

Jeffrey A. Fessler

EECS Dept., BME Dept., Dept. of Radiology University of Michigan

http://web.eecs.umich.edu/~fessler

ISMRM Sedona Workshop: Data Sampling & Image Reconstruction

2020-01-27

- Research support from GE Healthcare from 2001-2016 for low-dose CT image reconstruction
- CT research supported in part by NIH grants R01 HL 098686 & U01 EB018753
- Equipment support from Intel Corporation and NVIDIA
- Gift support from KLA

Acknowledgment:

Thanks to many collaborators and many students and post-docs

Outline

UNIVERSITY OF MICHIGAN

J. Fessler

MRI reconstruction

PET reconstruction

CT technology

- CT reconstruction
 - Why CT iterative CT regularization CT challenges CT optimization CT recon research

Summary

Bibliography

MRI reconstruction

PET reconstruction

CT technology

CT reconstruction

Summary

Bibliography

MR image reconstruction via compressed sensing

J. Fessler

Measurement model:

$$oldsymbol{y} = oldsymbol{A}oldsymbol{x} + oldsymbol{arepsilon}, \qquad oldsymbol{arepsilon} \sim \mathcal{N}(oldsymbol{0}, \sigma^2oldsymbol{I})$$

- **y** k-space data
- **A** system model (gradient encoding, sensitivity encoding, B0 map, ...) (wide matrix for under-sampled data, aka compressed sensing)
- x unknown image to be reconstructed
- ε complex noise in k-space

MR image reconstruction via compressed sensing

J. Fessler

Measurement model:

$$oldsymbol{y} = oldsymbol{A}oldsymbol{x} + oldsymbol{arepsilon}, \qquad oldsymbol{arepsilon} \sim \mathcal{N}(oldsymbol{0}, \sigma^2oldsymbol{I})$$

- y k-space data
- **A** system model (gradient encoding, sensitivity encoding, B0 map, ...) (wide matrix for under-sampled data, aka compressed sensing)
- x unknown image to be reconstructed
- ε complex noise in k-space

Regularized image reconstruction formulation:

(Lustig, Donoho, Pauly: MRM, 2007) [1]

$$\hat{x} = \operatorname*{arg\,min}_{x} \frac{1}{2} \| Ax - y \|_{2}^{2} + \beta_{1} \| Tx \|_{1} + \beta_{2} \| x \|_{\mathrm{TV}}$$

- **T** sparsifying transform such as orthogonal wavelets
- $\| \boldsymbol{x} \|_{\text{TV}}$ total variation (TV) regularizer. In 1D: $\| \boldsymbol{x} \|_{\text{TV}} = \sum_{j} |x_j x_{j-1}|$
- β regularization parameters
- arg min : requires iterative methods

FDA approval for clinical use in commercial systems 2017 & 2018

[2] [3] [4]

MRI reconstruction

PET reconstruction

CT technology

CT reconstruction

Summary

Bibliography

History: Statistical reconstruction for PET I

- Iterative method for emission tomography (earliest iterative method for medical imaging?)
- FBP for PET
- Weighted least squares for 3D SPECT
- Richardson/Lucy iteration for image restoration
- Poisson likelihood (emission) (Rockmore and Macovski, TNS, 1976) $\mathbf{y} \sim \text{Poisson}\{\mathbf{Ax} + \mathbf{b}\} \Longrightarrow L(\mathbf{x}) = \mathbf{1}'(\mathbf{Ax} + \mathbf{b}) - \mathbf{y}' \log .(\mathbf{Ax} + \mathbf{b})$
- Expectation-maximization (EM) algorithm
- Regularized (aka Bayesian) Poisson emission reconstruction

(Geman and McClure, ASA, 1985)

(Hudson and Larkin, TMI, 1994)

(Shepp and Vardi, TMI. 1982)

- Ordered-subsets EM (OSEM) algorithm
- Commercial release of OSEM for PET scanners

(Chesler, 1971)

