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MR image reconstruction via compressed sensing J. Fessler

Measurement model:
y = Ax + ε, ε ∼ N (0, σ2I)

• y k-space data
• A system model (gradient encoding, sensitivity encoding, B0 map, . . . )
(wide matrix for under-sampled data, aka compressed sensing)
• x unknown image to be reconstructed
• ε complex noise in k-space

Regularized image reconstruction formulation: (Lustig, Donoho, Pauly: MRM, 2007) [1]

x̂ = arg min
x

1
2 ‖Ax − y‖22 + β1 ‖Tx‖1 + β2 ‖x‖TV

• T sparsifying transform such as orthogonal wavelets
• ‖x‖TV total variation (TV) regularizer. In 1D: ‖x‖TV =

∑
j |xj − xj−1|

• β regularization parameters
• arg min : requires iterative methods
FDA approval for clinical use in commercial systems 2017 & 2018 [2] [3] [4]
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History: Statistical reconstruction for PET I J. Fessler

• Iterative method for emission tomography (Kuhl, 1963)
(earliest iterative method for medical imaging?)

• FBP for PET (Chesler, 1971)
• Weighted least squares for 3D SPECT (Goitein, NIM, 1972)
• Richardson/Lucy iteration for image restoration (1972, 1974)
• Poisson likelihood (emission) (Rockmore and Macovski, TNS, 1976)

y ∼ Poisson{Ax + b} =⇒ L(x) = 1′(Ax + b)− y ′ log .(Ax + b)
• Expectation-maximization (EM) algorithm (Shepp and Vardi, TMI, 1982)
• Regularized (aka Bayesian) Poisson emission reconstruction

(Geman and McClure, ASA, 1985)
• Ordered-subsets EM (OSEM) algorithm (Hudson and Larkin, TMI, 1994)
• Commercial release of OSEM for PET scanners circa 1997
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History: Statistical reconstruction for PET II J. Fessler

I Today, most (all?) commercial PET systems include unregularized OSEM
I Some pre-clinical PET systems use regularized reconstruction

Qi and Leahy et al. 1998
I Some clinical PET systems more recently have used edge-preserving regularizers

Ahn et al. 2015
I Relative difference prior: Nuyts et al. 2002

ψ(a, b) = (a − b)2
(a + b) + γ |a − b| ( cf TV: |a − b| )

I 15 years between key EM paper (1982) and commercial adoption (1997)
(25 years if you count the R/L paper in 1972 that is the same as EM)

I 30 years between early MAP methods and clinical regularized methods
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Key factors in PET J. Fessler

• OS algorithm accelerated convergence by order of magnitude
• Computers got faster (but problem size grew too)
• Key clinical validation papers?
• Key numerical observer studies?
• Nuclear medicine physicians grew accustomed to appearance
of images reconstructed using statistical methods

FBP: ML-EM:
Llacer et al., 1993 9 / 87



Whole-body PET example J. Fessler

FBP ML-OSEM
Meikle et al., 1994

Key factor in PET: Poisson model for measurement statistics
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Current PET image reconstruction research J. Fessler

I MR-guided PET image reconstruction for PET-MR (or MR-PET) systems
I Motion-compensated image reconstruction
I Reduced dose PET image reconstruction
I

Machine learning methods for PET image reconstruction
• Post-process initial reconstructed image [19]
• Improve sinogram then apply FBP [20]
• Unrolled-loop iterative reconstruction [21, 22, 23]
• Direct from sinogram to image: “learned FBP” (2D only, using CNN!) [24]
•

cf. (LSI!) ANN for SPECT image recon, C. Floyd, IEEE-T-MI Sep. 1991 [25]

11 / 87



Current PET image reconstruction research J. Fessler

I MR-guided PET image reconstruction for PET-MR (or MR-PET) systems
I Motion-compensated image reconstruction
I Reduced dose PET image reconstruction
I Machine learning methods for PET image reconstruction
• Post-process initial reconstructed image [19]
• Improve sinogram then apply FBP [20]
• Unrolled-loop iterative reconstruction [21, 22, 23]
• Direct from sinogram to image: “learned FBP” (2D only, using CNN!) [24]
•

cf. (LSI!) ANN for SPECT image recon, C. Floyd, IEEE-T-MI Sep. 1991 [25]

