. e . J. Fessler
Generalizability (or not?) of patch-based image models Patch models M

Jeffrey A. Fessler & Jason Hu

EECS Department, BME Department, Dept. of Radiology
University of Michigan

http://web.eecs.umich.edu/~fessler

BASP Frontiers conference
2023-02-07

Acknowledgments:
Xiaojian Xu, Mike McCann (LANL)

1/34


http://web.eecs.umich.edu/~fessler
https://baspfrontiers.org

. J. Fessler
Outline M

Patch modelsjEEm
Introduction
Generative models
Patch-based score modeling
Current results
Summary
Bibliography

Extra: toy exploration

2/34



. . . J. Fessler
Generative models are hot in graphics Patch models M

. = T || T g R &
Computer (“Al") generated stills from hypothetical movie: Chilean director Alejandro
Jodorowsky's 1976 version of “Tron” using midjourney.com as reported in 2023-01-13
NY Times article “This film does not exist” by director Frank Pavich.
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Generative models are hot in the news Patch modellméa

> 2020-11-21 NY Times “Designed to Deceive: Do
These People Look Real to You?"
Article about generated (aka fake) faces.

> 2022-10-21 NY Times “A Coming-Out Party for
Generative A.l., Silicon Valley's New Craze” y
(about “Stable Diffusion” image generator) Gender Race and Ettnicty
https://nyti.ms/3SjsNOk

> 2023-01-09 NY Times “A.l. Turns Its Artistry to
Creating New Human Proteins”
https://nyti.ms/3I1zY66m
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Generative models are hot in imaging / inverse problems Patch mode|s
Zhao, Ye, Bresler: Jan. 2023 IEEE SpMag survey paper [1]
> Generative adversarial network (GAN) models
» Variation auto-encoder (VAE) models [2]
» Normalizing flows [3]

» Score-based diffusion models
o Ramzi et al., NeurlPS 2020 [4]
o Yang Song et al., NeurlPS 2021, ICLR 2022 [5, 6]
o Jalal et al., NeurlPS 2021 [7]
o Chung & Ye, MIA, Aug. 2022 [8]
o Luo et al., 2022 arXiv 2202.01479 [9]

o ...

» Kazerouni et al. [10] have github catalog, including 5 survey papers

» ... (hopelessly incomplete lists)
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» Can learn prior p(x) independent of system, e.g., MRI k-space sampling patterns
(Though may depend on pixel size and contrast.)

» Unsupervised learning [11]
(Though reasonably high-quality training data may be needed.)

» Given image prior p(x), can use Bayes rule to sample from the posterior p(x|y)
for uncertainty quantification (recent survey: [12])

» Sampling needs just its score function V log p(x; 0),
using Langevin dynamics, aka stochastic gradient ascent of log-likelihood:

xt = Xt—1 + a;Viogp(xe—1) +8:N(0,1), t=1,...,T.

o Draws samples from p(x) for suitable choices of {a:}, {3:}, and (large) T [13].
o (See [14] for acceleration for inverse problems using data consistency.)
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Risks or pitfalls of generative models? Patch modelsk

NY Times article

Then there are odder artifacts that can
about fake faces appear outof nowhere.

See it?

Most often they’re only in one part of
the image, but if you look closely w
enough, it’s hard to unsee it. .
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Long history of generative models and inverse problems Patch models M

Markov random field models GEMAN AND GEMAN: STOCHASTIC RELAXATION, G1B3S DISTRIBUTIONS, AND BAYESIAX RESTORATION r

(e.g.) Geman & Geman 1984 [15]
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Fig. 7. (a) Blurred image (roadside scene). (b) Degraded image: Addi-

Mostly for inference? 1. S Bt s st ), ) Dot o

Restoration including line process; 1000 iterations.
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Long history of generative models and inverse problems Patch models

MRF as generators? [16] T-PAMI 1994

An Empirical Study of the Simulation
of Various Models Used for Images

A. J. Gray, J. W. Kay, and D. M. Titterington

Abstract— Markov random fields are typically used as priors in
Bayesian image restoration methods to represent spatial information
in the image. Commonly used Markov random fields are not in fact
capable of representing the moderate-to-large scale clustering present in
naturally occurring images and can also be time consuming to simulate,
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Whole images vs patches? Patch models M
Jan. 2023 survey paper on generative models [1] does not mention “patch” once!?

