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Generative models are hot in graphics J. Fessler
Tut. Gen.

Computer (“AI”) generated stills from hypothetical movie: Chilean director Alejandro
Jodorowsky’s 1976 version of “Tron” using midjourney.com as reported in 2023-01-13
NY Times article “This film does not exist” by director Frank Pavich.
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Generative models are hot in the news J. Fessler
Tut. Gen.

▶ 2020-11-21 NY Times “Designed to Deceive: Do
These People Look Real to You?”
Article about generated (aka fake) faces.

▶ 2022-10-21 NY Times “A Coming-Out Party for
Generative A.I., Silicon Valley’s New Craze”
(about “Stable Diffusion” image generator)
https://nyti.ms/3SjsNOk

▶ 2023-01-09 NY Times “A.I. Turns Its Artistry to
Creating New Human Proteins”
https://nyti.ms/3IzY66m
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Generative models are hot in imaging / inverse problems J. Fessler
Tut. Gen.

Zhao, Ye, Bresler: Jan. 2023 IEEE SpMag survey paper [1]
▶ Generative adversarial network (GAN) models
▶ Variation auto-encoder (VAE) models [2]
▶ Normalizing flows [3, 4]
▶ Score-based diffusion models

◦ Zaccharie Ramzi et al., NeurIPS Workshop 2020 [5]
◦ Yang Song & Liyue Shen et al., NeurIPS Workshop 2021, ICLR 2022 [6, 7]
◦ Ajil Jalal et al. . . . Jon Tamir, NeurIPS 2021 [8]
◦ Hyungjin Chung & Jong Chul Ye, MIA, Aug. 2022 [9]
◦ Luo et al., MRM, 2023 [10]
◦ . . .

▶ Kazerouni et al. [11] have github catalog, including 17 (!) survey papers
▶ . . . (hopelessly incomplete lists)
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Medical example: Low-dose sparse-view X-ray CT imaging J. Fessler
Tut. Gen.

From Song & Shen et al., ICLR 2022. Trained with 47K 2D images, 23 projection
views [7]
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Generative models: What J. Fessler
Tut. Gen.

▶ A generative model is:
◦

a model for some probability distribution p(x),
◦ and usually a method for drawing samples from that distribution.

“generation” (think: random number generator)
▶ What will be generated by drawing samples?

◦ Numbers
◦ Text, images, code, music, video, molecules, materials, robotic plans, . . .
◦ fake news, ... (cf. NeurIPS: Societal Impact and Potential Harmful Consequences)

▶ Usually the model depends on some (or many) parameters, θ.
i.e., we work with a parametric model p(x;θ).

▶ Challenge 1: Learning the parameters θ from some training data.
Hopefully that data is representative of the population of interest.
(skin color, brain lesions...)

▶ Challenge 2: Drawing samples (generating) efficiently from p(x;θ).
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Toy example J. Fessler
Tut. Gen.

Training data, e.g., upper left pixel value in each of a set of face images
How to generate samples from this distribution?

▶ Maximum-likelihood (ML) estimation to fit the two Gamma distribution parameters
requires an iterative method.

▶ After fitting, drawing samples (aka generation) is not trivial,
involving an acceptance-rejection method.
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Toy example J. Fessler
Tut. Gen.

Trivial option for data generation: draw samples at random from training data.
+ Nonparameteric (no model bias) + “Memorization” - no hallucinations!
− No generalization (nothing new) − Curse of dimensionality

▶ Maximum-likelihood (ML) estimation to fit the two Gamma distribution parameters
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Generative models: Why J. Fessler
Tut. Gen.

▶ Generating samples, e.g., computer-assisted content creation
computer-generated graphics, music, poetry, college essays, . . .
◦

Often those examples involve conditional distributions pθ(x|z)
◦ generate a jazz melody︸ ︷︷ ︸

x
in the style of Miles Davis︸ ︷︷ ︸

z
◦ design a composite material︸ ︷︷ ︸

x
with density ρ and elasticity E ...︸ ︷︷ ︸

z
▶ LLM / ChatGPT: Write a short joke about AI

◦ Why did the AI cross the road? To get to the other side of the algorithm!
◦ Why did the AI cross the road? To get to the other cache.
◦ Why did the AI cross the road? To get to the other dataset!

▶ Is ChatGPT based on a generative model?
Yes, ChatGPT is based on a generative language model. Specifically, it is built using the

GPT (Generative Pre-trained Transformer) architecture, which is a type of deep neural

network designed for generating natural language text.
▶ UMGPT: Why was the computer cold? It left its Windows open! (2016 Dribbble)
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Generative models: Why J. Fessler
Tut. Gen.

