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Generative models are hot in graphics J. Fessler
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Computer (“AI”) generated stills from hypothetical movie: Chilean director Alejandro
Jodorowsky’s 1976 version of “Tron” using midjourney.com as reported in 2023-01-13
NY Times article “This film does not exist” by director Frank Pavich.
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Generative models are hot in the news J. Fessler
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I 2020-11-21 NY Times “Designed to Deceive: Do
These People Look Real to You?”
Article about generated (aka fake) faces.

I 2022-10-21 NY Times “A Coming-Out Party for
Generative A.I., Silicon Valley’s New Craze”
(about “Stable Diffusion” image generator)
https://nyti.ms/3SjsNOk

I 2023-01-09 NY Times “A.I. Turns Its Artistry to
Creating New Human Proteins”
https://nyti.ms/3IzY66m
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Generative models are hot in imaging / inverse problems J. Fessler
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Zhao, Ye, Bresler: Jan. 2023 IEEE SpMag survey paper [1]
I Generative adversarial network (GAN) models
I Variation auto-encoder (VAE) models [2]
I Normalizing flows [3]
I Score-based diffusion models
◦ Ramzi et al., NeurIPS 2020 [4]
◦ Yang Song et al., NeurIPS 2021, ICLR 2022 [5, 6]
◦ Jalal et al., NeurIPS 2021 [7]
◦ Chung & Ye, MIA, Aug. 2022 [8]
◦ Luo et al., 2022 arXiv 2202.01479 [9]
◦ . . .

I Kazerouni et al. [10] have github catalog, including 5 survey papers
I . . . (hopelessly incomplete lists)

5 / 34

https://github.com/amirhossein-kz/Awesome-Diffusion-Models-in-Medical-Imaging


Benefits of generative models J. Fessler
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I Can learn prior p(x) independent of system, e.g., MRI k-space sampling patterns
(Though may depend on pixel size and contrast.)

I Unsupervised learning [11]
(Though reasonably high-quality training data may be needed.)

I Given image prior p(x), can use Bayes rule to sample from the posterior p(x|y)
for uncertainty quantification (recent survey: [12])

I Sampling needs just its score function ∇ log p(x;θ),
using Langevin dynamics, aka stochastic gradient ascent of log-likelihood:

xt = xt−1 + αt∇ log p(xt−1) +βtN (0, I), t = 1, . . . ,T .

◦ Draws samples from p(x) for suitable choices of {αt}, {βt}, and (large) T [13].
◦ (See [14] for acceleration for inverse problems using data consistency.)
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Risks or pitfalls of generative models? J. Fessler
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NY Times article
about fake faces

See it?
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Long history of generative models and inverse problems J. Fessler
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Markov random field models

(e.g.) Geman & Geman 1984 [15]

Mostly for inference?
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Long history of generative models and inverse problems J. Fessler
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MRF as generators? [16] T-PAMI 1994
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Whole images vs patches? J. Fessler
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Jan. 2023 survey paper on generative models [1] does not mention “patch” once!?

MRI k-space sampling:

[17] [18] [19]

Patch-based models have long history in inverse problems, e.g.,
• patch GAN [20–22]
• patch dictionary models [23, 24]
• non-local means, BM3D . . .
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Motivating questions J. Fessler
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I Could patch-based generative models provide better robustness to distribution
shifts, perhaps at the cost of reduced in-distribution performance?

I Especially in applications with very limited training data?
e.g., dynamic MRI

I Can we use the “latest” generative models, namely score-based models, for patches?
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Patch-based score modeling J. Fessler
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I Start with MRF formulation, aka product of experts model [25]:

p(x;θ) = 1
Z (θ) e−

∑
c Vc(x;θ) = 1

Z (θ)
∏
c

e−Vc(x;θ) .

• θ : parameter vector that describes the prior
• Vc : clique potential for the cth image patch
• Z (θ) : intractable partition function

I Assume statistical spatial stationarity (image shift invariance):

Vc(x;θ) = V (Gcx;θ),

• Gc : wide binary matrix that grabs pixels of the cth patch from image x
• V (z;θ) : common parent clique function
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Patch-based score modeling J. Fessler
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I Resulting log-prior:

log p(x;θ) = − log Z (θ)−
∑

c
V (Gcx;θ)

I Corresponding overall image score function arises from patch score function:

s(x;θ) , ∇x log p(x;θ) = −
∑

c
G ′csV (Gcx;θ), sV (v ;θ) , ∇vV (v ;θ).

