MR Image Reconstruction

 Hammernik et al. [1] (2017)  Learning a Variational Network for Reconstruction 
 of Accelerated MRI Data*

 Zhang et al. [4] (2020)  A Deep Unrolling Network Inspired by Total 
 Variation for Compressed Sensing MRI*

 Feng et al. [19] (2021)  Task Transformer Network for Joint MRI Reconstruction and 
 Super-Resolution

 Feng et al. [20] (2021)  Accelerated Multi-Modal MR Imaging with Transformers

 Huang et al. [21] (2022)  Swin Transformer for Fast MRI

 Unsupervised model

 CNN

 Non-GAN

 Ke et al. [22] (2020)  An Unsupervised Deep Learning 
 Method for Multi-Coil Cine MRI

 Ahmed et al. [23] (2021)  Dynamic Imaging Using Deep Bilinear 
 Unsupervised Learning (Deblur)

 GAN

 Narnhofer et al. [24] (2019)  Inverse GANs for Accelerated MRI Reconstruction

 Cole et al. [25] (2020)  Unsupervised MRI Reconstruction with Generative 
 Adversarial Networks

 Han et al. [26] (2020)
 GAN-Based Multiple Adjacent Brain MRI Slice 
 Reconstruction for Unsupervised Aalzheimer’s 
 Disease Diagnosis

 Transformer

 Korkmaz et al. [27] (2021)  Deep MRI Reconstruction with Generative 
 Vision Transformers

 Korkmaz et al. [28] (2021)  Unsupervised MRI Reconstruction via Zero-
 Shot Learned Adversarial Transformers

Fig. 1. Categories of data driven deep learning models for fast MRI. Most representative studies have been included (*methods worked in k-space).

Huang et al.., arXiv 2204.01706,
Apr. 2022 [57]
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Learning MRI sampling patterns I J. Fessler
Joint Opt

Pre-specified image reconstruction methods
Cartesian sampling pattern optimization
▶ Yue Cao & David Levin, MRM Sep. 1993 [16–18]

Feature recognizing MRI
▶ Seeger et al., MRM 2010 [58]

Single coil, 1D Cartesian, 2D spiral angles, CS-type recon, Bayesian information gain
▶ Ravishankar & Bresler, EMBS 2011 [10]

Single coil, 1D & 2D sampling, DLMRI recon (DL = dictionary learning), weighted
k-space loss

▶ Baldassarre . . . Cevher, IEEE J-STSP 2016 [11]
Single coil, 2D sampling, energy preserving criterion

▶ Sherry . . . Ehrhardt, IEEE T-MI 2020 [59]
Single coil, 2D sampling, various regularizers

▶ . . .
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Learning MRI sampling patterns II J. Fessler
Joint Opt

Joint learning of sampling and reconstruction
▶ Gözcü . . . Cevher, IEEE T-MI 2018 [12]

Single coil, 1D sampling, several fixed recon methods (TV, BP, BM3D,
image-domain NN), image-domain training loss

▶ Aggarwal & Jacob IEEE J-STSP 2020 [14] (J-MoDL)
Multi-coil, 1D (horizontal and vertical) sampling, MoDL recon

▶ Bahadir . . . Sabuncu, IEEE T-CI 2020 [15] (LOUPE)
Single coil, 1D & 2D sampling, IFFT/U-Net recon

▶ Weiss et al., arXiv 1909.05773 (2019, 2020, 2021) (PILOT) [32]
Single coil, Non-Cartesian sampling, IFFT/U-Net recon

▶ Wang . . . Fessler, ISMRM 2021, arXiv 2021 (BJORK) [30, 60]
Multi-coil, Non-Cartesian sampling, MoDL-type recon
Fast and efficient DFT Jacobian approximations [61, 62]
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Adaptive phase-encode selection J. Fessler
Joint Opt

Reference Sampling BP recon

▶ Sampling designed to optimize PSNR for basis pursuit (BP) reconstruction using
shearlet transform, at 25% sampling rate.