MRI k-space sampling:

I [18] [19]

Patch-based models have long history in inverse problems, e.g.,
patch GAN [20-22]

patch dictionary models [23, 24]
non-local means, BM3D ...
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Motivating questions Patch modelsjig

» Could patch-based generative models provide better robustness to distribution
shifts, perhaps at the cost of reduced in-distribution performance?

» Especially in applications with very limited training data?
e.g., dynamic MRI

» Can we use the “latest” generative models, namely score-based models, for patches?
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Patch-based score modeling Patch models M

» Start with MRF formulation, aka product of experts model [25]:

. L oS vexe) L —Ve(x:0)
p(x;0) = Z(O)e = Z(0)1:[e .

6 : parameter vector that describes the prior
V. : clique potential for the cth image patch
Z(6) : intractable partition function

> Assume statistical spatial stationarity (image shift invariance):
Ve(x;0) = V(Gex; 0),

G, : wide binary matrix that grabs pixels of the cth patch from image x

V(z;0) : common parent clique function
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Patch-based score modeling Patch modelméd

» Resulting log-prior:
log p(x;0) = —log Z(0) — ZC V(Gcx; 0)
» Corresponding overall image score function arises from patch score function:
s(x;0) 2 Vxlogp(x; 0) Z Gl.sy(G.x;0), sv(v;0) 2V, V(v;0).

» All we must learn is the patch score function sy(v;0) : R” — R", e.g., a MLP.

» For training image patches {v1,...,vr}, apply denoising score matching (DSM) of
Vincent, 2011 [26], typically for a range of noise variances o2 [13]:
2
2]] '

z
;07 )
sy(ve+2,0,0)+ -

n 1 T 1
0= arggmln T thl EUNP(J) [02 EZNN(07O'2ln) lz

» Final patch score model is sy (v; é,amin).
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Simple exploration with anecdotal results Patch models M
> 3 x 3 patches

» MLP patch score model (9, 40, 80, 160, 320, 320, 160, 80, 40, 9)
first 5 with leaky RelL U, last 3 with tanh

P 1000 similar training examples
Noisy Image

Clean Image 1 1

1 1
w 64 0
64 0 1 64
1 64

PSNR 26.2 dB
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Denoising results Patch models

MICHIGAN

Denoised with BM3D Denoised with TV Denoised with score matching

64 064

PSNR 34.0 dB PSNR 32.6 dB PSNR 36.5 dB

0

» TV regularization parameter optimized by oracle for best PSNR.
> MAP estimate by greedy gradient ascent of log posterior: (no )

Xi11 = Xk +axVy log p(xk\y; é) = X, +oy (V log p(y|xk) Z G.sy( ka,B)).
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Generalizability to distribution

Noisy Image

Old:

64 0

New: PSNR 26.2 dB

shift? (pitfalls...)

Denoised with TV

PSNR 32.6 dB
Denoised with TV

PSNR 32.6 dB

J. Fessler
Patch modelsjEes

Denoised with score matching

PSNR 36.5 dB
Denoised with score matching

1 64

PSNR 33.7 dB

What changed?
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MAP from random noise Brieh medel

Result of Random Initializations
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Distribution shift: rectangle test image patcessr:;dds

v
MICHIGAN

Clean Image Noisy Image Denoised with TV

1 1 1 i 1 i 1
64 D i 64 084 0
1 64 1 64 1 64

PSNR 26.0 dB PSNR 33.2 dB
Score denoised, trained w/circles Score Denoised, Trained w/Rectangles
'

1y 1
iuDi
1 64

64
PSNR 35.6 dB PSNR 37.7 dB

64
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Whole-image vs patch models

v
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Patch modelsjEes

with BM3D

https://github.com/
2020) [28] denOISI ng d IfFUS|0n Denoised with DDP\I Score denoised, tr: un(d \w,/(,xulcx

Whole-image diffusion model of | Clean Tmage
DeweiHu/0CT_DDPM H DH
prob. model (DDPM) ‘ ' ‘
Trained with 1000 disk images.