I All we must learn is the patch score function sV (v ;θ) : Rn 7→ Rn, e.g., a MLP.
I For training image patches {v1, . . . , vT}, apply denoising score matching (DSM) of

Vincent, 2011 [26], typically for a range of noise variances σ2 [13]:

θ̂ = arg min
θ

1
T
∑T

t=1
Eσ∼p(σ)

[
σ2 Ez∼N (0,σ2In)

[
1
2

∥∥∥∥sV (vt + z;θ, σ) + z
σ2

∥∥∥∥2
2

]]
.

I Final patch score model is sV (v ; θ̂, σmin).
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Simple exploration with anecdotal results J. Fessler
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I 3× 3 patches
I MLP patch score model (9, 40, 80, 160, 320, 320, 160, 80, 40, 9)

first 5 with leaky ReLU, last 3 with tanh
I 1000 similar training examples
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Denoising results J. Fessler
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I TV regularization parameter optimized by oracle for best PSNR.
I MAP estimate by greedy gradient ascent of log posterior: (no β!)

xk+1 = xk +αk∇x log p
(
xk |y ; θ̂

)
= xk +αk

(
∇x log p(y |xk)−

∑
c

G ′csV (Gcxk ; θ̂)
)
.
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Generalizability to distribution shift? (pitfalls...) J. Fessler
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MAP from random noise J. Fessler
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Distribution shift: rectangle test image J. Fessler
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Whole-image vs patch models J. Fessler
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I Whole-image diffusion model of
Hu et al. (SPIE, 2022) [27]

I https://github.com/
DeweiHu/OCT_DDPM

I Based on Ho et al. (NeurIPS,
2020) [28] denoising diffusion
prob. model (DDPM)

I Trained with 1000 disk images.
I Tested with noisy disk phantom
I One sample from posterior
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Whole-image models and generalizability? J. Fessler
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I Diffusion model of Hu et al.
(SPIE, 2022) [27] trained with
3600 flower images.

I Tested with noisy disk phantom
(PSNR 20.3 dB)

I One sample from posterior
https://github.com/
DeweiHu/OCT_DDPM

37.0 dB

35.3 dB
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Summary / future directions J. Fessler
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I Learning patch score models is feasible with denoising score matching
I Amplitude scale invariance is not inherent to score-based models

Easily (?) fixed by patch normalization, but what other more subtle pitfalls exist?
I Integrate invariances: amplitude scale / rotation / flip / DC offset
I Compare with whole-image models:
◦ “pure” CNN score models with small receptive fields
◦ multi-scale score models [29, 30]
◦ . . .

I Explore trade-offs between generalizability and in-distribution performance
I Is the “optimal” patch size the whole image? (Even for 3D+T?)

Tutorial Julia code: https://github.com/JeffFessler/ScoreMatching.jl
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Talk and code available online at
http://web.eecs.umich.edu/~fessler
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A simple exploration J. Fessler
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• Stochastic image model with random: center, width, orientation,
background N (1, 0.12), rectangle foreground N (1, 0.032)
• 106 training images of size 16× 16 with partial volume effects.
• Data lies on 7-dimensional manifold.
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Patch statistics: joint distribution J. Fessler
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2× 1 patches (cf TV)
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Patch statistics: posterior distributions J. Fessler
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p((x [m, n], x [m, n − 1]) | y = x [m, n] + x [m, n − 1])

• MRI “center of k-space”
• MRI “2× acceleration
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Patch statistics: score functions J. Fessler
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(Manifold data =⇒ score function s(x) = ∇x log p(x) is not well-defined.)

29 / 34



“TV” score function J. Fessler
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Total variation
(TV) prior for
2× 1 patch:

p(x) ∝ e−β|x2−x1|
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Smoothed score function J. Fessler
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Following trends in score matching [13, 26]
Adding gaussian noise to training data ≡ smoothing score function
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MAP denoising via gradient ascent (test images) J. Fessler
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Noisy

MAP

True
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Uncertainty? J. Fessler
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I Sample from p(x|y)
I Perform multiple

realizations
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Multiple realizations J. Fessler
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