(1972, 1974)

circa 1997

I Fessler

(Goitein, NIM, 1972)

History: Statistical reconstruction for PET II

- ► Today, most (all?) commercial PET systems include unregularized OSEM
- Some pre-clinical PET systems use regularized reconstruction

Qi and Leahy et al. 1998

I Fessler

- Some clinical PET systems more recently have used edge-preserving regularizers Ahn et al. 2015
- Relative difference prior: Nuyts et al. 2002

$$\psi(\mathbf{a}, \mathbf{b}) = \frac{(\mathbf{a} - \mathbf{b})^2}{(\mathbf{a} + \mathbf{b}) + \gamma |\mathbf{a} - \mathbf{b}|} \quad (\text{ cf TV: } |\mathbf{a} - \mathbf{b}|)$$

 15 years between key EM paper (1982) and commercial adoption (1997) (25 years if you count the R/L paper in 1972 that is the same as EM)

▶ 30 years between early MAP methods and clinical regularized methods

Key factors in PET

- OS algorithm accelerated convergence by order of magnitude
- Computers got faster (but problem size grew too)
- Key clinical validation papers?
- Key numerical observer studies?
- Nuclear medicine physicians grew accustomed to appearance

ML-EM:

of images reconstructed using statistical methods

Llacer et al., 1993

J Fessler

Whole-body PET example

J. Fessler

FBP

ML-OSEM

Meikle et al., 1994

Key factor in PET: Poisson model for measurement statistics

▶ MR-guided PET image reconstruction for PET-MR (or MR-PET) systems

- Motion-compensated image reconstruction
- Reduced dose PET image reconstruction

L Fessler

- ▶ MR-guided PET image reconstruction for PET-MR (or MR-PET) systems
- Motion-compensated image reconstruction
- Reduced dose PET image reconstruction
- Machine learning methods for PET image reconstruction
 - Post-process initial reconstructed image [19]
 - Improve sinogram then apply FBP [20]
 - Unrolled-loop iterative reconstruction [21, 22, 23]
 - Direct from sinogram to image: "learned FBP" (2D only, using CNN!) [24]

- ► MR-guided PET image reconstruction for PET-MR (or MR-PET) systems
- Motion-compensated image reconstruction
- Reduced dose PET image reconstruction
- Machine learning methods for PET image reconstruction
 - Post-process initial reconstructed image [19]
 - Improve sinogram then apply FBP [20]
 - Unrolled-loop iterative reconstruction [21, 22, 23]
 - Direct from sinogram to image: "learned FBP" (2D only, using CNN!) [24]
 - cf. (LSI!) ANN for SPECT image recon, C. Floyd, IEEE-T-MI Sep. 1991 [25]

J. Fessler

MRI reconstruction PET reconstruction

CT technology

CT reconstruction

Summary

Bibliography

J. Fessler

CT image reconstruction problem:

Determine unknown attenuation map \boldsymbol{x} given sinogram data \boldsymbol{y} using system matrix \boldsymbol{A} .

(No moving parts to animate)

MR image reconstruction problem:

Determine unknown magnetization image \boldsymbol{x} given k-space data \boldsymbol{y} using system matrix \boldsymbol{A}

From single slice to multi-slice
1999 4-slice, 2003 64-slice, ...
More recently: 256 or 320 detector rows
256 · 0.625 = 160mm axial coverage

J. Fessler

 From single slice to multi-slice 1999 4-slice, 2003 64-slice, ...
More recently: 256 or 320 detector rows 256 · 0.625 = 160mm axial coverage

From axial scan to helical scans (\approx 1989)

L Fessler

 From single slice to multi-slice 1999 4-slice, 2003 64-slice, ...
More recently: 256 or 320 detector rows 256 · 0.625 = 160mm axial coverage

- From axial scan to helical scans (\approx 1989)
- Faster rotation ($\approx 0.3 \text{ sec?}$)