▶ Bayesian inference (e.g., science and engineering)
◦

Given (test) data y related to a latent variable x
◦ Known likelihood function p(y |x), e.g., for human-made sensors
◦ Want to estimate x from y
◦ Maximum-likelihood estimation is insufficient for under-determined problems

arg max
x

p(y |x)

(sparse-view X-ray CT, accelerated MRI scans, . . . )
◦ Bayesian methods use the posterior

p(x|y) = p(y |x) p(x)
p(y)

◦ Here the prior p(x) is for quantifying (prior) probability,
not necessarily for generation.
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Benefits of Bayesian methods J. Fessler
Tut. Gen.

A model for the posterior p(x|y) opens many doors:
▶ Maximizing p(x|y) is maximum a posteriori (MAP) estimation
▶ The conditional mean E[x|y ] =

∫
x p(x|y) dx is the MMSE estimator

▶ Sampling from the posterior facilitates uncertainty quantification in inference

All of these require the prior p(x;θ).

Or do they?

Sampling from the prior p(x;θ) just needs its score function ∇x log p(x;θ),
using Langevin dynamics, aka stochastic gradient ascent of log-prior:

xt = xt−1 + αt∇ log p(xt−1;θ) + βtN (0, I), t = 1, . . . , T .

◦ Draws samples from p(x;θ) for suitable choices of {αt}, {βt}, and (large) T [12].
◦ If αt = 0 and βt = β, then akin to (isotropic) diffusion or Brownian motion
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Langevin example: traces J. Fessler
Tut. Gen.

xt = xt−1 + αt∇ log p(xt−1;θ) + βtN (0, 1), t = 1, . . . , T , for a GMM
{αt} and {βt} decaying geometrically, with x0 ∼ N (µ, σ).
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Langevin example: histogram J. Fessler
Tut. Gen.
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Posterior sampling J. Fessler
Tut. Gen.

Sampling from the posterior p(x|y) and MAP estimation is similar,
using Langevin dynamics, aka stochastic gradient ascent of log-posterior:

xt = xt−1 + αt (∇x log p(xt−1;θ) + ∇x log p(y |xt−1;θ)) + βtN (0, I), t = 1, . . . , T .

◦ Draws samples from p(x|y ;θ) for suitable choices of {αt}, {βt}, and (large) T .
◦

So how do we learn a score function?
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Distribution learning vs score learning J. Fessler
Tut. Gen.

▶ Typical distribution models: p(x;θ) = 1
Z(θ) e−U(x;θ) .

Goal: learn θ from training data x1, . . . , xT
▶ For IID samples {xt}, one could try to learn θ by ML estimation:

θ̂ = arg max
θ

p(x1, . . . , xT ;θ) = arg max
θ

∑T
t=1

log(p(xt ;θ))

= arg max
θ

(
−TZ (θ) +

∑T
t=1

−U(xt ;θ)
)

.

Typically intractable due to the partition function Z (θ).
▶

In contrast, the score function is easier to handle:

s(x;θ) ≜ ∇x log p(x;θ) = ∇x (− log Z (θ) − U(x; θ)) = −∇xU(x; θ).
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Score function example: 1D Gaussian J. Fessler
Tut. Gen.

p(x) = 1√
2πσ2 e−(x−µ)2/2σ2 =⇒ s(x) = d

dx log p(x) = 1
σ2 (x − µ)
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Score function example: 1D Gamma J. Fessler
Tut. Gen.

Note sign of score function to left and right of mode.
17 / 61



Score function example: 1D GMM J. Fessler
Tut. Gen.

▶

Could you recover the pdf p(x) from its score function s(x) in 1D?
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Score function example: 1D GMM J. Fessler
Tut. Gen.

▶ Could you recover the pdf p(x) from its score function s(x) in 1D?
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Score function example: 2D J. Fessler
Tut. Gen.

Total variation (TV)
prior for 2 × 1 patch:

p(x) ∝ e−β|x2−x1|

s(x) = ∇x log p(x)
∝ sign(x1 − x2)

[ 1
−1

]
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Learning score functions J. Fessler
Tut. Gen.