11 / 87



Current PET image reconstruction research J. Fessler

I MR-guided PET image reconstruction for PET-MR (or MR-PET) systems
I Motion-compensated image reconstruction
I Reduced dose PET image reconstruction
I Machine learning methods for PET image reconstruction
• Post-process initial reconstructed image [19]
• Improve sinogram then apply FBP [20]
• Unrolled-loop iterative reconstruction [21, 22, 23]
• Direct from sinogram to image: “learned FBP” (2D only, using CNN!) [24]
• cf. (LSI!) ANN for SPECT image recon, C. Floyd, IEEE-T-MI Sep. 1991 [25]

11 / 87



Outline J. Fessler

MRI reconstruction
PET reconstruction
CT technology
CT reconstruction
Summary
Bibliography

12 / 87



X-ray CT scans J. Fessler

CT image reconstruction problem:
Determine unknown attenuation map x given sinogram data y using system matrix A.

13 / 87
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MRI scans J. Fessler

(No moving parts to
animate)

MR image reconstruction problem:
Determine unknown magnetization image x given k-space data y using system matrix A
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Clinical CT system / instrumentation advances: Classic J. Fessler

I From single slice to multi-slice
1999 4-slice, 2003 64-slice, ...
More recently: 256 or 320 detector rows
256 · 0.625 = 160mm axial coverage

I From axial scan to helical scans (≈ 1989)
I Faster rotation (≈ 0.3 sec?)
I Tube current modulation

to reduce dose in helical scans
http://www.ajnr.org/content/27/10/2221
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Clinical CT system / instrumentation advances: Newer J. Fessler

I Dual X-ray source / detector systems (2005)

https://www.siemens-healthineers.com/no/computed-tomography/news/mso-back-to-the-future.html
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Clinical CT system / instrumentation advances: Recent J. Fessler

I Dual energy systems (for material separation)
• Slow kVp switching
• Dual source/detectors systems
• Fast kVp switching
• Dual layer detectors

[26]
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CT system / instrumentation research: Source J. Fessler

I X-ray fluence modulation [27]

18 / 87



CT system / instrumentation research: Detectors J. Fessler

I photon-counting detectors
• cut electronic noise
• multi-spectral data
• possibly with new contrast agents (e.g., gold nanoparticles)
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Spectral CT example J. Fessler

“color CT” [28]

20 / 87



Dose reduction methods J. Fessler

I reduce tube current
I X-ray tube-current modulation
I X-ray fluence modulation
I eliminate electronic noise using photon counting
I

sparse view CT (cf radial undersampling in MRI)
• Easy for slow flat-panel C-arm systems
• Hard for fast rotating helical systems
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Sparse-view CT example J. Fessler

NYU, Muckley et al. [29]
multi-slit collimator
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Inverse problems J. Fessler

Unknown
object

x
→ Imaging

system → Data
y → Recon → Image

x̂

How to reconstruct object x from data y?
Non-iterative methods:
• analytical / direct
◦ Filtered back-projection (FBP) for CT (textbook: Radon transform)
◦ Inverse FFT for MRI (textbook: FFT)

• idealized description of the system (“textbook model”)
◦ geometry / sampling
◦ disregards noise and simplifies physics

• typically fast
Iterative methods:
• model-based / statistical
• based on “reasonably accurate” models for physics and statistics
• usually much slower

24 / 87



Statistical image reconstruction: CT example J. Fessler

• A picture is worth 1000 words
• (and perhaps several 1000 seconds of computation?)

Thin-slice FBP ASIR (denoise) Statistical
Seconds A bit longer Much longer

(Same sinogram, so all at same dose)
25 / 87



Why statistical/iterative methods for CT? J. Fessler

• Accurate physics models
◦ X-ray spectrum, beam-hardening, scatter, ...

=⇒ reduced artifacts? quantitative CT?
◦ X-ray detector spatial response, focal spot size, ...

=⇒ improved spatial resolution?
◦ detector spectral response (e.g., photon-counting detectors)

=⇒ improved contrast between distinct material types?

