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. J. Fessler
Measurement model in MRI

Recon
A
RF pulses transverse . recorded
. Bloch Eqn L encoding
gradient waveforms — . — magnetization —| . —  data
tissue properties Nonlinear x (coil, phase, ...)
ue prop Linear y
Simplified data model [1, 2, 3]:
n G
=y=Ax+¢e, A=(L®F)C, Fj=-exp(—270;-7;), C= | :
yi (o]

y; € CM . noisy samples recorded by the /th of of L receive coils
x € CN : discretized version of the unknown transverse magnetization
e € CML : complex white Gaussian noise [4]
U;: k-space sample location of the ith sample (units cycles/cm)
7j: spatial coordinates of the center of the jth pixel (units cm)
F € CMXN : Fourier encoding matrix; ® : Kronecker product
C, : N x N diagonal matrix containing the /th coil sensitivity pattern.
A € CLMXN . system matrix
Extensions consider other physics effects like relaxation and field inhomogeneity [3].
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. J. Fessler
Image reconstruction goal Recon

» Data model:
y=Ax+e¢

» Goal: Estimate image x from data y
>
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. J. Fessler M
Image reconstruction goal Recon

MICHIGAN

» Data model:
y=Ax+e¢
» Goal: Estimate image x from data y

» Regularization is essential for
under-sampled problems (ML < N) and compressed sensing (M < N)
poorly conditioned problems, e.g., non-Cartesian sampling
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. J. Fessler
Compressed sensing vs neural networks? Recon

Received: 1 January 2020 Revised: 28 April 2020 Accepled: 30 April 2020

DO 10.1002/mrm.28338

FULL PAPER Magnetic Resonance in Medicine

Advancing machine learning for MR image reconstruction with
an open competition: Overview of the 2019 fastMRI challenge

Florian Knoll' | Tullie Murrell> | Anuroop Sriram®> | Nafissa Yakubova® |
Jure Zbontar* | Michael Rabbat*> | Aaron Defazio’> | Matthew J. Muckley' |
Daniel K. Sodickson' | C.Lawrence Zitnick® | Michael P. Recht'

“the winners ... chose approaches that used a combination of a learned prior and a
data-fidelity term that encodes information about the MR physics of the acquisition, in
line with approaches that can be seen as neural network extensions of classic iterative
image reconstruction methods” [5]
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Sparsity models: Analysis and Synthesis Recz,s]ser M
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v

MICHIGAN

Synthesis model:

Assume x = Bz

B: N x K matrix (“basis”), e.g., wavelets, often wide (over complete)
z € CK sparse coefficient vector

= use ||z||;

Analysis model:

Assume Tx is sparse

T: K x N transformation matrix, usually tall,
e.g., finite differences for total variation (TV)
= use || Tx||,

Equivalent if B = T~ (but usually both are non-square)
Conventionally B and T are “hand crafted”
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Recon

Sparsity models: Analysis and Synthesis

» Synthesis model:
Assume x = Bz
B: N x K matrix (“basis”), e.g., wavelets, often wide (over complete)
z € CK sparse coefficient vector
= use ||z||;

» Analysis model:
Assume Tx is sparse
T: K x N transformation matrix, usually tall,
e.g., finite differences for total variation (TV)
= use || Tx||,

» Equivalent if B = T~ (but usually both are non-square)
Conventionally B and T are “hand crafted”
» All models are wrong, but some models are useful...

Most likely used in 22017 US FDA-approved CS methods [6, 7, 8, 9] .

v
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. . . . . J. Fessler M
Analysis regularization for image reconstruction Recon

» Typical optimization problem for analysis sparsity model:
N 1 2
% = argmin o [Ax — yl5 + B [| x|, (1)

T: sparsifying operator
wavelet transform
finite differences, aka total variation (TV) [10], or both [11]

» FDA-approved methods for compressed sensing MRI presumably related to (1).
» Non-trivial optimization problem due to the matrix T within 1-norm.
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. . . J. Fessler
Proximal methods for analysis regularizer Recon

» Proximal gradient method (PGM) for analysis regularizer problem (1):

1
X = X — ZA/(AXk —y) (gradient step, aka “data consistency”)

L - - .
Xk+1 = argxmm 3 l|x — xk||§ + B Tx|, = prox%”.r_”l(xk) (denoising step) (2)

L = ||A|)3 : Lipschitz constant
>
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Proximal methods for analysis regularizer Recon

» Proximal gradient method (PGM) for analysis regularizer problem (1):

1
X = X — ZA,(AXk —y) (gradient step, aka “data consistency”)

L - - .
Xk+1 = argxmm 3 l|x — xk||§ + B Tx|, = prox%”.r_”l(xk) (denoising step) (2)

L = ||A|)3 : Lipschitz constant
» Many alternative algorithms (ADMM, POGM, primal-dual, ...). Survey: [12]
>

12/119



. . . J. Fessler
Proximal methods for analysis regularizer Recon

» Proximal gradient method (PGM) for analysis regularizer problem (1):
~ A 1 ! - ““ H ”
Xk = X — ZA (Axx —y) (gradient step, aka “data consistency”)

L - - .
Xk+1 = argxmm 3 l|x — xk||§ + B Tx|, = prox%”.r_”l(xk) (denoising step) (2)

L = ||A|)3 : Lipschitz constant
» Many alternative algorithms (ADMM, POGM, primal-dual, ...). Survey: [12]

> Common ingredients: data consistency and denoising
cf. deep learning reconstruction
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Edge-preserving analysis

k- space sampling

1. Fair potential, § = 0.1
T: finite differences
= corner-rounded TV

Demo notebook: 01-recon

https://github.com/JeffFessler/mirt-demo

Final NRMSE: 1.55%

regularization: example

true image

8x10'

Relative Cost

|X0[: initial image

J. Fessler
Recon

CG: edge- preserving regularization
1
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B CostFGM
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Outline M

Recon TS

Sparsity regularizers: Advanced
Patch-based sparsity models
Patient adaptive regularization
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. . . J. Fessler
Towards data-driven regularization Recon

» Classical regularizers use “hand crafted” transform T or basis B

> Learning T or B for entire image is impractical
>
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. . . J. Fessler
Towards data-driven regularization Recon

» Classical regularizers use “hand crafted” transform T or basis B
> Learning T or B for entire image is impractical

» Learned regularizers are often patch based
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. . J. Fessler
Patch-based regularization Recon M

MICHIGAN

Using TV regularizer R(x) = || Tx||;
where T is finite-differences
= patches of size 2 x 1.