L Fessler

- From single slice to multi-slice 1999 4-slice, 2003 64-slice, ...
 More recently: 256 or 320 detector rows 256 · 0.625 = 160mm axial coverage
- From axial scan to helical scans (\approx 1989)
- Faster rotation (≈ 0.3 sec?)
- Tube current modulation to reduce dose in helical scans

http://www.ajnr.org/content/27/10/2221

I Fessler

Clinical CT system / instrumentation advances: Newer

Dual X-ray source / detector systems (2005) Rotation direction -> x **Detector B Detector A**

https://www.siemens-healthineers.com/no/computed-tomography/news/mso-back-to-the-future.html

J. Fessler

Clinical CT system / instrumentation advances: Recent

- Dual energy systems (for material separation)
 - Slow kVp switching
 - Dual source/detectors systems
 - Fast kVp switching
 - Dual layer detectors

[26]

J. Fessler

CT system / instrumentation research: Source

UNIVERSITY OF MICHIGAN

J. Fessler

► X-ray fluence modulation [27]

CT system / instrumentation research: Detectors

I Fessler

photon-counting detectors

- cut electronic noise
- multi-spectral data
- possibly with new contrast agents (e.g., gold nanoparticles)

IEEE Transactions on Radiation & Plasma Medical Sciences

Special issue on Single photon counting spectral x-ray computed tomography imaging Call for papers

Guest Editors Katsuyuki Taguchi, Dimitra G. Darambara, Michael Campbell, and Rafael Ballabriga

Spectral CT example

	Conventional	Gold	lodine	Water	Overlay
т0			A.	B	
T1		XO A	a		
Т2		. 	***		
тз		S.	*		
	-130 HU 330	0.3 mg/ml 6	0.3 mg/ml 10	0 mg/ml 1500	

"color CT"

[28]

J. Fessler

reduce tube current

- X-ray tube-current modulation
- X-ray fluence modulation
- eliminate electronic noise using photon counting

- reduce tube current
- X-ray tube-current modulation
- X-ray fluence modulation
- eliminate electronic noise using photon counting

sparse view CT (cf radial undersampling in MRI)

- Easy for slow flat-panel C-arm systems
- Hard for fast rotating helical systems

J Fessler

Sparse-view CT example

J. Fessler

MRI reconstruction PET reconstruction

CT technology

CT reconstruction

Why CT iterative CT regularization CT challenges CT optimization CT recon research

Summary

Bibliography

Inverse problems

How to reconstruct object x from data y?

Non-iterative methods:

- analytical / direct
 - \circ Filtered back-projection (FBP) for CT
 - \circ Inverse FFT for MRI
- idealized description of the system
 - \circ geometry / sampling
 - \circ disregards noise and simplifies physics
- typically fast

Iterative methods:

- model-based / statistical
- based on "reasonably accurate" models for physics and statistics
- usually much slower

(textbook: Radon transform)

(textbook: FFT)

("textbook model")

J Fessler

Statistical image reconstruction: CT example

I Fessler

- A picture is worth 1000 words
- (and perhaps several 1000 seconds of computation?)

Thin-slice FBP AS Seconds A (Same sinogram, so all at same dose)

ASIR (denoise) A bit longer Statistical Much longer

Why statistical/iterative methods for CT?

- Accurate physics models
 - \circ X-ray spectrum, beam-hardening, scatter, \ldots
 - \implies reduced artifacts? quantitative CT?
 - \circ X-ray detector spatial response, focal spot size, \ldots
 - \implies improved spatial resolution?
 - detector spectral response (e.g., photon-counting detectors)
 - \implies improved contrast between distinct material types?
- Nonstandard geometries
 - \circ transaxial truncation (wide patients)
 - \circ long-object problem in helical CT
 - \circ irregular sampling in "next-generation" geometries
 - $\circ\,$ coarse angular sampling in image-guidance applications
 - \circ limited angular range (tomosynthesis)
 - \circ "missing" data, e.g., bad pixels in flat-panel systems

J Fessler

Why iterative for CT ... continued

- Appropriate models of (data dependent) measurement statistics
 - weighting reduces influence of photon-starved rays (*cf.* FBP)
 - \implies reducing image noise or X-ray dose
- Object constraints / priors
 - \circ nonnegativity
 - \circ object support
 - piecewise smoothness
 - object sparsity (*e.g.*, angiography)
 - \circ sparsity in some basis
 - \circ motion models
 - dynamic models
 - o ...