▶ Given training data x1, . . . , xT , learn score function

s(x) = ∇x log p(x)

but p(x) is unknown
▶

Nonparametric density estimation approach?
◦ Kernel density estimation: qσ(x) ≜ 1

T
∑T

t=1 gσ(x − xi)
?≈ p(x)

◦ Apply score definition to qσ:

sσ(x) ≜ ∇x log qσ(x) =
1
T

∑T
t=1 ∇ gσ(x − xi)

1
T

∑T
t=1 gσ(x − xi)

◦ Seems impractical:
O(1) training time, but O(T ) work at test time; curse of dimensionality
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Score from kernel density estimate J. Fessler
Tut. Gen.
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Score matching (parametric) J. Fessler
Tut. Gen.

▶ Given training data x1, . . . , xT , learn score function s(x;θ) ?= ∇x log p(x;θ)
▶

Explicit score matching (ESM)
◦ Estimate data distribution (kernel density estimation): qσ(x) =

∑T
t=1 gσ(x − xi)

◦ Match model score to data score (Hyvärinen, 2005 [13]):

θ̂ = arg min
θ

JESM,q(θ), JESM,q(θ) ≜ 1
2 Eq(x)

[
∥s(x;θ) − ∇ log q(x)∥2

2

]
. (1)

▶ Implicit score matching (ISM):

θ̂ = arg min
θ

JISM,q0(θ), JISM,q0(θ) = 1
T

T∑
t=1

∑
i

(
∂isi(xt ;θ) + 1

2 |si(xt ;θ)|2
)

(2)

∂isi(x;θ) = ∂

∂xi
si(x;θ) = ∂2

∂x2
i

log p(x;θ) . (3)

▶ O(T ) work at training time; work at test time depends on parametric model s(x;θ)
▶ Denoising score matching (DSM)
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Denoising score matching J. Fessler
Tut. Gen.

▶ Vincent, 2011 [14] showed this remarkable equivalence between ESM and DSM:

JESM,qσ (θ) = Eqσ(x)

[1
2 ∥s(x;θ) − ∇ log qσ(x)∥2

2

]

= 1
T

T∑
t=1

∫ 1
2 ∥s(x;θ) − ∇ log qσ(x)∥2

2 gσ(x − xt) dx

!= JDSM,qσ (θ) ≜ 1
T

T∑
t=1

Egσ(z)

[
1
2

∥∥∥∥s(xt + z;θ) + z
σ2

∥∥∥∥2

2

]

≈ 1
T

T∑
t=1

1
M

M∑
m=1

1
2

∥∥∥∥s(xt + zt,m;θ) + zt,m
σ2

∥∥∥∥2

2

▶

The last term is a kind of denoising operation.
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Noise-conditional score matching J. Fessler
Tut. Gen.

▶ Q: How much noise (what σ) to use in DSM?
▶

A: many!
▶ Noise-conditional score matching (NCSM) [15, eqn. (5)]:

ℓ(θ; σ) ≜ 1
2 Eq0(x)

[
Egσ(z)

[∥∥∥∥s(x + z;θ, σ) + z
σ2

∥∥∥∥2

2

]]
, L(θ; {σl}) = 1

L

L∑
l=1

σ2
l ℓ(θ; σl),

where s(x;θ, σ) denotes a noise-conditional score network (NCSN).
▶ Recommended choice [16]: s(x;θ, σ) ≜ s̃(x;θ)/σ, where s̃ is unitless
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DSM 1D illustration J. Fessler
Tut. Gen.

T = 100
training samples
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Noise-conditional score network training / sampling J. Fessler
Tut. Gen.

Shen & Song et al., NeurIPS 2021 [6]
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Score-based diffusion models: trade-offs J. Fessler
Tut. Gen.

▶ No adversarial training needed
▶ High quality sample generation (if enough training data)
▶

Expensive sample generation (vs GAN models)
◦ Distillation methods [17]
◦ Consistency models [18]
◦ Geometric decomposition [19]
◦ Multi-scale [20, 21] and pyramidal [22] and coarse-to-fine [23] models
◦ Faster ODE solvers [24]
◦ Warm starts [25]
◦ Latent diffusion models: use VAE and diffuse in latent space [26–28].

Used in Stable Diffusion by start-up Stability AI
◦ 3D image reconstruction using 2D models [29, 30]

27 / 61

https://en.wikipedia.org/wiki/Stable_Diffusion
https://github.com/Stability-AI/stablediffusion


Score-based diffusion models: trade-offs J. Fessler
Tut. Gen.

▶ No adversarial training needed
▶ High quality sample generation (if enough training data)
▶ Expensive sample generation (vs GAN models)

◦ Distillation methods [17]
◦ Consistency models [18]
◦ Geometric decomposition [19]
◦ Multi-scale [20, 21] and pyramidal [22] and coarse-to-fine [23] models
◦ Faster ODE solvers [24]
◦ Warm starts [25]
◦ Latent diffusion models: use VAE and diffuse in latent space [26–28].