Larger patches provide more context
for distinguishing signal from noise.

cf. CNN approaches

Patch-based regularizers:
e synthesis models
e analysis methods
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. : J. Fessl
Patch-wise dictionary sparsity model Recz,s]ser M

Assumption: if x is a plausible image, then each patch has
Py,x ~ Dz,,

for a sparse coefficient vector z,. (Synthesis approach.)
» P,x extracts the pth of P patches from x
» D is a (typically overcomplete) dictionary for patches

i
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Patch-based regularization: synthesis approach Reczzser

» Patch synthesis model uses sparse linear combination of patch atoms: P,x ~ Dz,
P, € {0, 1}dXN . extracts pth of P d-pixel patches from image x
D c C9*/ : dictionary of J patch atoms
zZ, € C” : sparse coefficient vector for pth patch.

» Natural regularizer for patch synthesis sparsity model [13]:

P

. 1 _ 1
% = argmin = |Ax — y|5+BR(x), R(x) = min > S IPpx — Dz,|5+a ||2p ]l -
X 2 {zp} p=1 2

» Three options for patch dictionary D
Hand crafted
Learned from population training data images, e.g., K-SVD [14], SOUP [15]
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Patch-based regularization: synthesis approach Reczzser

» Patch synthesis model uses sparse linear combination of patch atoms: P,x ~ Dz,
P, € {0, 1}dXN . extracts pth of P d-pixel patches from image x
D c C9*/ : dictionary of J patch atoms
zZ, € C” : sparse coefficient vector for pth patch.

» Natural regularizer for patch synthesis sparsity model [13]:

P

1 1
= arg min 5 | Ax — y|5+BR(x). R(x) = min min LS Dz, |2 +a |1z, -

» Three options for patch dictionary D
Hand crafted
Learned from population training data images, e.g., K-SVD [14], SOUP [15]
Learn while reconstructing this patient (“blind")

18/119



J. Fessler M

Patch-based regularization: synthesis approach Recon

» Patch synthesis model uses sparse linear combination of patch atoms: P,x ~ Dz,
P, € {0, 1}dXN . extracts pth of P d-pixel patches from image x
D c C9*/ : dictionary of J patch atoms
zZ, € C” : sparse coefficient vector for pth patch.

» Natural regularizer for patch synthesis sparsity model [13]:

P

1 1
= arg min 5 | Ax — y|5+BR(x). R(x) = min min LS Dz, |2 +a |1z, -

» Three options for patch dictionary D
Hand crafted
Learned from population training data images, e.g., K-SVD [14], SOUP [15]
Learn while reconstructing this patient (“blind")

» Use alternating minimization algorithms for optimization
18/119



. . J. Fessler
Non-convex regularization Recon

Tu-" Properties of a convex regularizer a UNIVERSITAT

When learning the regularizer, convex functions allow most theory and avoid local minima!

In the interpretation R(u) = — log(p(u)), a convex regularizer makes no sense for images!

lower R(u) than one of

) Needs to have
the other images!

July 10 2020 Daniel Cremers, Michael Méller
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Outline

Sparsity regularizers: Advanced
Patch-based sparsity models

Patient adaptive regularization
Example: learned dictionary

J. Fessler
Recon

MICHIGAN
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MR reconstruction using adaptive dictionary regularizer Recon

» Dictionary-blind MR image reconstruction:
. 1
% = argmin || Ax — y|3 + BR(x)
X

— i P 2, \2
R(x) = minmin}" " ([IPpx — Dzp[l5 + X [2olly)
P,: extracts pth of P image patches.

D: set of dictionaries with unit-norm atoms

In words: of the many images...
» Alternating (nested) minimization:
> Fixing x and D, update each row of Z = [z, ... zp] sequentially via
hard-thresholding.

> Fixing x and Z, update D using SOUP-DIL [15].

» Fixing Z and D, updating x is a quadratic problem.
Efficient FFT solution for single-coil Cartesian MRI.
Use CG for non-Cartesian and/or parallel MRI.

» Non-convex due to D, Dz,, 0-norm, but monotone decreasing and some convergence theory [15].
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2D CS MRI results with blind DL | Recon

Fully Sampled Zero-Filled SOUP-DILLO-MRI

6 x 6 patches
Dec (6% x144
Dy: [DCT | random]

[15]

Sampling (2.5x) Initial D

-

todo: Would be interesting to see which atoms are most used.
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2D CS MRI results with blind DL I] el M

MICHIGAN

38 (SNR vs fully sampled image.)
361 J— == - Using ||zml|, leads to higher
. SNR than ||z|f;.
834 I I Adaptive case is non-convex
T3 //' | anyway...
o I.’
530 —SOUP-DILLO MRI 7
a
28 --=-SOUP-DILLI MRI |
26 1
24 ‘ ‘ ‘ ‘
1 20 40 60 80 100

lteration Number

Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/

https://gitlab.eecs.umich.edu/fessler/soupdil_dinokat
23/119


http://web.eecs.umich.edu/~fessler/irt/reproduce/
https://gitlab.eecs.umich.edu/fessler/soupdil_dinokat

2D CS MRI results with blind DL IlI o). [

Recon

PSNR:

Im. | Samp. | Acc. | Ofill S,E’/lalfle PANO | DLMRI SSIEE’ SD?LUL%
a Cart. 7x 27.9 28.6 31.1 31.1 30.8 31.1
b Cart. 25x | 27.7 316 413 40.2 385 42.3
c Cart. 2.5x | 24.9 29.9 34.8 36.7 36.6 37.3
c Cart. 4x | 25.9 28.8 32.3 32.1 32.2 32.3
d Cart. 2.5x | 29.5 32.1 36.9 38.1 36.7 38.4
e Cart. 25x | 28.1 31.7 40.0 38.0 37.9 41.5
f | 2Drand. | Bx | 263 27.4 30.4 30.5 30.3 30.6
g Cart. 2.5x | 32.8 39.1 416 417 422 43.2

[Ref | T T O [ OO [ 0 [ O [ [
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J. Fessler

2D CS MRI results with blind DL 1V Recon

DLMRI PANO FDLCP

SOUP-DILLO

:
(18] [15]

Summary: 2D static MR reconstruction from under-sampled data
with adaptive dictionary learning and convergent algorithm,
faster than K-SVD approach of DLMRI.
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Denoising based “regularization Recon M

MICHIGAN

Patch-based and convolutional sparsity models lead to a denoising step for the current
image estimate x; at iteration t

Many alternative denoising methods:
» nonlocal means (NLM) [19]

» block-matching 3D (BM3D) [20]
> ...