Constraints may help reduce image artifacts or noise or dose.

Similar motivations/benefits in PET and SPECT.

Henry Gray, Anatomy of the Human Body, 1918, Fig. 413.

J Fessler

J. Fessler

Computation time

- Must reconstruct entire FOV
- Complexity of models and software
- Algorithm nonlinearities
 - Difficult to analyze resolution/noise properties (cf. FBP)
 - Tuning parameters
 - \circ Challenging to characterize performance / assess IQ

Sub-mSv example

J. Fessler

3D helical X-ray CT scan of abdomen/pelvis: 100 kVp, 25-38 mA, 0.4 second rotation, 0.625 mm slice, 0.6 mSv.

Statistical
MBIR example: Chest CT

L Fessler

Helical chest CT study with dose = 0.09 mSv. Typical CXR effective dose is about 0.06 mSv.

(Health Physics Soc.: http://www.hps.org/publicinformation/ate/q2372.html)

FBP

MBIR

Veo (MBIR) images courtesy of Jiang Hsieh, GE Healthcare

History: Statistical reconstruction for X-ray CT*

- Iterative method for X-ray CT
- ART (Kaczmarz) for tomography
- ...
- Roughness regularized LS for tomography
- Poisson likelihood (transmission)
- EM algorithm for Poisson transmission
- Iterative coordinate descent (ICD)
- Ordered-subsets algorithms

(Hounsfield, 1968) (Gordon, Bender, Herman, JTB, 1970)

J Fessler

(Kashyap & Mittal, 1975) (Rockmore and Macovski, TNS, 1977) (Lange and Carson, JCAT, 1984) (Sauer and Bouman, T-SP, 1993) (Manglos et al., PMB 1995) (Kamphuis & Beekman, T-MI, 1998) (Erdoğan & Fessler, PMB, 1999)

•	
• Commercial OS for Philips BrightView SPE	CT-CT (2010)
• Commercial ICD for GE CT scanners (Veo)	(circa 2010)
 FDA 510(k) clearance of Veo 	(Sep. 2011)
 First Veo installation in USA (at UM) 	(Jan. 2012)
(*	numerous omissions, including many denoising methods)

5 decades of CT image reconstruction research

- 1. 70's "Analytical" methods (integral equations): FBP
- 2. 80's Algebraic methods (as in "linear algebra") Solve y = Ax
- 3. 90's Statistical methods
 - LS / ML methods
 - Bayesian methods (Markov random fields, ...)
 - regularized methods
- 4. 00's Compressed sensing methods (mathematical sparsity models)
- 5. 10's Adaptive / data-driven methods machine learning, deep learning, ...

J Fessler

Statistical image reconstruction for CT: Formulation

J Fessler

Optimization problem formulation:

- **y** : measured data (sinogram)
- A : system matrix (physics / geometry)
- **W** : weighting matrix (statistics)
- **x** : unknown image (attenuation map)
- β : regularization parameter(s)
- \mathcal{N}_j : neighborhood of *j*th voxel
- ψ : edge-preserving potential function

(piece-wise smoothness / gradient sparsity)

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x} \geq \boldsymbol{0}} \Psi(\boldsymbol{x}), \quad \Psi(\boldsymbol{x}) \triangleq rac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_{\boldsymbol{W}}^2 + \sum_j \sum_k eta_{j,k} \, \psi(x_j - x_k)$$

Apparent topics:

- regularization design / parameter selection ψ , β_{jk}
- statistical modeling ${oldsymbol W}, \, \|\cdot\|$
- system modeling **A**
- optimization algorithms (arg min)
- assessing IQ of \hat{x}

Other topics:

- system design
- motion
- spectral
- dose ...