▶ Sampling design considers both the training data and the reconstruction method.
▶ No high spatial frequencies!? (Images from Gözcü et al. [12].)
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Problem formulation J. Fessler
Joint Opt

▶ MRI measurement model:
y = A(ω)x + ε

• y ∈ CM : k-space data; M ∼ 10 − 30K
• ω ∈ RM×2 : k-space sampling pattern (“trajectory”): 2D in BJORK, 3D in SNOPY

• x ∈ CN : unknown true image, N ∼ 100K
• A(ω) ∈ CM×N : encoding matrix (coil sensitivity, etc.)
• ε ∈ CM : measurement noise

▶ Reconstruction method:
x̂ = f (y ; ω, θ)

• θ: model parameters of reconstruction method (e.g., CNN weights)
• Deep iterative down-up CNN (DIDN) has ∼ 165M learned parameters [63]

▶ Image quality goal:
x̂ = f (y ; ω, θ) = f (A(ω)x + ε; ω, θ) ≈ x
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Supervised approach J. Fessler
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▶ Define training loss function such as ℓ(x̂, x) = ∥x̂ −x∥1 + α ∥x̂ −x∥2
▶ Select Ntrain fully sampled training images x1, x2, . . .
▶ Jointly optimize k-space trajectory ω and image reconstruction method θ

(ω̂, θ̂) = arg min
ω,θ

1
Ntrain

Ntrain∑
n=1

ℓ(f (A(ω)xn + εn; ω, θ), xn)

▶

Details:
• Reconstruction using MoDL method [52]
• Can use multiple noise realizations ε per training image
• Enforce gradient amplitude and slew-rate limits for ω

• Use B-spline parameterization of k-space trajectory
• Coarse-to-fine search of trajectory to avoid poor local minimizers
• Eddy current correction
• Fast NUFFT Jacobian approximation [61, 62, 64]
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BJORK Diagram J. Fessler
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Data J. Fessler
Joint Opt

▶ NYU/FAIR fastMRI brain and knee data
▶ 16/24/32 radial spokes of 1280 points for trajectory initialization

(≈ 10-20 × acceleration for 320 × 320 image)
▶ 22cm FOV, Gmax = 5 Gauss/cm, slew rate ≤ 15 Gauss/cm/ms
▶ 5ms readout duration radial, 16ms spiral
▶ Comparison with SPARKLING approach of [65] using its default density
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Trajectory can be tailored to anatomy J. Fessler
Joint Opt
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PSF results: 32 spokes J. Fessler
Joint Opt

32-spoke results

FWHM (pixels):

1.5

2.1

1.6
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Learning about spectral conjugate symmetry J. Fessler
Joint Opt
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Prospectively under-sampled MRI phantom study J. Fessler
Joint Opt

(no phantoms in training data!) (no CS recon in training)
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Prospective in-vivo study (GE scanner, 32 shot) J. Fessler
Joint Opt
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Quantitative simulation results: PSNR J. Fessler
Joint Opt

PSNR (in dB):
Standard SPARKLING BJORK

radial-like Ns=16 UNN 32.7 33.9 34.3
CS 31.7 33.6 34.1

radial-like Ns=24 UNN 34.1 35.0 35.6
CS 33.3 34.6 35.1

radial-like Ns=32 UNN 35.0 36.0 36.9
CS 33.9 35.7 36.3

spiral-like Ns=8 UNN 40.9 41.7 41.9
CS 39.9 40.4 40.7

Ns: the number of shots or spokes.
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Quantitative simulation results: SSIM J. Fessler
Joint Opt

SSIM:
Standard SPARKLING BJORK

radial-like Ns=16 UNN 0.940 0.946 0.950
CS 0.911 0.936 0.938

radial-like Ns=24 UNN 0.950 0.955 0.959
CS 0.929 0.943 0.948

radial-like Ns=32 UNN 0.957 0.963 0.968
CS 0.932 0.946 0.956

spiral-like Ns=8 UNN 0.986 0.989 0.990
CS 0.976 0.978 0.981
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Gradient constraints J. Fessler
Joint Opt

MRI gradient amplifiers have maximum amplitude and slew rate
▶ gradient amplitude is 1st derivative of k-space trajectory:

∥D1ωd∥∞ ≤ gmax

▶ slew rate is 2nd derivative of k-space trajectory:

∥D2ωd∥∞ ≤ smax

▶ Box constraints relaxed to penalty functions that rise rapidly above 1, on:

∥D1ωd∥∞ /gmax and ∥D2ωd∥∞ /smax

0 1
Facilitates (sub)gradient-based optimization using Adam
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Trajectory calibration J. Fessler
Joint Opt
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Eddy current compensation J. Fessler
Joint Opt
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Coarse-to-fine parameterization and evolution J. Fessler
Joint Opt

Quadratic B-spline kernels for non-Cartesian k-space trajectory:

ωd = Bcd , d = 1, 2, cd ∈ RM/Decim

Highly non-convex problem in ω.
• Coarse-to-fine search may find better local minimizers
• However, parameterization/decimation does not save much computation
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Unrolled-loop image reconstruction method J. Fessler
Joint Opt

Motivated by model-based image reconstruction with variable splitting of the form

x̂ = arg min
x

∥A(ω)x − y∥2
2 + R(x)

= arg min
x

min
z

∥A(ω)x − y∥2
2 + R(z), s.t. z = x

Alternating minimization:

xt+1 = arg min
x

∥A(ω)x − y∥2
2 + µ ∥x − zt∥2

2 (data consistency, solved via CG)

zt+1 = arg min
z

R(z) + µ ∥xt+1 − z∥2
2 (denoising)

“ = ”Dθ(xt+1) (CNN denoiser)

• CNN weights θ shared across iterations, per MODL [52]
• 6 outer iterations for results shown, with augmented Lagrangian parameter µ = 2
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Efficient NUFFT backpropagation I J. Fessler
Joint Opt

Data consistency block has steps like

xt+1 = xt + α
(
A′(ω) (A(ω)x − y) + µ(x − zt)

)
A(ω) is dense and huge:

aij = e−ıω⃗i ·⃗rj (1)

▶ Fast approach to A(ω)x uses NUFFT approximation:
zero-padding, over-sampled FFT, interpolation [66, 67].

▶ Backpropagation for ω update through NUFFT steps via autodifferentiation is slow.
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Efficient NUFFT backpropagation II J. Fessler
Joint Opt

Derive Jacobian matrix for exact form (1):

∂

∂ωd
A(ω)x = −ı Diag{A(ω)(x ⊙ rd)} .

Applying this Jacobian to a vector v ∈ CM during backpropagation yields(
∂

∂ωd
A(ω)x

)
v = −ı Diag{A(ω)(x ⊙ rd)} v = −ı (A(ω)(x ⊙ rd)) ⊙ v .

Implemented efficiently using NUFFT applied to x ⊙ rd

Similar idea for Jacobian of adjoint of A.
Even more important is accurately approximating Jacobian of CG solve of (A′A + µI)−1
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Evolution with improved Jacobians J. Fessler
Joint Opt

Different acceleration factors:

40 / 59



Cross-contrast comparison J. Fessler
Joint Opt

▶ Each contrast has 4500 training slices, 500 test slices
▶ No extra noise in training
▶ Testing variance is 10−3 mean test signal
▶ SSIM valuesPPPPPPPPPtest

training T1w T2w FLAIR

T1w+noise 0.981 0.980 0.981
T2w+noise 0.951 0.953 0.953
FLAIR+noise 0.974 0.974 0.975

▶

Approximately constant in each row!
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Summary / future directions J. Fessler
Joint Opt

▶ Machine learning methods have much potential for both scan design and image
reconstruction

▶ Quantitative results in paper demonstrate synergy of jointly optimizing both
▶ Anatomy specific trajectories: pro or con?
▶ Self-supervised methods when training data unavailable
▶ Extension to 3D accepted to MRM [68]

Also control of peripheral nerve stimulation (PNS)
▶ Extension to 3D+time is planned (and challenging)

2D code for BJORK: https://github.com/guanhuaw/Bjork
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Patient-specific adaptive sampling J. Fessler
Joint Opt

▶ Goal: shorten MRI scan by adaptive sampling
“Adaptive sampling for linear sensing systems via Langevin dynamics”
Guanhua Wang, D Noll, J Fessler, arXiv 2302.13468 2023 [69]

▶

Overview:
▶ Pick image prior p(x)
▶ Collect (incomplete) k-space data
▶ Sample repeatedly from the posterior x̂ ∼ p(x|y)
▶ Predict missing measurements ŷ = A x̂
▶ Select new k-space samples where posterior variance is highest
▶ Repeat