• Nonstandard geometries
◦ transaxial truncation (wide patients)
◦ long-object problem in helical CT
◦ irregular sampling in “next-generation” geometries
◦ coarse angular sampling in image-guidance applications
◦ limited angular range (tomosynthesis)
◦ “missing” data, e.g., bad pixels in flat-panel systems
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Why iterative for CT ... continued J. Fessler

• Appropriate models of (data dependent) measurement statistics
◦ weighting reduces influence of photon-starved rays (cf. FBP)

=⇒ reducing image noise or X-ray dose
• Object constraints / priors
◦ nonnegativity
◦ object support
◦ piecewise smoothness
◦ object sparsity (e.g., angiography)
◦ sparsity in some basis
◦ motion models
◦ dynamic models
◦ ...

Henry Gray, Anatomy of the
Human Body, 1918, Fig. 413.

Constraints may help reduce image artifacts or noise or dose.
Similar motivations/benefits in PET and SPECT.
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Disadvantages of iterative methods for CT? J. Fessler

I Computation time
I Must reconstruct entire FOV
I Complexity of models and software
I Algorithm nonlinearities
◦ Difficult to analyze resolution/noise properties (cf. FBP)
◦ Tuning parameters
◦ Challenging to characterize performance / assess IQ

28 / 87



Sub-mSv example J. Fessler

3D helical X-ray CT scan of abdomen/pelvis:
100 kVp, 25-38 mA, 0.4 second rotation, 0.625 mm slice, 0.6 mSv.

FBP ASIR Statistical

29 / 87



MBIR example: Chest CT J. Fessler

Helical chest CT study with dose = 0.09 mSv.
Typical CXR effective dose is about 0.06 mSv.
(Health Physics Soc.: http://www.hps.org/publicinformation/ate/q2372.html)

FBP MBIR
Veo (MBIR) images courtesy of Jiang Hsieh, GE Healthcare 30 / 87
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History: Statistical reconstruction for X-ray CT∗ J. Fessler

• Iterative method for X-ray CT (Hounsfield, 1968)

• ART (Kaczmarz) for tomography (Gordon, Bender, Herman, JTB, 1970)

• ...
• Roughness regularized LS for tomography (Kashyap & Mittal, 1975)

• Poisson likelihood (transmission) (Rockmore and Macovski, TNS, 1977)

• EM algorithm for Poisson transmission (Lange and Carson, JCAT, 1984)

• Iterative coordinate descent (ICD) (Sauer and Bouman, T-SP, 1993)

• Ordered-subsets algorithms (Manglos et al., PMB 1995)
(Kamphuis & Beekman, T-MI, 1998)

(Erdoğan & Fessler, PMB, 1999)

• ...
• Commercial OS for Philips BrightView SPECT-CT (2010)

• Commercial ICD for GE CT scanners (Veo) (circa 2010)

• FDA 510(k) clearance of Veo (Sep. 2011)

• First Veo installation in USA (at UM) (Jan. 2012)
(∗ numerous omissions, including many denoising methods)
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5 decades of CT image reconstruction research J. Fessler

1. 70’s “Analytical” methods (integral equations): FBP
2. 80’s Algebraic methods (as in “linear algebra”)

Solve y = Ax
3. 90’s Statistical methods
• LS / ML methods
• Bayesian methods (Markov random fields, ...)
• regularized methods

4. 00’s Compressed sensing methods
(mathematical sparsity models)

5. 10’s Adaptive / data-driven methods
machine learning, deep learning, ...
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Statistical image reconstruction for CT: Formulation J. Fessler

Optimization problem formulation:

x̂ = arg min
x≥0︸ ︷︷ ︸

optimization
algorithm

Ψ(x), Ψ(x)︸ ︷︷ ︸
cost

function

,
1
2 ‖y − Ax‖2W︸ ︷︷ ︸

data-fit term
physics & statistics

+β
N∑

j=1

∑
k∈Nj

ψ(xj − xk)

︸ ︷︷ ︸
regularizer
prior models

y : measured data (sinogram)
A : system matrix (physics / geometry)
W : weighting matrix (statistics)
x : unknown image (attenuation map)
β : regularization parameter(s)
Nj : neighborhood of jth voxel
ψ : edge-preserving potential function
(piece-wise smoothness / gradient sparsity)
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Statistical image reconstruction for CT: Research J. Fessler

x̂ = arg min
x≥0

Ψ(x), Ψ(x) , 1
2 ‖y − Ax‖2W +

∑
j

∑
k

βj,k ψ(xj − xk)