Regularization in CT

"q generalized gaussian" potential function with tuning parameters: β, δ, p, q :

(Thibault et al., Med. Phys., Nov. 2007) [44]

p = q = 2noise (HU): 11.1 (#lp/cm): 4.2 $p = 2, q = 1.2, \delta = 10 \text{ HU}$ 10.9 7.2

$$p = q = 1.1$$

10.8
8.2

J. Fessler

SIR for CT: Optimization challenges

I Fessler

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x} \geq \boldsymbol{0}} \Psi(\boldsymbol{x}), \quad \Psi(\boldsymbol{x}) \triangleq \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{\boldsymbol{W}}^2 + \sum_{j=1}^{N} \sum_{k} \beta_{j,k} \, \psi(x_j - x_k)$$

Optimization challenges:

- large problem size: $\pmb{x} \in \mathbb{R}^{512 \times 512 \times 600}$, $\pmb{y} \in \mathbb{R}^{888 \times 64 \times 7000}$
- A is sparse but still too large to store; compute Ax on-the-fly
- ${m W}$ has enormous dynamic range (1 to exp(-9) pprox 1.2 \cdot 10⁻⁴)
- Gram matrix A'WA highly shift variant
- Ψ is non-quadratic but convex (and often smooth)
- nonnegativity constraint
- data size grows: dual-source CT, spectral CT, wide-cone CT, ...
- Moore's law insufficient

more cores/threads, not faster clock speeds

Optimization transfer (Majorize-Minimize) methods: 2D

$$\phi^{(n)}(oldsymbol{x}^{(n)}) = \Psi(oldsymbol{x}^{(n)}) \ \phi^{(n)}(oldsymbol{x}) \geq \Psi(oldsymbol{x})$$

cf. ML-EM

$$oldsymbol{x}^{(n+1)} = rgmin_{oldsymbol{x}} \phi^{(n)}(oldsymbol{x})$$

J. Fessler

Optimized gradient method (OGM1)

 $\underbrace{\frac{t_{n+1}}{\text{Nesterov}}}_{\text{New momentum}} \underbrace{\frac{t_{n+1}}{\text{new momentum}}}_{\text{new momentum}}$

Smaller (worst-case) convergence bound than Nesterov by $2\times$:

$$\Psi(\boldsymbol{z}^{(n)}) - \Psi(\boldsymbol{x}^{(\star)}) \leq rac{1L \| \boldsymbol{x}^{(0)} - \boldsymbol{x}^{(\star)} \|_2^2}{(n+1)^2}.$$

Recently Y. Drori [48] found a matching lower bound for any first-order method in high dimensions.

Ordered subsets approximation

Data decomposition (aka incremental gradients, cf. stochastic GD, mini-batch):

$$\Psi(\boldsymbol{x}) = \sum_{m=1}^{M} \Psi_m(\boldsymbol{x}), \quad \Psi_m(\boldsymbol{x}) \triangleq \underbrace{\frac{1}{2} \|\boldsymbol{y}_m - \boldsymbol{A}_m \boldsymbol{x}\|_{\boldsymbol{W}_m}^2}_{1/M \text{th of measurements}} + \frac{1}{M} \mathsf{R}(\boldsymbol{x})$$

Key idea. For x far from minimizer: ∇Ψ(x) ≈ M∇Ψ_m(x)
 SQS (MM):

$$oldsymbol{x}^{(n+1)} = oldsymbol{x}^{(n)} - oldsymbol{D}^{-1}
abla \Psi(oldsymbol{x}^{(n)})$$

OS-SQS:
for
$$n = 0, 1, ...$$
 (iteration)
for $m = 1, ..., M$ (subset)
 $\mathbf{x}^{k+1} = \mathbf{x}^k - \mathbf{D}^{-1} M \underbrace{\nabla \Psi_m(\mathbf{x}^k)}_{\text{less work}}, \quad k = nM + m$ (subiteration)
Applied coil-wise in parallel MRI
(Muckley, Noll, JF, ISMRM 2014) [50]

L Fessler

[13] [42]

Ordered subsets version of OGM1

For more acceleration, combine OGM1 with ordered subsets (OS).