To adapt most such denoising methods for image reconstruction:
» plug-and-play ADMM [21, 22]
» Regularization by denoising (RED) [23, 24, 25]

27/119



J. Fessler

Plug-and-play ADMM Recon

» Use auxiliary variable (variable splitting) to simplify optimization:
1
X = arg min 5 |Ax — y||5 + R(x) (challenging & unconstrained)
X
1
= arg min min 5 |Ax — y|5+ R(z) st. x=z (constrained)
X

1
A arg min min 3 |Ax — y|5 + R(z) + g |x —z||3 (quadratic penalty)
X

28/119



J. Fessler

Plug-and-play ADMM Recon

» Use auxiliary variable (variable splitting) to simplify optimization:
x= argxmin % |Ax — y|j5 + R(x) (challenging & unconstrained)
= argxmin min % |Ax — y|5+ R(z) st. x=z (constrained)
= argxmin min % |Ax — y|5 + R(z) + g |x —z||3 (quadratic penalty)
» Simplified version of alternating direction method of multipliers (ADMM):
z, = argzmin R(z) + g IIxx — zHg proximal operation (denoising)

1
Xk41 = argmin > |Ax — y||5 + g Ix — 2|5 regularized data consistency (CG)
X
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J. Fessler

Plug-and-play ADMM Recon

» Use auxiliary variable (variable splitting) to simplify optimization:
1
X = arg min 5 |Ax — y||5 + R(x) (challenging & unconstrained)
X
1
= arg min min 5 |Ax — y|5+ R(z) st. x=z (constrained)
X
- 1 2 p 2 :
~ arg minmin > |Ax — yl|5 + R(z) + 5 Ix —z|5 (quadratic penalty)
X
» Simplified version of alternating direction method of multipliers (ADMM):
z, = argmin R(z) + g | xx — z]I3 proximal operation (denoising)
z
1
Xk41 = argmin > |Ax — y||5 + g Ix — 2|5 regularized data consistency (CG)
X

P> Replace denoising step with any denoiser, such as deep network
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Outline M

Recon TS

Deep-learning approaches for image reconstruction
Unrolled loops
Challenges and limitations
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. . . . J. Fessler
Machine-learning approaches to image reconstruction Recon

» Learn models (sparsifying transform or dictionary) for image patches from training
data
interpretable (?) optimization formulations
local prior information only (patch size)
perhaps slower computation due to optimization iterations

» Train neural network (aka deep learning)
less interpretable
possibly more global prior information
slow training, but perhaps faster computation after trained

30/119



. . . J. Fessler M
Deep-learning approaches to image reconstruction Recon

MICHIGAN

Overview:
» image-domain learning [26, 27, 28]...
P k-space or data-domain learning

e.g., [29], [30], [31]
transform learning (direct from k-space to image)
e.g., AUTOMAP [32], [33, 34, 35]

hybrid-domain learning (unrolled loop, e.g., variational network)
alternate between denoising/dealiasing and reconstruction from k-space

e.g., [36, 37, 38, 39, 40, 30] ...
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DL for IR: image-domain learning Recon

|l|
"”” Analytic

Figure courtesy of Jong Chul Ye, KAIST University.

+ simple and fast
— aliasing is spatially widespread, requires deep network
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Dangers of image-domain learning: Method Recon M

Investigating Robustness to Unseen Pathologies in Model-Free Deep Multicoil Reconstruction

Gopal Nataraj' and Ricardo Otazo'?
Dept. of Medical Physics, Memorial Sloan Kettering Cancer Center
2Dept. of Radiology, Memorial Sloan Kettering Cancer Center

Introduction

Speed is often claimed as a key advantage of deep learning (DL) for
undersampled parallel MRI reconstruction [1]. However, the only DL
approach that to our knowledge has studied generalizability to pathologies
unseen in training [2] requires repeated application of the MR acquisition
model and its adjoint, just as in iterative methods. In contrast, model-free
DL reconstruction has the potential to be much faster. Prior model-free DL
wark 21 nrannses ta learn a mannina directly fram k-enace  hit with

[41] ISMRM 2020 Workshop on Data Sampling & Image Reconstruction
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. . . J. Fessler
Dangers of image-domain learning: Result Recon

Reference SPARSE-SENSE

Figure 3: Reconstructions in a case of anaplastic astrocytoma, a rare
malignant brain tumor. SPARSE-SENSE and DL reconstructions are from
the same 4x-accelerated retrospectively undersampled acquisition. DL
achieves lower whole-volume MAE than SPARSE-SENSE, but fails to
properly reconstruct regions near the tumor.
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. . .. J. Fessler
Image-domain learning variations Recon

» Use NN output as a “prior” for iterative reconstruction [26, 42]:

kg = argmin | Ax — y[3 + B [x — xunl3 = (AA+ BN (A'y + Bxun)

» For single-coil Cartesian case:
no iterations are needed (solve with FFTs)
limp_0 X replaces missing k-space data with FFT of xyn
> Iterations needed for parallel MRI and/or non-Cartesian sampling (PCG)

» Learn residual (aliasing artifacts), then subtract [43, 44]
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. . . J. Fessler
DL for IR: k-space / sinogram domain learning Recon

4

> — Analytic | mm
” Recon
4

Figure courtesy of Jong Chul Ye, KAIST University.