Apparent topics:
• regularization design / parameter selection ψ, βjk
• statistical modeling W , ‖·‖
• system modeling A
• optimization algorithms (arg min)
• assessing IQ of x̂
Other topics:
• system design
• motion
• spectral
• dose ...
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Regularization in CT J. Fessler

“q generalized gaussian” potential function with tuning parameters: β, δ, p, q:

βψ(t) = β
1
2 |t|

p

1 + |t/δ|p−q . (Thibault et al., Med. Phys., Nov. 2007) [44]

p = q = 2 p = 2, q = 1.2, δ = 10 HU p = q = 1.1
noise (HU): 11.1 10.9 10.8
(#lp/cm): 4.2 7.2 8.2
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SIR for CT: Optimization challenges J. Fessler

x̂ = arg min
x≥0

Ψ(x), Ψ(x) , 1
2 ‖y − Ax‖2W +

N∑
j=1

∑
k

βj,k ψ(xj − xk)

Optimization challenges:
• large problem size: x ∈ R512×512×600, y ∈ R888×64×7000

• A is sparse but still too large to store; compute Ax on-the-fly
• W has enormous dynamic range (1 to exp(−9) ≈ 1.2 · 10−4)
• Gram matrix A′WA highly shift variant
• Ψ is non-quadratic but convex (and often smooth)
• nonnegativity constraint
• data size grows: dual-source CT, spectral CT, wide-cone CT, ...
• Moore’s law insufficient
more cores/threads, not faster clock speeds
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Optimization transfer (Majorize-Minimize) methods: 2D J. Fessler

φ(n)(x (n)) = Ψ(x (n))
φ(n)(x) ≥ Ψ(x)

cf. ML-EM

x (n+1) = arg min
x

φ(n)(x)

37 / 87



Optimized gradient method (OGM1) J. Fessler

New approach by optimizing step-sizes {hn,k} analytically
Initialize: t0 = 1, z (0) = x (0) (Donghwan Kim and JF; 2014-2016)

z (n+1) = x (n) − 1
L ∇Ψ

(
x (n)) (usual GD update)

tn+1 = 1
2

(
1 +

√
1 + 4t2n

)
(momentum factors)

x (n+1) = z (n+1) + tn − 1
tn+1

(
z (n+1) − z (n)

)
︸ ︷︷ ︸

Nesterov

+ tn
tn+1

(
z (n+1) − x (n)

)
︸ ︷︷ ︸
new momentum

Smaller (worst-case) convergence bound than Nesterov by 2×:

Ψ
(
z (n))−Ψ

(
x (?)) ≤ 1L

∥∥x (0) − x (?)
∥∥2
2

(n + 1)2 .

Recently Y. Drori [48] found a matching lower bound for any first-order method in high dimensions.
38 / 87



Ordered subsets approximation J. Fessler

I Data decomposition (aka incremental gradients, cf. stochastic GD, mini-batch):

Ψ(x) =
M∑

m=1
Ψm(x), Ψm(x) , 1

2 ‖ym − Amx‖2Wm︸ ︷︷ ︸
1/Mth of measurements

+ 1
M R(x)

I Key idea. For x far from minimizer: ∇Ψ(x) ≈ M∇Ψm(x) [13]
I SQS (MM): [42]

x (n+1) = x (n) −D−1∇Ψ
(
x (n))

I OS-SQS:
for n = 0, 1, . . . (iteration)

for m = 1, . . . ,M (subset)

xk+1 = xk −D−1M∇Ψm
(
xk
)
,︸ ︷︷ ︸

less work

k = nM + m (subiteration)

I Applied coil-wise in parallel MRI (Muckley, Noll, JF, ISMRM 2014) [50]
39 / 87



Ordered subsets version of OGM1 J. Fessler

For more acceleration, combine OGM1 with ordered subsets (OS). [51]

OS-OGM1:
Initialize: t0 = 1, z (0) = x (0)

for n = 0, 1, . . . (iteration)
for m = 1, . . . ,M (subset)

k = nM + m (subiteration)

zk+1 =
[
xk −D−1M∇Ψm

(
xk
)]