Used in Stable Diffusion by start-up Stability AI
◦ 3D image reconstruction using 2D models [29, 30]

27 / 61

https://en.wikipedia.org/wiki/Stable_Diffusion
https://github.com/Stability-AI/stablediffusion


Medical imaging applications J. Fessler
Tut. Gen.

▶ Segmentation [31]
▶ Sparse-view CT reconstruction [32]
▶ Motion correction in MRI [33]
▶ Image analysis [11]
▶ Denoising / super-resolution [34]
▶ . . .
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Example: MR image denoising J. Fessler
Tut. Gen.

Chung et al.,
IEEE T-MI 2023
[34]
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Example: Microscopy image segmentation J. Fessler
Tut. Gen.

▶ Bogensperger et al., 2023 [31]; signed distance function instead of binary mask
MoNuSeg microscopy images, Haematoxylin and Eosin (H&E) stained
30 train, 14 test, size 1000 × 1000, >21,000 annotated nuclei

▶

Uncertainty map indicates possible segmentation errors
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Example: MR image reconstruction & uncertainty J. Fessler
Tut. Gen.

Ramzi et al.,
NeurIPS Workshop 2020 [5]

Fully sampled x, zero-filled A′y ,
Primal-dual enhanced U-Net:

4× acceleration

Posterior samples via neural score matching and annealed Hamiltonian Monte-Carlo
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Example: MR image reconstruction: video J. Fessler
Tut. Gen.

See video of posterior samples
Ramzi et al., 2020 [5]
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Risks or pitfalls of generative models? J. Fessler
Tut. Gen.

NY Times article
about fake faces

See it?
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Long history of generative models and inverse problems J. Fessler
Tut. Gen.

Markov random field models

(e.g.) Geman & Geman 1984 [35]

Mostly for inference?
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Long history of generative models and inverse problems J. Fessler
Tut. Gen.

MRF as generators? [36] T-PAMI 1994
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Whole images vs patches? J. Fessler
Tut. Gen.

Jan. 2023 survey paper on generative models [1] does not mention “patch” once!?

MRI k-space sampling:

[37] [38] [39]

Patch-based models have long history in inverse problems, e.g.,
• patch GAN [40–42]
• patch dictionary models [43, 44]
• non-local means, BM3D
• Wasserstein patch prior [45, 46] . . . 36 / 61



Motivating questions J. Fessler
Tut. Gen.

▶ Could patch-based generative models provide better robustness to distribution
shifts, perhaps at the cost of reduced in-distribution performance?

▶ Especially in applications with very limited training data?
e.g., dynamic MRI

▶ Can we use the “latest” generative models, namely score-based models, for patches?
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Patch-based score modeling J. Fessler
Tut. Gen.

▶ Start with MRF formulation, aka fields of experts model [47]:

p(x;θ) = 1
Z (θ) e−

∑
c Vc(x;θ) = 1

Z (θ)
∏
c

e−Vc(x;θ) .

• θ : parameter vector that describes the prior
• Vc : clique potential for the cth image patch
• Z (θ) : intractable partition function

▶ Assume statistical spatial stationarity (image shift invariance):

Vc(x;θ) = V (Gcx;θ),

• Gc : wide binary matrix that grabs pixels of the cth patch from image x
• V (z;θ) : common parent clique function
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Patch-based score modeling J. Fessler
Tut. Gen.

▶ Resulting log-prior:

log p(x;θ) = − log Z (θ) −
∑

c
V (Gcx;θ)

▶ Corresponding overall image score function arises from patch score function:

s(x;θ) ≜ ∇x log p(x;θ) = −
∑

c
G ′

csV (Gcx;θ), sV (v ;θ) ≜ ∇vV (v ;θ).

▶ All we must learn is the patch score function sV (v ;θ) : Rn 7→ Rn, e.g., a MLP.
▶ For training image patches {v1, . . . , vT }, apply denoising score matching (DSM) of

Vincent, 2011 [14], typically for a range of noise variances σ2 [12]:

θ̂ = arg min
θ

1
T

∑T
t=1

Eσ∼p(σ)

[
σ2 Ez∼N (0,σ2In)

[
1
2

∥∥∥∥sV (vt + z;θ, σ) + z
σ2

∥∥∥∥2

2

]]
.