0O

+ simple and fast (“nonlinear GRAPPA")
+ “database-free” : learn from auto-calibration data [29], [30], [31]
— perhaps harder to represent local image features?
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DL for IR: transform learning Recon

I

i
M”Hm

Figure courtesy of Jong Chul Ye, KAIST University.

+ in principle, purely data driven; potential to avoid model mismatch
— high memory requirement for fully connected layers [32]
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DL for IR: hybrid domain learning (unrolled loop) #{e:?ler M

MICHIGAN

Forward
Solver

}}}}}}}} |Iw

Analytic
Recon

80
O

O
O

.

Figure courtesy of Jong Chul Ye, KAIST University.

_l’_

physics-based use of k-space data & image-domain priors, eg, |
] ...
interpretable connections to optimization approaches
best results in MRI recon challenges [47, 5, 48]
more computation to due to “iterations” (hyper-layers) and repeated Ax, A'r
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DL for MRI: a taxonomy Recon M

MICHIGAN

Huang et al.., arXiv 2204.01706,
Apr. 2022 [49]
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J. Fessler
Unrolled / unfolded loops Recon

» learned ISTA (LISTA) [50]

aka proximal gradient method / forward-backward splitting [51]
half-quadratic [52]

reaction-diffusion (GD) [53, 54]

gradient descent / Landweber [55, 37]

ADMM |36, 56]

iterative hard thresholding (IHT) [57]

approximate message passing (AMP) [58]

accelerated gradient method [59]

primal dual [60]

primal dual with line search [61]

alternating minimization [62]

block coordinate descent (BCD-Net) [63, 64, 65, 66]

block proximal gradient with momentum (BPGM: Momentum-Net) [67, 68, 46]
And more [69, 45, 70, 71, 72, 73]

Surveys: [74, 75]

VVVVVVVVYVVYVYYVYYVYY
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Unrolled vs alternatives Recon

Zaccharie Ramzi, Philippe Ciuciu, Jean-Luc Starck Appl. Sci. 2020 [76]
Different models based on:
® optimization algorithm to unroll
® choice of fy
L

Table: Quantitative results for the fastMRI dataset. The PSNR is computed over the 200 validation
volumes.

Network | Zero-filled | KIKI-net ‘ U-net | Cascade net | PD-net®
PSNR | 2061 | 3138 |[3178 | 3197 | 3215

5Adler2018

Adler & Oktem, |IEEE T-MI, 2018 [60] Learned primal-dual reconstruction
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Learned PD vs alternatives Recon

Reference  Zero-filled KIKI-net U-net Cascade-net PD-net

Figures courtesy Zaccharie Ramzi & Philippe Ciuciu.
https://github.com/zaccharieramzi/fastmri-reproducible-benchmark
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. . J. Fessler
Extension of PD from NeuroSpin Recon

SUMMARY OF QUALITY RANKS AND LIKERT SCORES

Team Rank Artifacts Sharpness CNR

4X Track
AIRS 136 + 0.64 1.53 + 0.70 1.53 + 0.51 1.53 &+ 0.51
Nspin 1.94 £ 086 1.81 £1.01 1724+ 0.66 1.75 £ 0.84
ATB 222 +087 1.75+£097 197 +0.65 1.86 £ 0.80

8X Track
AIRS 1.28 + 0.64 1.67 &+ 0.68 1.89 &+ 0.75 1.94 &+ 0.75
Nspin 225 +£0.77 1.86 +£0.83 2.72 + 0.81 2.28 £+ 0.81
ATB 228 £0.70 192 +0.94 256 +0.77 242 + 0.84

» XPDNet Ramzi et al., arXiv [77] 2010.07290
» 2nd place in radiologist ratings in 2020 fastMRI challenge [48]

» Replaced plain CNN with multi-scale wavelet CNN; sensitivity map refiner network;
25 unrolled iterations

» AIRS and ATB were also unrolled networks
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Nonlinear encoder methods for ML-based IR Recon

ML-based nonlinear encoder, e.g., autoencoder or generative adversarial network
(GAN) [78, 79]: nonlinear generalizations of subspace models
learn G: maps low-dimensional latent parameter z into high-dimensional image x

» Synthesis form [80]:

%=G(2), 2=argmin|AG(2) - y|3
V4

Caveat: X € Range(G), non-convex minimization
>
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Nonlinear encoder methods for ML-based IR Recon

ML-based nonlinear encoder, e.g., autoencoder or generative adversarial network
(GAN) [78, 79]: nonlinear generalizations of subspace models
learn G: maps low-dimensional latent parameter z into high-dimensional image x

» Synthesis form [80]:
%=G(2), 2=argmin|AG(2) - y|3
z

Caveat: X € Range(G), non-convex minimization

» Regularizer form:

% = argmin || Ax — y||3 4 B Rencoder(X)
X

— mi P
Rencoder(x) - mzm ||X - G(Z)Hp

Caveat: expensive non-convex double minimization, but more robust to encoder
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J. Fessler
Recon

Nonlinear encoder illustration

] (13 layer CNN with = 300K learned parameters) at

From jupyter notebook for [

https://github.com/skolouri/swae/blob/master/MNIST_SlicedWassersteinAutoEncoder_Circle.ipynb

— G(Z) c R28><28

z e R?