+
(typical OS-SQS)

tk+1 = 1
2

(
1 +

√
1 + 4t2k

)
xk+1 = zk+1 + tk − 1

tk+1

(
zk+1 − zk

)
+ tk

tk+1

(
zk+1 − xk

)
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OS-OGM1 properties J. Fessler

I Approximate convergence rate for Ψ: O
( 1

n2M2

)
(Donghwan Kim and JF; IEEE T-MI 2015 [51])

I Same compute per iteration as other OS methods
(One forward / backward projection and M regularizer gradients per iteration)

I Same memory as OGM1 (two more images than OS-SQS)

I Guaranteed convergence for M = 1
I No convergence theory for M > 1
◦ unstable for large M
◦ small M preferable for parallelization

I Now fast enough to show X-ray CT examples...
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OS-OGM1 results: data J. Fessler

• 3D cone-beam helical X-ray CT scan
• pitch 0.5
• image x: 512× 512× 109 with 70 cm FOV and 0.625 mm slices
• sinogram : y 888 detectors × 32 rows × 7146 views
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OS-OGM1 results: convergence rate J. Fessler

RMSD between x (n) and x (∞)

over ROI (in HU), versus iter-
ation. (“Proposed” = OGM1.)
(Compute times per iteration are very
similar.)
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OS-OGM1 results: images J. Fessler

At iteration n = 10 with M = 12 subsets.
44 / 87
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Statistical modeling J. Fessler

More realistic measurement model in CT with current-integrating detectors:

Yi ∼ Poisson
{

Ii e−[Ax]i
}

︸ ︷︷ ︸
X-ray photons

+N (µ, σ2)︸ ︷︷ ︸
readout

Important for very low-dose CT scans where logarithm is problematic
Corresponding log-likelihood is complicated. Approximations:
I Shifted Poisson: [53, 54, 55]

Yi − µ+ σ2 ∼ Poisson
{

Ii e−[Ax]i + σ2
}

I Model-dependent normal (leads to nonlinear LS): [56, 57]

Yi ∼ N
(
Ii e−[Ax]i + µ, Ii e−[Ax]i + µ+ σ2

)
I Compound Poisson and other complicated models and approximations [58, 59]
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Advanced regularizers I J. Fessler

I Needed for very low-dose scans and sparse-view scans

Using TV regularizer R(x) = ‖Tx‖1
where T is finite-differences
≡ patches of size 2× 1.

1-1

1

-1

Larger patches provide more context
for distinguishing signal from noise.

cf. CNN approaches

Patch-based regularizers:
• synthesis models
• analysis methods

-1

0

1

2

3
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Advanced regularizers II J. Fessler

I Patch-based dictionary synthesis models [60]

R(x) = min
Z∈RK×M

M∑
m=1

1
2 ‖Rmx −Dzm‖22 + α ‖zm‖1

I Patch-based analysis / transform sparsity

R(x) =
M∑

m=1
‖TRmx‖1

I Dictionary D or transform T can be
• learned from population training
• adapted to each patient
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Advanced regularizers III J. Fessler

I Convolutional dictionary sparsity [61]

R(x) = min
Z

1
2

∥∥∥∥x −∑K
k=1

hk ∗ zk

∥∥∥∥2
2

+ α
∑K

k=1
‖zk‖1

I Convolutional analysis sparsity (cf CNN) [62]

R(x) =
∑K

k=1
‖hk ∗ x‖1

I Filters {hk} learned from population training data
I Block-matching / non-local means ... [63]
I Joint sparsity for spectral CT: mixed `2, `1 norms, or nuclear norms [64, 65]
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X-ray CT with learned sparsifying transforms J. Fessler

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach
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Patch-wise transform sparsity model J. Fessler

Assumption: if x is a plausible image, then each patch transform TPmx is sparse.
I Pmx extracts the mth of M patches from x
I T is a (often square) sparsifying transform matrix. What T?
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Sparsifying transform learning (population adaptive) J. Fessler

Given training images x1, . . . , xL from a representative population, find transform T∗
that best sparsifies their patches:

T∗ = arg min
T unitary

min
{zl,m}

L∑
l=1

M∑
m=1
‖TPmxl − zl ,m‖22 + α ‖zl ,m‖0

I Encourage aggregate sparsity, not patch-wise sparsity
(cf K-SVD [66])