Tested with noisy disk phantom

One sample from posterior

Hu et al. (SPIE, 2022) [27]
Based on Ho et al. (NeurlPS,
PSNR 42.1 dB ' PSNR 42.4 dB
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Whole-image models and generalizability? Patch models M

» Diffusion model of Hu et al. noisy
(SPIE, 2022) [27] trained with
3600 flower images.

37.0 dB

clean BM3D denoised

P> Tested with noisy disk phantom
(PSNR 20.3 dB)

» One sample from posterior

https://github.com/
DeweiHu/0CT_DDPM

353 dB
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Summary / future directions Patch modelslméa

P Learning patch score models is feasible with denoising score matching
» Amplitude scale invariance is not inherent to score-based models
Easily (?7) fixed by patch normalization, but what other more subtle pitfalls exist?
> Integrate invariances: amplitude scale / rotation / flip / DC offset
» Compare with whole-image models:
o “pure” CNN score models with small receptive fields

o multi-scale score models [29, 30]
o ...

v

Explore trade-offs between generalizability and in-distribution performance
» Is the “optimal” patch size the whole image? (Even for 3D+T7)

Tutorial Julia code: https://github.com/JeffFessler/ScoreMatching. jl
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Resources Patch models

Talk and code available online at
http://web.eecs.umich.edu/~fessler
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A simple exploration Patch modelshér

88 of 1000000 training images Marginal distribution of training data

’ uuuunuunu“n
uuunuunuuuu ° ‘ : ‘ ‘
05 1.0 15 2.0 2.5

1 16 zm, n]

3 Background

Rectangle

Relative frequency

e Stochastic image model with random: center, width, orientation,
background N(1,0.12), rectangle foreground N(1,0.03?)

e 10° training images of size 16 x 16 with partial volume effects.

e Data lies on 7-dimensional manifold.
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Patch statistics: joint distribution Pat:ssr:;dels

2 x 1 patches (cf TV)

Joint histogram of (x[m,n], x[m-1,n])
~1.0

0.9
0.8
0.7
0.6

m
0.5 1l
>

xlm —1,n]

0.4

0.3

0.2
IO.l
0

z|m, n|
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Patch statistics: posterior distributions Patch modelshmém

p((X[m, n],x[m,n - 1]) ’y = X[ma n] +X[m’ n— 1])

e MRI “center of k-space”
e MRI “2x acceleration

Posteriors : p(z[m, n]| y)

I

Profiles of p((zy, z,)| y = =, + x,)

p(z[m, nl| y)

NN |

x[m, n|
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Patch statistics: score functions Patch modelslém

Patch score functions

w.r.t x[m,n] w.r.t x[m-1,n]
Joint histogram of (x[m,n], xim-1,n])
1.0
0.9
0.8
150 150
0.7
100 100
= 0.6 — —
—~ < 50 < 50
| 05 I - -
B N 0 - 0
= 0.4 | |
03 é -50 é -50
8 -100 =& -100
0.2
-150 -150
0.1
-200 -200
0
lm, n]
z|m, n| z|m, n|

(Manifold data = score function s(x) = V log p(x) is not well-defined.)

29/34



» Y . J. Fessler
TV" score function Bridh meRds

Total variation "TV' pdf TV score:
(TV) prior for

2 x 1 patch:

1.00
0.75
0.50
0.25

—0.25
—0.50
—0.75
-1.00

p(x) oc e~ Pel

cooooooooor
HFNWhAUIOONOOWOO

TV score quiver TV scorez
2

coococoooooor
HFNWhAUIOONOWOO

|
N
o
N
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Smoothed score function Patch models M

Following trends in score matching [13, 26]
Adding gaussian noise to training data = smoothing score function

w.r.t xm,n] w.r.t x[m-1,n] Score quiver plot

afm —1,n)
afm —1,n)
afm —1,n]

1
alm, n] alm, n] alm, n]
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MAP denoising via gradient ascent (test images) S M

Noisy 29.5dB, MAP 29.9dB, True

2.00

Noisy
16 73
MAP .50
25
True .00

.75

6

[y

1
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Uncertainty Patch modelsjg

» Sample from p(x|y) 30 noise realizations

. 1
» Perform multiple
realizations
16

N

.00

1.75

i

.50

-

.25

1.00

1 16
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Multiple realizations Patch models

30 denoised images

| nnnnnn )
16

.75

Standard deviation across realizations
1

-

-

.50

[

.25

i

.00

1 16
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