NOMON0nnNNNOnOo000009Q

N DOOHODONDN0000QQ0Q
MMOOOHONONONNOO00QQQ

MO an@anmnno00Q009Q

)60 1) 60 10 10 10 10

) 1) 1) ) 1 1D D

mmmmm

MMM NOOOOOO00OCAIVNNNFNNN
™y I 0 N oo
B R e R e T ke |
L e e e L e R R o fa |
LWhhhhlnlnntnwa e rTFdodddddadadadA
Lo er T TTdddndddiddd
LY NERGENANRNTTrTTreI33ddaddd
BHLLEGEEAANARTTTTTOIIIIIIY
Lhhby s NN T Tew9d99I99Y
PN P S N N NN T Trw09VIVIII
LLLLAAN SN E R E T T w2909 I I VY
D N N e L A CRCRCRURUEURU RN )
A e e SRR CRUEU RSN Y
A R e e e A R L RS R RURURN)

s

Caveat: Where is 47
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: : J. Fess|
Generative Adversarial Networks (GAN) example R

From Google's [32]:

Much more realistic than linear interpolation (averaging)
“setting a new milestone in visual quality” [32]

46 /119



: : J. Fessl
Generative Adversarial Networks (GAN) example e

From Google's [32]:

Caveat: non-physical output
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J. Fessler

Deep-learned prior (MODL) Recon

Model based image reconstruction using deep learned priors (MODL) [70, 45]
o 1 2 2
k = argmin 7 || Ax — y|j3 + [CNN(x);

» CNN(x) = x — denoise(x) predicts noise and aliasing patterns
(cf. ResNet principle [43])

> Demonstrated robustness to changes in acceleration factors
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. J. Fessler
Outline M

Recon TS

Deep-learning approaches for image reconstruction
Unrolled loops
Challenges and limitations
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J. Fessler

Caveats to NN methods Recon

vVVvVvYvYyVvyVvyy

vy

Training data size (but self supervision [33])

Local minimizers of training loss functions

Sensitivity to adversarial examples (for classification problems)
Enormous design space (architectures, parameters)

Training loss functions, evaluation metrics vs clinical tasks

Generalizability
noise level
coil sensitivity
k-space sampling
Stability [84]

Memory (especially 3D and dynamic)

MICHIGAN
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. J. Fessler
Caveat: careful comparisons needed | Recon

Unrolled loop method with 20 layers trained with 1.3-10% MR image 8 x 8 patches [62]

H
vA"y vA"y VvA"y
System System System L, X
Model Model © oo Model

Tested with 5 different images:

50/119



Caveat: careful comparisons needed |l

J. Fessler

Recon
UF Image | Zero-filled | Sparse MRI | UTMRI | Proposed
3.3% 1 25.6 26.7 28.3 28.2
2 25.2 26.6 27.9 27.8
3 26.0 27.3 29.3 28.9
4 25.4 26.7 28.2 28.1
5 27.2 28.9 30.6 30.3
R . Avg. PSNR change - - 1.36 2.98 2.78
esults: 5x 1 2.7 25.9 276 275
2 242 255 27.2 27.0
3 249 263 285 28.0
4 244 25.7 276 274
5 26.2 27.9 29.8 29.5
Avg. PSNR change - - 1.38 3.26 3.0
‘ Approx recon time ‘ - ‘ - 100s ‘ 240s ‘ 50s ‘
Sparse MRI [85] total variation and wavelets
UTMRI [86] (union of learned sparsifying transforms): adaptive, not “deep”

MICHIGAN
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J. Fessler

Challenges: 3D and beyond Recon

» Deep networks can require lots of memory to train
> Mitigation strategies:
> gradient checkpointing [87]
invertible / reversible networks [88, 89, 47, 90, 91, 92]
2.5D models for 3D images [93, 94]
implicit models (neural fields, neural ODEs...) [95, 96, 97, 98, 99, ]
deep equilibrium models [101, , , , ]
monotone operator learning [106]

vVvVvyVvVYyYVYY
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. . J. Fessler
Deep network learning strategies Recon

Unrolled deep networks: physics-driven deep learning

» Supervised learning: learning from large labeled data
» Self-supervised learning: learning from large unlabeled data

P Zero-shot learning: learning from a single sample

(The terminology is non-intuitive.)
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https://en.wikipedia.org/wiki/Self-supervised_learning
https://en.wikipedia.org/wiki/Zero-shot_learning

. .. J. Fessler
Supervised end-to-end training of unrolled networks Recon

Efya Sensitivity Maps Training proceSS:

Reference
llﬂll L oS )

Training 0: network parameters
Loss Metric . .
S Update fr(-) : network output iteration T
Networkinput %, parameters,6 N : number of training samples

L: loss function

x'f: nth “ground truth” image

\\
[ Unit1 I—” Unit 2 ‘ . -—b{ Unit T F

Unrolled Network

0 is specificto T

Figures for next many slides courtesy of Burhan Yaman.
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. g J. Fessl
Variation network with fields of experts model Recziser M

MICHIGAN

Ni
« Example®: Variational network with Fields of Experts model R(u) =) (®;(Ku),1).
i=1
input reconstruction

f — Ny — — b — ur

+V

> Y —

Uet AeAH(Aug_y — f)
kltREu J\F _>n K, RE
ki, IMﬁ' k1 m v
ki, REE E ki, RE_'I‘*’
kn, IMH ﬂkN m

H
Up = Up—1 — Z :P, ¢(Kiete—1) — MeA" (Aug—1 — f) Slide courtesy of F. Knoll

"Hammernik et al, MRM, 2018
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VN results

M50

F57

Pl

PI-CS

Learning

J. Fessler M

Recon TS

Hammernick et al.,
MRM, 2018 [37]

Comparisons to
dictionary learning
and total generalized
variation (TGV) in
paper.
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Cascade of CNNs for dynamic MRI

« Example?: Cascade of CNNs

Input Qutput

1]

J. Fessler
Recon

|o|

fnoom
—

Denoise (via CNN)

—
@
—

Conv. Net

3x3 Convolution Layer
Rectified Linear Unit
Residual Layer

Data Consistency Layer

Slide courtesy of D. Rueckert
2Schlemper et al, IEEE TMI, 2018 v
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J. Fessler
Cascade of CNNs: results Recon M

MICHIGAN

(a) 6x Undersampled (b) CNN reconstruction (c) Ground Truth

Schlemper et al., IEEE T-MI, 2018 [38]
Comparisons with dictionary learning (DLMRI) in paper.
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J. Fessler

Model-based deep learning (MoDL) Recon

+ Example®: Model-Based Deep Learned Priors (MoDL)

l 1" Iteration l K™ Iteration |

Ay D, — DC + D, e DC +H D, — DC T

K-times Trec

Shared Weights W —

Ground Truth CS MoDL

Slide courtesy of M. Jacob:
3Aggarwal et al, IEEE TMI, 2019
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J. Fessler
Recon