Related image-domain adaptive sampling: Godaliyadda et al., ICASSP 2014 & IEEE T-CI 2018 [13, 70]
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Adaptive sampling algorithm J. Fessler
Joint Opt

Require: Score function fθ(x) ≈ ∇ log p(x) (score matching or hand crafted)
1: Acquire initial k-space measurements y0

2: for k = 1 to Nadd do
3: for i = 1 to Nsample do
4: for t = 1 to Nstep do
5: Initialize x̃0; sample from posterior via Langevin MC:
6: x̃t = x̃t−1 + µt fθ(x̃t−1) − µtηtA′(Ax̃t−1 − y (k)) +

√
2µt N (0, 1)

7: end for
8: x̂(k)

i = x̃Nadd

9: ŷ (k)
i = A x̂(k)

i
10: end for
11: l = arg maxn∈1,2,...N Var{[ŷ (k)

1 ]n, . . . , [ŷ (k)
Nsample

]n}
12: Acquire measurement index l , concatenate with previous: y (k) = [y (k−1), yl ].
13: end for
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Preliminary results: 1D sampling J. Fessler
Joint Opt

▶ 10× acceleration, Nadd = 50, Nstep = 200, Nsample = 8 − 10
▶ PSNR averaged over 20 test cases
▶ Hand-crafted roughness regularizer: ∇ log p(x) = ∇β

2 ∥Tx∥2
2 = βT ′Tx
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Preliminary results: 2D sampling J. Fessler
Joint Opt

▶ 12× acceleration
▶ Hand-crafted roughness regularizer
▶ PSNR for 10 test cases
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Preliminary results: 2D sampling J. Fessler
Joint Opt

▶ 10× acceleration
▶ U-Net noise-conditional score model

Song et al., ICLR 2021 [71]
▶ Trained with fastMRI data
▶ PSNR for 16 test cases:

out-of-distribution GRE images
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Preliminary results: DCE mouse brain J. Fessler
Joint Opt

▶ 4× acceleration
▶ U-Net score model
▶ Very out-of-distribution!
▶ Adaptive sampling

◦ optimized with 1st frame
◦ applied to 17th frame

▶ Top to bottom:
◦ Poisson disk
◦ Adaptive
◦ Reference
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Adapative sampling future work J. Fessler
Joint Opt

▶ Compare patient adaptive to population adaptive
▶ Accelerate sampling process, e.g., using a latent space [72–74]
▶ Find compelling applications. Dynamic imaging?
▶ Better criteria than posterior marginal variances?
▶ . . .
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Resources J. Fessler
Joint Opt

Talk and code available online at
http://web.eecs.umich.edu/~fessler

52 / 59

http://web.eecs.umich.edu/~fessler


Bibliography I J. Fessler
Joint Opt

[1] H. Greenspan, B. van Ginneken, and R. M. Summers. “Guest editorial deep learning in medical imaging: overview and future promise of an
exciting new technique.” In: IEEE Trans. Med. Imag. 35.5 (May 2016), 1153–9.

[2] G. Litjens, T. Kooi, B. E. Bejnordi, A. A. A. Setio, F. Ciompi, M. Ghafoorian, J. A. W. M. . . Laak, B. . Ginneken, and C. I. Sanchez. “A
survey on deep learning in medical image analysis.” In: Med. Im. Anal. 42.C (Dec. 2017), 60–88.

[3] G. Wang, M. Kalra, and C. G. Orton. “Machine learning will transform radiology significantly within the next five years.” In: Med. Phys.
44.6 (June 2017), 2041–4.

[4] V. Cheplygina, M. . Bruijne, and J. P. W. Pluim. “Not-so-supervised: A survey of semi-supervised, multi-instance, and transfer learning in
medical image analysis.” In: Med. Im. Anal. 54 (May 2019), 280–96.

[5] A. Esteva, A. Robicquet, B. Ramsundar, V. Kuleshov, M. DePristo, K. Chou, C. Cui, G. Corrado, S. Thrun, and J. Dean. “A guide to deep
learning in healthcare.” In: Nature Medicine 25.1 (Jan. 2019), 24–9.

[6] X. Yi, E. Walia, and P. Babyn. “Generative adversarial network in medical imaging: A review.” In: Med. Im. Anal. 58 (Dec. 2019),
p. 101552.