▶ Final patch score model is sV (v ; θ̂, σmin).
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Simple exploration with anecdotal results J. Fessler
Tut. Gen.

▶ 3 × 3 patches
▶ MLP patch score model (9, 40, 80, 160, 320, 320, 160, 80, 40, 9)

first 5 with leaky ReLU, last 3 with tanh
▶ 1000 similar training examples

1 64

1

64 0

1

1 64

1

64 0

1
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Denoising results J. Fessler
Tut. Gen.

1 64

1

64 0

1

1 64

1

64 0

1

1 64

1

64 0

1

▶ BM3D from https://webpages.tuni.fi/foi/GCF-BM3D
▶ TV regularization parameter optimized by oracle for best PSNR.
▶ MAP estimate by greedy gradient ascent of log posterior: (no β!)

xk+1 = xk +αk∇x log p
(
xk |y ; θ̂

)
= xk +αk

(
∇x log p(y |xk) −

∑
c

G ′
csV (Gcxk ; θ̂)

)
.
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Generalizability to distribution shift? (pitfalls...) J. Fessler
Tut. Gen.

Old: 1 64

1

64 0

1

1 64

1

64 0

1

1 64

1

64 0

1

New: 1 64

1

64 0

2

1 64

1

64 0

2

1 64

1

64 0

2

What changed? 42 / 61



MAP from random noise J. Fessler
Tut. Gen.

1 3

1

3

0

1
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Distribution shift: rectangle test image J. Fessler
Tut. Gen.
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Whole-image vs patch models J. Fessler
Tut. Gen.

▶ Whole-image diffusion model of
Hu et al. (SPIE, 2022) [48]

▶ https://github.com/
DeweiHu/OCT_DDPM

▶ Based on Ho et al. (NeurIPS,
2020) [49] denoising diffusion
prob. model (DDPM)

▶ Trained with 1000 disk images.
▶ Tested with noisy disk phantom
▶ One sample from posterior
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Whole-image models and generalizability? J. Fessler
Tut. Gen.

▶ Diffusion model of Hu et al.
(SPIE, 2022) [48] trained with
3600 flower images.

▶ Tested with noisy disk phantom
(PSNR 20.3 dB)

▶ One sample from posterior
https://github.com/
DeweiHu/OCT_DDPM

37.0 dB

35.3 dB
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Summary / future directions J. Fessler
Tut. Gen.

▶ Learning patch score models is feasible with denoising score matching
▶ Amplitude scale invariance is not inherent to score-based models

Easily (?) fixed by patch normalization, but what other more subtle pitfalls exist?
▶ Integrate invariances: amplitude scale / rotation / flip / DC offset
▶ Compare with whole-image models:

◦ “pure” CNN score models with small receptive fields
◦ multi-scale score models [20, 21]
◦ . . .

▶ Explore trade-offs between generalizability and in-distribution performance
▶ Is the “optimal” patch size the whole image? (Even for 3D+T?)

Tutorial Julia code: https://github.com/JeffFessler/ScoreMatching.jl
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Resources J. Fessler
Tut. Gen.

Talk and code available online at
http://web.eecs.umich.edu/~fessler
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A simple exploration J. Fessler
Tut. Gen.

• Stochastic image model with random: center, width, orientation,
background N (1, 0.12), rectangle foreground N (1, 0.032)

• 106 training images of size 16 × 16 with partial volume effects.
• Data lies on 7-dimensional manifold.
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Patch statistics: joint distribution J. Fessler
Tut. Gen.

2 × 1 patches (cf TV)
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Patch statistics: posterior distributions J. Fessler
Tut. Gen.

p((x [m, n], x [m, n − 1]) | y = x [m, n] + x [m, n − 1])

• MRI “center of k-space”
• MRI “2× acceleration
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Patch statistics: score functions J. Fessler
Tut. Gen.

(Manifold data =⇒ score function s(x) = ∇x log p(x) is not well-defined.)
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“TV” score function J. Fessler
Tut. Gen.

Total variation
(TV) prior for
2 × 1 patch:

p(x) ∝ e−β|x2−x1|
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Smoothed score function J. Fessler
Tut. Gen.

Following trends in score matching [12, 14]
Adding gaussian noise to training data ≡ smoothing score function
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MAP denoising via gradient ascent (test images) J. Fessler
Tut. Gen.

Noisy

MAP

True
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Uncertainty? J. Fessler
Tut. Gen.

▶ Sample from p(x|y)
▶ Perform multiple

realizations
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Multiple realizations J. Fessler
Tut. Gen.
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