Dense recurrent NN (learned momentum)

« Example*: Dense Recurrent Neural Network (~Nesterov unrolling)

Iteration T

Iteration 1

T T
D FO)

[~
a

AUOD) [X[

Conventional Dense-RNN

Reference Unrolling

4Hosseini et al, IEEE JSTSP, 2020
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. . . J. Fessler
Challenges of end-to-end supervised training Recon

» GPU memory for 3D and beyond
>
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. . . J. Fessler
Challenges of end-to-end supervised training Recon M

MICHIGAN

» GPU memory for 3D and beyond

» plug-and-play methods [25]

> deep equilibrium models [101, , , ]
neural fields [100]

> monotone operator learning [109, 110]
> ..

v

» Generalizability / robustness to distribution shift
>
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. . . J. Fessler
Challenges of end-to-end supervised training Recon M

MICHIGAN

» GPU memory for 3D and beyond

» plug-and-play methods [25]

> deep equilibrium models [101, , , ]
neural fields [100]

> monotone operator learning [109, 110]
> ..

v

» Generalizability / robustness to distribution shift
» Availability of fully sampled training data?

» High resolution MRI

» Organ motion / dynamic MRI
> Signal decay

> ...

61/119



. . . J. Fessler
Self-supervised training Recon

Slides from Burnam Yaman
(2023 ISMRM Sedona Workshop)
https://www.ismrm.org/workshops/2023/Data
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Self-Supervised Learning

Acquired
ce locations: Q

k-spa
| |
| |

Yaman et al, MRM, 2020



Self-Supervised Learning

Acquired
ce locations: Q

+ Acquired k-space locations Q, split into two sets k‘sﬂ ‘ | H
HHRREE 3}
i

Yaman et al, MRM, 2020



Self-Supervised Learning

Acquired
ce locations: Q

» Acquired k-space locations (Q, split into two sets -

spa
i
1 |

Yaman et al, MRM, 2020



Self-Supervised Learning

Acquired

+ Acquired k-space locations Q, split into two sets k's'i’T i ons: €
i i
; 1‘ ” i ‘W

Data consistency
in unrolled network

Yaman et al, MRM, 2020



Self-Supervised Learning

Acquired

« Acquired k-space locations €, split into two sets k's'i’T Em: &
|
il
Data consistency Define network

in unrolled network loss in k-space

Yaman et al, MRM, 2020



Self-Supervised Learning

Acquired
ce locations: Q

» Acquired k-space locations (Q, split into two sets -

spa
i
0 = Q\A I

DC units in unrolled
network only sees data at ©

Yaman et al, MRM, 2020



Self-Supervised Learning

Acquired

+ Acquired k-space locations Q, split into two sets k's'i’T i ey
Q=0 UA - Hi
i‘ ““ M Set2: A
@ = Q\A Il ” \ I

* Self-supervision via data undersampling (SSDU)

Yaman et al, MRM, 2020



Self-Supervised Learning

Acquired

+ Acquired k-space locations Q, split into two sets k's';’T i e
Q _ @ U A “ H | set 2. A
0 = Q\A i e

* Self-supervision via data undersampling (SSDU)

* End-to-end minimization

Yaman et al, MRM, 2020



Self-Supervised Learning

Acquired

+ Acquired k-space locations Q, split into two sets k's';’T i e
Q _ @ U A “ H | set 2. A
0 = Q\A i e

* Self-supervision via data undersampling (SSDU)

. End-toﬁend minimization
min > £ (v, B4 (F(v5,86:6)))
i=1

Yaman et al, MRM, 2020



Self-Supervised Learning

Acquired
ce locations: Q

» Acquired k-space locations (Q, split into two sets -

SPa
Q _ @ U A i
0 = Q\A Il

Il
Set2: A

* Self-supervision via data undersampling (SSDU)

. End-toﬁend minimization
min > £ (v B4 (F(v5,86:6)))
i=1 /

Loss is measured on
k-space at unseen
locations in training, A

Yaman et al, MRM, 2020



Self-Supervised Learning

Acquired
ce locations: Q

» Acquired k-space locations (Q, split into two sets -

spa

} j
h=6 UA |
0 = O\A I

* Self-supervision via data undersampling (SSDU)

. End-toﬁend minimization
1 o o
mgnﬁZ L (yh. B} (f(vb Eb; 9)))
i=
Network input
o
.'i."im‘

Yaman et al, MRM, 2020



Self-Supervised Learning

Acquired
+ Acquired k-space locations Q, split into two sets ksTT i en=
0 = Q\A 0 (i

* Self-supervision via data undersampling (SSDU)
* End-to-end minimization
1 o o
mgnﬁz L (yh. Ej (f (ve, Ee; 9)))

Network input

s

e

Unrolled Network

Yaman et al, MRM, 2020




Self-Supervised Learning

Acquired

« Acquired k-space locations Q, split into two sets “W i en=
0 = Q\A N s

* Self-supervision via data undersampling (SSDU)

. End-toﬁend minimization

1 o S
miny > £ (vh & (£(v5,E5:)))
i=1

~
\\

\
]

Unrolled Network

Network input

Yaman et al, MRM, 2020




Self-Supervised Learning

Acquired

* Acquired k-space locations , split into two sets “TTT locations: 0
Q=0 UA . e
Egye . Sensitivity Maps Set1 : 0 I ‘ | o H
0 = M\A ~ i il

. End-toﬁend minimization
min > £ (v, B4 (F(v5,86:6)))
i=1

‘\
m‘
\\
N
]

Unrolled Network

Network input

e

iU

Yaman et al, MRM, 2020




Self-Supervised Learning

Acquired
+ Acquired k-space locations Q, split into two sets “W i en=
oo = |
Egye Sensitivity Map: Il |
0 = O\A % AT

. End-toﬁend minimization
min > £ (v, B4 (F(v5,86:6)))
i=1

Network output

Network input

e

iU

\
]

Unrolled Network

Yaman et al, MRM, 2020




Self-Supervised Learning

Acquired
+ Acquired k-space locations Q, split into two sets “W i en=
oo = |
Egye Sensitivity Map: Il |
0 = O\A % AT