[7] J. Bruna, E. Haber, G. Kutyniok, T. Pock, and Rene Vidal. “Special issue on the mathematical foundations of deep learning in imaging
science.” In: J. Math. Im. Vision 62.3 (2020), 277–8.

[8] D. Rueckert and J. A. Schnabel. “Model-based and data-driven strategies in medical image computing.” In: Proc. IEEE 108.1 (Jan. 2020),
110–24.

[9] A. Maier, C. Syben, T. Lasser, and C. Riess. “A gentle introduction to deep learning in medical image processing.” In: Zeitschrift für
Medizinische Physik 29.2 (May 2019), 86–101.

[10] S. Ravishankar and Y. Bresler. “Adaptive sampling design for compressed sensing MRI.” In: Proc. Int’l. Conf. IEEE Engr. in Med. and Biol.
Soc. 2011, 3751–5.

[11] L. Baldassarre, Y-H. Li, J. Scarlett, B. Gozcu, I. Bogunovic, and V. Cevher. “Learning-based compressive subsampling.” In: IEEE J. Sel.
Top. Sig. Proc. 10.4 (June 2016), 809–22.

53 / 59



Bibliography II J. Fessler
Joint Opt

[12] B. Gozcu, R. K. Mahabadi, Y-H. Li, E. Ilicak, T. Cukur, J. Scarlett, and V. Cevher. “Learning-based compressive MRI.” In: IEEE Trans.
Med. Imag. 37.6 (June 2018), 1394–406.

[13] G. Godaliyadda, D. H. Ye, M. D. Uchic, M. A. Groeber, G. T. Buzzard, and C. A. Bouman. “A framework for dynamic image sampling
based on supervised learning.” In: IEEE Trans. Computational Imaging 4.1 (Mar. 2018), 1–16.

[14] H. K. Aggarwal and M. Jacob. “J-MoDL: Joint model-based deep learning for optimized sampling and reconstruction.” In: IEEE J. Sel.
Top. Sig. Proc. 14.6 (Oct. 2020), 1151–62.

[15] C. Bahadir, A. Wang, A. Dalca, and M. R. Sabuncu. “Deep-learning-based optimization of the under-sampling pattern in MRI.” In: IEEE
Trans. Computational Imaging 6 (2020), 1139–52.

[16] Y. Cao and D. N. Levin. “Feature-recognizing MRI.” In: Mag. Res. Med. 30.3 (Sept. 1993), 305–17.

[17] Y. Cao, D. N. Levin, and L. Yao. “Locally focused MRI.” In: Mag. Res. Med. 34.6 (Dec. 1995), 858–67.

[18] Y. Cao and D. N. Levin. “Using an image database to constrain the acquisition and reconstruction of MR images of the human head.” In:
IEEE Trans. Med. Imag. 14.2 (June 1995), 350–61.

[19] G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler. “Image reconstruction is a new frontier of machine learning.” In: IEEE Trans. Med. Imag.
37.6 (June 2018), 1289–96.

[20] G. Wang. “A perspective on deep imaging.” In: IEEE Access 4 (Nov. 2016), 8914–24.

[21] M. T. McCann, K. H. Jin, and M. Unser. “Convolutional neural networks for inverse problems in imaging: A review.” In: IEEE Sig. Proc.
Mag. 34.6 (Nov. 2017), 85–95.

[22] A. Lucas, M. Iliadis, R. Molina, and A. K. Katsaggelos. “Using deep neural networks for inverse problems in imaging: Beyond analytical
methods.” In: IEEE Sig. Proc. Mag. 35.1 (Jan. 2018), 20–36.

[23] M. T. McCann and M. Unser. “Biomedical image reconstruction: from the foundations to deep neural networks.” In: Found. & Trends in
Sig. Pro. 13.3 (2019), 283–359.

54 / 59



Bibliography III J. Fessler
Joint Opt

[24] S. Arridge, P. Maass, O. Oktem, and C-B. Schonlieb. “Solving inverse problems using data-driven models.” In: Acta Numerica 28 (May
2019), 1–174.