I Non-convex due to unitary constraint and ‖·‖0
I Efficient alternating minimization algorithm [67]
• z update : simple hard thresholding
• T update : orthogonal Procrustes problem (SVD)
• Subsequence convergence guarantees [67]
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Example of learned sparsifying transform J. Fessler

3D X-ray training data Parts of learned sparsifier T∗

(2D slices in x-y, x-z, y-z, from 3D image volume)
8× 8× 8 patches =⇒ T∗ is 83 × 83 = 512× 512

top 8× 8 slice of 256 of the 512 rows of T∗ ↑ 53 / 87



Regularizer based on learned sparsifying transform J. Fessler

Regularized inverse problem [68]:

x̂ = arg min
x
‖Ax − y‖2W + βR(x)

R(x) = min
{zm}

M∑
m=1
‖T∗Pmx − zm‖22 + α ‖zm‖0 .

T∗ adapted to population training data

Alternating minimization optimizer:
I zm update : simple hard thresholding
I x update : quadratic problem (many options)

Linearized augmented Lagrangian method (LALM) [69]
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Example: low-dose 3D X-ray CT simulation J. Fessler

X. Zheng, S. Ravishankar,
Y. Long, JF:
IEEE T-MI, June 2018 [68].

FDK

FDK

PWLS-EP

PWLS-EP

PWLS-ULTRA

PWLS-ULTRA
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3D X-ray CT simulation Error maps J. Fessler

0

100

FDK Error

0

100

PWLS-EP Error

0

100

PWLS-ULTRA Error

RMSE in HU
X-ray Intensity FDK EP ST T∗ ULTRA ULTRA-{τj}

1× 104 67.8 34.6 32.1 30.7 29.2
5× 103 89.0 41.1 37.3 35.7 34.2

I Physics / statistics provides dramatic improvement
I Data adaptive regularization further reduces RMSE
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Union of Learned TRAnsforms (ULTRA) J. Fessler

Given training images x1, . . . , xL from a representative population, find a set of
transforms

{
T̂k
}K

k=1
that best sparsify image patches:

{
T̂k
}

= arg min
{Tk unitary}

min
{zl,m}

L∑
l=1

M∑
m=1

(
min

k∈{1,...,K}
‖TkPmxl − zl ,m‖22 + α ‖zl ,m‖0

)

I Joint unsupervised clustering / sparsification
I Further nonconvexity due to clustering
I Efficient alternating minimization algorithm [70]
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Example: 3D X-ray CT learned set of transforms J. Fessler

Class 1 Class 2 Class 3 Class 4 Class 5

X. Zheng, S. Ravishankar, Y. Long, JF: IEEE T-MI, June 2018 [68]
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Example: 3D X-ray CT ULTRA for chest scan J. Fessler

FDK PWLS-EP PWLS-ULTRA

Zheng et al., IEEE T-MI, June 2018 [68] (Special issue on machine learning for image reconstruction)
Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/

https://github.com/xuehangzheng/PWLS-ULTRA-for-Low-Dose-3D-CT-Image-Reconstruction
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Deep-learning approaches to CT image reconstruction J. Fessler

Overview:
I image-domain learning
• arXiv papers starting in 2016 [71, 72]
• Journal papers starting in 2017 [73, 74, 75]
• Explosion of methods, e.g., GANs [76, 77], Wasserstein loss [78]
• beyond denoising: metal artifact reduction [79], dual energy, spectral CT...

I sinogram or data-domain learning
denoising, “in-painting” for metal-artifact reduction [80]

I transform learning (direct from sinogram to image) ?
in 2012 for 32× 32 images [81]
extremely difficult for 3D helical CT
direct from sinogram to stenosis size [82, 83]

I hybrid-domain learning (unrolled loop, e.g., variational network)
alternate between denoising/destreaking and reconstruction from sinogram
e.g., [84, 85, 86, 87, 88, 89]
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Image-domain learning I J. Fessler
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Image-domain learning II J. Fessler

[75]
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Image-domain learning III J. Fessler

[75]
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Convolutional sparsity revisted J. Fessler

Cost function for convolutional sparsity regularization:

arg min
x

1
2 ‖Ax − y‖2W + β

(
min

z
∑K

k=1
1
2 ‖hk ∗ x − zk‖22 + α ‖zk‖1

)
Alternating minimization updates:

Sparse code: z (n+1)
k = soft

{
hk ∗ x (n), α

}
Image: x (n+1) = arg min

x
F (x; y , z (n))

F (x; y , z (n)) , 1
2 ‖Ax − y‖2W + β

(∑K
k=1

1
2

∥∥∥hk ∗ x − z (n+1)
k

∥∥∥2
2

+ α
∥∥∥z (n+1)

k

∥∥∥
1

)
= 1

2 ‖Ax − y‖2W + β 1
2

∥∥x − z (n)
∥∥2
2 (quadratic but large =⇒ majorize)

z (n) = R(z (n)) =
∑K

k=1 flip(hk) ∗ soft{hk ∗ x (n)} (denoise =⇒ learn)
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Momentum-Net overview J. Fessler

Unrolled loop network with momentum and quadratic majorizer:

		𝑥($)

	𝑥($&')argmin
.∈𝒳

𝑥 −	�́� $&' + 𝑀5 $&' 6'𝛻𝐹(	�́� $&' ; 𝑦, 𝑧($&'))
=5 >?@

A

Measurement

1 − 𝜌 (D) + 𝜌ℛF(>?@)(D)	 		𝑧($&')

	𝑦

Refining

MBIR

		𝑥($6')

𝑥($) + 𝐸 $&' (𝑥($) − 𝑥($6'))
Extrapolation

	�́�($&')
“Momentum”

I Diagonal majorizer: M = diag{A′WA1}+βI � A′WA + βI
I Learn image mapper (“refiner”) R from training data (supervised).

cf CNN: filter → threshold → filter
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Momentum-Net benefits J. Fessler

I Image mapper R is shallow
=⇒ less risk of over-fitting / hallucination

I Momentum accelerates convergence (fewer layers)
I First unrolled loop approach to have convergence theory

(under suitable assumptions on R)
I Image update uses original CT sinogram y and imaging physics A

[90]
Il Yong Chun, Zhengyu Huang, Hongki Lim, J A Fessler
Momentum-Net: Fast and convergent iterative neural network for inverse problems
http://arxiv.org/abs/1907.11818
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Momentum-Net preliminary results J. Fessler

Illustration of benefits of momentum:

0 100 200 300

Reconstruction time (sec)

20

25

30

35

40

45

50

R
M
S
E

(H
U
)

BCD-Net, 10 inner iter.
BCD-Net, 3 inner iter.
Momentum-Net, no extraplation

Momentum-Net
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Momentum-Net preliminary image results J. Fessler

Sparse-view CT with 123/984 views, I0 = 105, 800-1200 mod. HU display.
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DL for CT now FDA approved J. Fessler

I In 2019, both Canon and GE got FDA approval for DL methods for CT [91, 92]

I Canon: “AiCE Deep Learning Reconstruction”
Canon press release: “Advanced Intelligent Clear-IQ Engine (AiCE) uses a deep
learning algorithm to differentiate signal from noise so that it can suppress noise
while enhancing signal.”

I GE “Deep-learning image reconstruction”
Possibly related papers [93, 94]
• Plug-and-play ADMM (unrolled loop) [95, 96]
• Denoiser is 17-layer residual learning CNN, trained to map 2D noisy FBP
patches to clean MBIR with squared error loss
• Report faster “convergence” than standard MBIR
• Sliding window of 3 slices in and 1 slice out
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Glimmering neural networks J. Fessler

https://www.gehealthcare.com/products/truefidelity
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DL for CT Example J. Fessler

180 kg patient https://www.gehealthcare.com/products/truefidelity
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Summary J. Fessler

Iterative methods for CT image reconstruction:
I have had important impact on clinical CT
I remain an active research topic
I are more painful to study realistically (than MRI) due to proprietary sinogram data
I use similar regularization methods as MRI in research
I use simpler regularization methods than MRI clinically

The future?
I

Apparently iterative recon for CT perished in 2018?
I

Apparently CT beat MRI to FDA-approved DL recon methods?
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Resources J. Fessler

Slides: http://web.eecs.umich.edu/~fessler/papers/files/talk/20/sedona.pdf
Code: Julia version of MIRT https://github.com/JeffFessler/MIRT.jl
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