. End-toﬁend minimization
min > £ (v, B4 (F(v5,86:6)))
i=1

EA(f(...)

x\
Network input Network output

e

iU

\
]

Unrolled Network

Yaman et al, MRM, 2020




Self-Supervised Learning

Acquired
+ Acquired k-space locations Q, split into two sets “W i en=
oo = |
Egye Sensitivity Map: Il |
0 = O\A % AT

. End-toﬁend minimization
min > £ (v, B4 (F(v5,86:6)))
i=1

Training Loss Metric

)]

x\
Network output

Network input

e

iU

\
]

Unrolled Network

Yaman et al, MRM, 2020




Self-Supervised Learning

» Acquired k-space locations (Q, split into two sets

k-space locations: Q
I A
i I | 1‘
Eg¥o Sensitivity Maps  Set 1 : © I ‘ | ‘ H Set2: A
: | i ‘ |

Q=0 UA
0 =Q\A

. End-toﬁend minimization
min > £ (v, B4 (F(v5,86:6)))
i=1

Yaman et al, MRM, 2020

Acquired

Network input

f
P i

Unrolled Network




Overlapped Sampling Points

Overlap %= |A N Q|/|A|

Amount of data in A that Reference Disjoint 50% 100% Identical
was also included in 0 Overlap Overlap (QG)) (Q=0=A4)

Identical set suffers from
noise amplification

As overlap between two sets
increase, performance
degrades

Disjoint sets outperform
overlapping and identical
sets



Physics-Driven DL Reconstruction

Reconstructed

Difference
Images(x10)

Images

Fully-Sampled

TGV Supervised

CG-SENSE DL- MRI Self-Supervised

Reference



Physics-Driven DL Reconstruction

R=2 R=4 R=6 R=8

* Prospectively
subsampled (R = 2)

» Supervised DL MRI not
available (no ref data)

CG-SENSE

» Self-supervised
successful reconstruction
at high rates

Self-Supervised




J. Fessler

Zero-shot self-supervised learning (ZS-SSL) Seeel

‘Database deep Iearning‘

P> Lack of large datasets >
Motion, 3D/

P> Trained model may not generalize
well if the test data differs

contrast / coils / sampling /
anatomy / FOV / vendor / SNR ...
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J. Fessler

Zero-shot self-supervised learning (ZS-SSL) Seeel

‘Database deep Iearning‘

> Lack of large datasets » No training data required
Motion, 3D/ » train and test on single case
P> Trained model may not generalize > agnostic to distribution
>
>

well if the test data differs

contrast / coils / sampling /
anatomy / FOV / vendor / SNR ...

compute expensive
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Zero-shot self-supervised learning (ZS-SSL) #{ez?ler M

’Database deep Iearning‘

P> Lack of large datasets
Motion, 3D/

P> Trained model may not generalize
well if the test data differs

contrast / coils / sampling /
anatomy / FOV / vendor / SNR ...

MICHIGAN

No training data required
train and test on single case
agnostic to distribution

compute expensive

vVvyVvYyVvyy

combine with pretrained models via
transfer learning to reduce
computation

Yaman et al., ICLR 2022 [111]
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Deep image prior (DIP) Recon

» An early zero-shot method Ulyanov et al., CVPR 2018 [112]
» Recall CS-GAN approach of Bora et al., ICML 2017 [30]:

x

N N . 2
Gy(2), z= argzmln |AG;(z) — yH2
» DIP approach using a random latent parameter zy [112]:

X = fy(20), 0= argemin | Afg(z0) — yH%

Akin to a very nonlinear form of blind dictionary learning (also expensive)

» Applied to dynami MRI Yoo et al., IEEE T-MI 2021 [113]
(no comparison to blind dictionary learning)

85,119



Zero-Shot Learning

Database Deop Learming | G 20 SIESH e

» Lack of large datasets due to physiological ||+ Does not require any external dataset

and physical constraints
» Training & testing on a single image
> Contrast uptake, breathing patterns...

) » Agnostic to changes in distribution
» Move towards processing larger

D/4D vol
3D/4D volumes » Potential high quality reconstruction for

+ Trained model may not generalize well if

- O every individual
the test data is out-of-distribution

» Vendor/SNR/Mask&Rate/Anatomy... |[*+ Combined with pretrained models via

« Retraining is computationally expensive transfer learning for computational efficiency




Deep Image Prior - MRI

Ground Truth DIP- Recon

« DIP Reconstruction' (2 = 0@ = A)
* Performs training and testing
on a single slice

» No stopping criterion - Overfitting

1Ulyanov et al, CVPR, 2017.



Zero-Shot Learning

. . . 0.45
» Zero-shot self-supervised learning without Acquired — k=1
ini K=10
external training data’ frequency domain locations: s K=o,
ﬂ —K=50
So3s
o
£
Validation Mask, I' § 0.3 \\\\ ]
0.25 \:

Loss Mask, A
e 02 50 100 150 200 250 300
Epochs
0.3
— k=1
——K=10
ke{l,...,K} , 029 _z:::
0
1 K S
Training  in — Z/;( E Eo : 0 § 0.28
YA A (j>()[()k7 Ok )) k=
0 ©
Loss K~ :
0.27
Validation .o
Loss £<yl_‘7 Er (f(YQ\Fa EQ\F7 9( )))> 0.26
0 50 100 150 200 250 300

Yaman et al, ICLR, 2022. Epochs



Zero-Shot Learning
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a)

Acquired
k-space locations: o

Zero-Shot Learning

Validation Mask, T

Data Consistency (DC)

Trainin
> 9 Zero-FlIIed Sensitivity Maps  DC Mask
s

Loss ¢

Network output

Loss Mask, A

Training

Unrolled Network
Parameters,6

&
L
S
‘_




a)

Acquired
k-space locations: o

Zero-Shot Learning

Validation

Training

Data Consistency (DC)