[25] V. Monga, Y. Li, and Y. C. Eldar. “Algorithm unrolling: interpretable, efficient deep learning for signal and image processing.” In: IEEE Sig.
Proc. Mag. 38.2 (Mar. 2021), 18–44.

[26] S. Ravishankar, J. C. Ye, and J. A. Fessler. “Image reconstruction: from sparsity to data-adaptive methods and machine learning.” In: Proc.
IEEE 108.1 (Jan. 2020), 86–109.

[27] G. Ongie, A. Jalal, C. A. M. R. G. Baraniuk, A. G. Dimakis, and R. Willett. “Deep learning techniques for inverse problems in imaging.” In:
IEEE J. Sel. Areas Info. Theory. (2020).

[28] E. Haneda, B. Claus, P. FitzGerald, G. Wang, and B. De Man. “CT sinogram analysis using deep learning.” In: Proc. 5th Intl. Mtg. on
Image Formation in X-ray CT. 2018, 419–22.

[29] Q. De Man, E. Haneda, B. Claus, P. Fitzgerald, B. De Man, G. Qian, H. Shan, J. Min, M. Sabuncu, and G. Wang. “A two-dimensional
feasibility study of deep learning-based feature detection and characterization directly from CT sinograms.” In: Med. Phys. 46.12 (Dec.
2019), e790–800.

[30] G. Wang, T. Luo, J-F. Nielsen, D. C. Noll, and J. A. Fessler. B-spline parameterized joint optimization of reconstruction and k-space
trajectories (BJORK) for accelerated 2D MRI. 2021.

[31] G. Wang, T. Luo, J-F. Nielsen, D. C. Noll, and J. A. Fessler. “B-spline parameterized joint optimization of reconstruction and k-space
trajectories (BJORK) for accelerated 2D MRI.” In: IEEE Trans. Med. Imag. 41.9 (Sept. 2022), 2318–30.

[32] T. Weiss, O. Senouf, S. Vedula, O. Michailovich, M. Zibulevsky, and A. Bronstein. PILOT: Physics-informed learned optimal trajectories
for accelerated MRI. 2019.

[33] S. Wang, Z. Su, L. Ying, X. Peng, and D. Liang. “Exploiting deep convolutional neural network for fast magnetic resonance imaging.” In:
Proc. Intl. Soc. Mag. Res. Med. 2016, p. 1778.

55 / 59



Bibliography IV J. Fessler
Joint Opt

[34] D. Lee, J. Yoo, and J. C. Ye. Deep artifact learning for compressed sensing and parallel MRI. 2017.

[35] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. “Deep convolutional neural network for inverse problems in imaging.” In: IEEE
Trans. Im. Proc. 26.9 (Sept. 2017), 4509–22.

[36] M. Akcakaya, S. Moeller, S. Weingartner, and Kamil Ugurbil. “Scan-specific robust artificial-neural-networks for k-space interpolation
(RAKI) reconstruction: Database-free deep learning for fast imaging.” In: Mag. Res. Med. 81.1 (Jan. 2019), 439–53.

[37] Y. Han and J. C. Ye. “K-space deep learning for accelerated MRI.” In: IEEE Trans. Med. Imag. 39.2 (Feb. 2020), 377–86.

[38] M. U. Ghani and W. C. Karl. Data and image prior integration for image reconstruction using consensus equilibrium. 2020.

[39] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen. “Image reconstruction by domain-transform manifold learning.” In: Nature
555 (Mar. 2018), 487–92.

[40] I. Haggstrom, C. R. Schmidtlein, G. Campanella, and T. J. Fuchs. “DeepPET: A deep encoder-decoder network for directly solving the
PET image reconstruction inverse problem.” In: Med. Im. Anal. 54 (May 2019), 253–62.

[41] W. Whiteley, W. K. Luk, and J. Gregor. “DirectPET: full-size neural network PET reconstruction from sinogram data.” In: J. Med. Im. 7.3
(Feb. 2020), 1–16.

[42] W. Whiteley, V. Panin, C. Zhou, J. Cabello, D. Bharkhada, and J. Gregor. “FastPET: near real-time reconstruction of PET histo-image
data using a neural network.” In: IEEE Trans. Radiation and Plasma Med. Sci. 5.1 (Jan. 2021), 65–77.