------ » Training Zero-FlIIed Sensitivity Maps

Loss ¢ En

Unrolled Network

Parameters,6

v

Network output

Uni11‘ ‘Unitz . ‘UnitT

Unrolled Network

ResNet

wson . |EHR

@
o
,‘
‘_

III

3
['4

Conv




Zero-Shot Learning

a) <
X . Data Consistency (DC)
QIR seeeeeap Training ) L
= Loss « Zero-Filled Sensitivity Maps
o 3 L
a o Network output
| £ -1
£ ¥
o
= ‘UniH ‘ -. Unit T
Unrolled Network
Parameters,6
S H
2 A
-]
L3
28
g @
g 5 unitt [+ unit2 |« - | unic | ResNet
@ &
< b-]
s

Conv

‘ 3 i Unrolled Network ,
‘ A4 4. 4
................... S S ) | _ _‘. ,
Loss

" Residual Block (RB) ...
A4 4
z =
5 B —




a)

Acquired
k-space locations: o

Zero-Shot Learning

e
< g
[
1]
=
of
£
£
o
£ i

Inference

.................... weeeseap  Training

Loss « Ex

Unrolled Network

Parameters,6

v

Unit 1 ‘ Unit2 | - = ‘ Unit T

Unrolled Network

Network output

............................ , Valication ST

Unit 1 I

Unrolled Network

Unit2 - = Unit T ‘

Final Reconstruction

Data Consistency (DC)
Zero-Filled Sensitivity Maps
S

ResNet

99944

" Residual Block (RB) "
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L

T
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Zero-Shot Learning

DIP: Deep Image Prior
Ground Truth Supervised PG-DL

ZS-SSL: Zero-Shot Self- |
Supervised Learning (

1)
I

2

DIP and ZS-SSL performs training

on a single slice

<
1l
14
I3
2
=
3]
3
£
5
]
c
]
3
14

Supervised PG-DL is a database

d I i h .
eep learning approac Trained on a database Trained & tested on a

single sample



Zero-shot + Transfer Learning

Ground-Truth Network Input Reconstruction
* Pretrained models performance Unrolled Network

DC

v
Training

degrades in presence of mismatch

Parameters,0
'

between training and test data
Ground-Truth

fg’V

Out of Distribution
Different Anatomy

v
Inference




Zero-shot + Transfer Learning

Ground-Truth Network Input Reconstruction
Unrolled Network

* Pretrained models performance
DC

v
Training

degrades in presence of mismatch

between training and test data
Ground-Truth Network Input v

* Combine pretrained models with ZS-SSL

Out of Distribution
Different Anatomy

v
Inference

via transfer learning to improve:

a) accuracy, robustness and

generalization



Zero-shot + Transfer Learning

Ground-Truth Network Input Reconstruction
Unrolled Network

* Pretrained models performance
. . DC
degrades in presence of mismatch

v
Training

between training and test data

Out of Distribution
Different Anatomy

. . . Ground-Truth Network Input v
) - @ ! Unrolled Network
Combine pretrained models with ZS-SSL ,5 Ay T nrolled Ne :;
via transfer learning to improve: 2 ‘ . ' J "\’

a) accuracy, robustness and

generalization

b) computational efficiency



Zero-shot + Transfer Learning

Ground-Truth Network Input
* Pretrained models performance Unrolled Network

DC

v
Training

degrades in presence of mismatch

Parameters,0
'

between training and test data
Ground-Truth

‘."V

* Combine pretrained models with ZS-SSL

Out of Distribution
Different Anatomy

v
Inference

via transfer learning to improve:

a) accuracy, robustness and

Reconstruction

04 032
H . ——75-SSL —— Z5-SSL
generallzatlon 0.38 —— 25-S5LTL —— 7S-SSLTL
0.31
4 036 P
. _ @
b) computational efficiency L 3 oa)
2 S
2 S
% 0.32 § 0.29 &
" o3 s
0.28
0.28 s
0.26 : . . . . 0.27
0 50 100 150 200 250 300 0 5 100 150 200 250 300

Epochs

Epochs



In-Domain Challenges: Sampling& Acc. Rate

Ground-Truth  Supervised PG-DL  DIP-Recon ZS-SSL

a)

Supervised PG-DL was trained with
a) random mask and tested on

uniform mask, both at R = 4;



In-Domain Challenges: Sampling& Acc. Rate

Ground-Truth  Supervised PG-DL  DIP-Recon ZS-SSL

Supervised PG-DL was trained with

a) random mask and tested on
uniform mask, both at R = 4;

b) uniform mask at R =4 and

b)
tested on uniform mask at R = 6



Cross-Domain Challenges: Anatomy

Supervised PG-DL was trained with
a) Ax-FLAIR (brain) model and
tested on Cor-PD (knee)




Cross-Domain Challenges: Anatomy

Ground-Truth
a)

Supervised PG-DL  DIP-Recon

ZS-SSL

Supervised PG-DL was trained with

a) Ax-FLAIR (brain) model and
tested on Cor-PD (knee)

b) Cor-PD model and tested on Ax- b)
FLAIR



Unrolled Networks: Practical Considerations

* Weight sharing

» Regularizer units may share weights or may be different

» Unrolling iterative algorithms suggests sharing weights' - also fewer parameters?
 Loss functions

= Typically: /4, /, losses?

» Adversarial/Perceptual losses also receiving attention*
* Metrics

= SSIM/NMSE

= Reader Study

* New metrics® > Precision, Recall

"Monga et al, IEEE SPM,2021; 2Aggarwal et al, IEEE TMI, 2019 *Hammernik et al, MRM, 2018 “Hammermik et al, IEEE SPM, 2023; 6Zhao et al, Nature, 2022



J. Fessler
Summary Recon M

MICHIGAN

P Deep learning based image reconstruction research is exploding

» US FDA has approved DL recon for MRI [114] and X-ray CT [115, 116]
> Many omissions...
>
>

Survey papers: [117, 118, 74, 119, : , 49, 122]
Other topics:
> robustness / stability with adversarial noise [84, , 124]
> score-based diffusion models (and uncertainty quantification) [125, 126, 127, 128]

» quantitative MRI [129]
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Resources Recon

Talk: https://web.eecs.umich.edu/~fessler/talk/23/isbi.pdf
code: https://github.com/JeffFessler/MIRT. jl
https://github.com/JulialmageRecon
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