[43] Y. Yang, J. Sun, H. Li, and Z. Xu. “Deep ADMM-net for compressive sensing MRI.” In: Neural Info. Proc. Sys. 2016, 10–18.

[44] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll. “Learning a variational network for
reconstruction of accelerated MRI data.” In: Mag. Res. Med. 79.6 (June 2018), 3055–71.

[45] J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert. “A deep cascade of convolutional neural networks for dynamic MR
image reconstruction.” In: IEEE Trans. Med. Imag. 37.2 (Feb. 2018), 491–503.

56 / 59



Bibliography V J. Fessler
Joint Opt

[46] T. M. Quan, T. Nguyen-Duc, and W-K. Jeong. “Compressed sensing MRI reconstruction using a generative adversarial network with a
cyclic loss.” In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1488–97.

[47] D. Lee, J. Yoo, S. Tak, and J. C. Ye. “Deep residual learning for accelerated MRI using magnitude and phase networks.” In: IEEE Trans.
Biomed. Engin. 65.9 (Sept. 2018), 1985–95.

[48] G. Nataraj and R. Otazo. “Investigating robustness to unseen pathologies in model-free deep multicoil reconstruction.” In: ISMRM
Workshop on Data Sampling and Image Reconstruction. 2020.

[49] G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye, F. Liu, S. Arridge, J. Keegan, Y. Guo, and D. Firmin. “DAGAN: Deep
de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction.” In: IEEE Trans. Med. Imag. 37.6 (June 2018),
1310–21.

[50] K. He, X. Zhang, S. Ren, and J. Sun. “Deep residual learning for image recognition.” In: Proc. IEEE Conf. on Comp. Vision and Pattern
Recognition. 2016, 770–8.

[51] K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang. “Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising.”
In: IEEE Trans. Im. Proc. 26.7 (July 2017), 3142–55.

[52] H. K. Aggarwal, M. P. Mani, and M. Jacob. “MoDL: model-based deep learning architecture for inverse problems.” In: IEEE Trans. Med.
Imag. 38.2 (Feb. 2019), 394–405.

[53] I. Y. Chun, Z. Huang, H. Lim, and J. A. Fessler. “Momentum-Net: Fast and convergent iterative neural network for inverse problems.” In:
IEEE Trans. Patt. Anal. Mach. Int. 45.4 (Apr. 2023), 4915–31.

[54] P. Putzky, D. Karkalousos, J. Teuwen, N. Miriakov, B. Bakker, M. Caan, and M. Welling. i-RIM applied to the fastMRI challenge. 2019.

[55] F. Knoll, T. Murrell, A. Sriram, N. Yakubova, J. Zbontar, M. Rabbat, A. Defazio, M. J. Muckley, D. K. Sodickson, C. L. Zitnick, and
M. P. Recht. “Advancing machine learning for MR image reconstruction with an open competition: Overview of the 2019 fastMRI
challenge.” In: Mag. Res. Med. 84.6 (Dec. 2020), 3054–70.

57 / 59



Bibliography VI J. Fessler
Joint Opt

[56] M. J. Muckley, B. Riemenschneider, A. Radmanesh, S. Kim, G. Jeong, J. Ko, Y. Jun, H. Shin, D. Hwang, M. Mostapha, S. Arberet,
D. Nickel, Z. Ramzi, P. Ciuciu, J-L. Starck, J. Teuwen, D. Karkalousos, C. Zhang, A. Sriram, Z. Huang, N. Yakubova, Y. W. Lui, and
F. Knoll. “Results of the 2020 fastMRI Challenge for Machine Learning MR Image Reconstruction.” In: IEEE Trans. Med. Imag. 40.9
(Sept. 2021), 2306–17.

[57] J. Huang, Y. Fang, Y. Nan, H. Wu, Y. Wu, Z. Gao, Y. Li, Z. Wang, P. Lio, D. Rueckert, Y. C. Eldar, and G. Yang. Data and physics
driven learning models for fast MRI – fundamentals and methodologies from CNN, GAN to attention and transformers. Submitted to
ieee-spmag. 2022.

[58] M. Seeger, H. Nickisch, R. Pohmann, and B. Schölkopf. “Optimization of k-space trajectories for compressed sensing by Bayesian
experimental design.” In: Mag. Res. Med. 63.1 (Jan. 2010), 116–26.

[59] F. Sherry, M. Benning, J. C. D. . Reyes, M. J. Graves, G. Maierhofer, G. Williams, C-B. Schonlieb, and M. J. Ehrhardt. “Learning the
sampling pattern for MRI.” In: IEEE Trans. Med. Imag. 39.12 (Dec. 2020), 4310–21.

[60] G. Wang, T. Luo, J-F. Nielsen, J. A. Fessler, and D. C. Noll. “B-spline parameterized joint optimization of reconstruction and K-space
sampling patterns (BJORK) for accelerated 2D acquisition.” In: Proc. Intl. Soc. Mag. Res. Med. 2021, p. 0833.

[61] G. Wang and J. A. Fessler. Efficient approximation of Jacobian matrices involving a non-uniform fast Fourier transform (NUFFT). 2021.

[62] G. Wang and J. A. Fessler. “Efficient approximation of Jacobian matrices involving a non-uniform fast Fourier transform (NUFFT).” In:
IEEE Trans. Computational Imaging 9 (2023), 43–54.

[63] S. Yu, B. Park, and J. Jeong. “Deep iterative down-up CNN for image denoising.” In: Proc. IEEE Conf. on Comp. Vision and Pattern
Recognition. 2019, 2095–103.

[64] G. Wang, D. C. Noll, and J. A. Fessler. “Efficient NUFFT backpropagation for stochastic sampling optimization.” In: Proc. Intl. Soc. Mag.
Res. Med. 2021, p. 0913.

[65] C. Lazarus, P. Weiss, N. Chauffert, F. Mauconduit, L. El Gueddari, C. Destrieux, I. Zemmoura, A. Vignaud, and P. Ciuciu. “SPARKLING:
variable-density k-space filling curves for accelerated T2*-weighted MRI.” In: Mag. Res. Med. 81.6 (June 2019), 3643–61.

58 / 59



Bibliography VII J. Fessler
Joint Opt

[66] A. Dutt and V. Rokhlin. “Fast Fourier transforms for nonequispaced data.” In: SIAM J. Sci. Comp. 14.6 (Nov. 1993), 1368–93.

[67] J. A. Fessler and B. P. Sutton. “Nonuniform fast Fourier transforms using min-max interpolation.” In: IEEE Trans. Sig. Proc. 51.2 (Feb.
2003), 560–74.

[68] G. Wang, J-F. Nielsen, J. A. Fessler, and D. C. Noll. “Stochastic optimization of 3D non-Cartesian sampling trajectory (SNOPY).” In:
Mag. Res. Med. (2023). To appear.

[69] G. Wang, D. C. Noll, and J. A. Fessler. Adaptive sampling for linear sensing systems via Langevin dynamics. 2023.

[70] G. M. D. Godaliyadda, G. T. Buzzard, and C. A. Bouman. “A model-based framework for fast dynamic image sampling.” In: Proc. IEEE
Conf. Acoust. Speech Sig. Proc. 2014, 1822–6.

[71] Y. Song, J. Sohl-Dickstein, D. P. Kingma, A. Kumar, S. Ermon, and B. Poole. “Score-based generative modeling through stochastic
differential equations.” In: Proc. Intl. Conf. on Learning Representations. 2021.

[72] A. Vahdat, K. Kreis, and J. Kautz. “Score-based generative modeling in latent space.” In: NeurIPS. 2021.

[73] R. Rombach, A. Blattmann, D. Lorenz, P. Esser, and Bjorn Ommer. “High-resolution image synthesis with latent diffusion models.” In:
Proc. IEEE Conf. on Comp. Vision and Pattern Recognition. 2022, 10674–85.

[74] K. C. Tezcan, N. Karani, C. F. Baumgartner, and E. Konukoglu. “Sampling possible reconstructions of undersampled acquisitions in MR
imaging with a deep learned prior.” In: IEEE Trans. Med. Imag. 41.7 (July 2022), 1885–96.

59 / 59


	Introduction
	Machine learning in imaging
	MRI k-space sampling

	Deep-learning approaches for image reconstruction
	Supervised learning of k-space sampling
	Joint optimization of k-space sampling and image reconstruction
	Problem formulation
	Results

	Summary
	Adaptive sampling
	Bibliography