OS-OGM1:
Initialize:
$$t_0 = 1, \ z^{(0)} = x^{(0)}$$

for $n = 0, 1, ...$ (iteration)
for $m = 1, ..., M$ (subset)
 $\mathbf{z}^{k+1} = \left[\mathbf{x}^k - \mathbf{D}^{-1} \mathbf{M} \nabla \Psi_m (\mathbf{x}^k) \right]_+$ (typical OS-SQS)
 $t_{k+1} = \frac{1}{2} \left(1 + \sqrt{1 + 4t_k^2} \right)$
 $\mathbf{x}^{k+1} = \mathbf{z}^{k+1} + \frac{t_k - 1}{t_{k+1}} \left(\mathbf{z}^{k+1} - \mathbf{z}^k \right) + \frac{t_k}{t_{k+1}} \left(\mathbf{z}^{k+1} - \mathbf{x}^k \right)$

UNIVERSITY OF

[51]

J. Fessler

OS-OGM1 properties

• Approximate convergence rate for Ψ : $O\left(\frac{1}{n^2 M^2}\right)$

(Donghwan Kim and JF; IEEE T-MI 2015 [51])

Same compute per iteration as other OS methods

(One forward / backward projection and M regularizer gradients per iteration)

- Same memory as OGM1 (two more images than OS-SQS)
- Guaranteed convergence for M = 1
- No convergence theory for M > 1

 unstable for large M
 cmall M preferable for parallelize
 - \circ small M preferable for parallelization
- Now fast enough to show X-ray CT examples...

OS-OGM1 results: data

- 3D cone-beam helical X-ray CT scan
- pitch 0.5
- image x: $512 \times 512 \times 109$ with 70 cm FOV and 0.625 mm slices
- sinogram : y 888 detectors imes 32 rows imes 7146 views

L Fessler

J. Fessler

OS-OGM1 results: convergence rate

UNIVERSITY OF

RMSD between $\mathbf{x}^{(n)}$ and $\mathbf{x}^{(\infty)}$ over ROI (in HU), versus iteration. ("Proposed" = OGM1.) (Compute times per iteration are very similar.)

OS-OGM1 results: images

At iteration n = 10 with M = 12 subsets.

MRI reconstruction PET reconstruction

CT technology

CT reconstruction

Why CT iterative CT regularization CT challenges CT optimization CT recon research

Summary

Bibliography

Statistical modeling

J Fessler

More realistic measurement model in CT with current-integrating detectors:

Important for very low-dose CT scans where logarithm is problematic Corresponding log-likelihood is complicated. Approximations:

$$Y_i - \mu + \sigma^2 \sim \mathsf{Poisson}\left\{I_i \,\mathrm{e}^{-[\mathbf{A}\mathbf{x}]_i} + \sigma^2\right\}$$

Model-dependent normal (leads to nonlinear LS):

$$Y_i \sim \mathcal{N}\left(I_i e^{-[\mathbf{A}\mathbf{x}]_i} + \mu, I_i e^{-[\mathbf{A}\mathbf{x}]_i} + \mu + \sigma^2\right)$$

Compound Poisson and other complicated models and approximations [58, 59]

[56, 57]

Advanced regularizers I

Needed for very low-dose scans and sparse-view scans

Using TV regularizer $R(\mathbf{x}) = \|\mathbf{T}\mathbf{x}\|_1$ where \mathbf{T} is finite-differences \equiv patches of size 2 × 1.

Larger patches provide more context for distinguishing signal from noise.

cf. CNN approaches

Patch-based regularizers:

- synthesis models
- analysis methods

I Fessler

Advanced regularizers II

Patch-based dictionary synthesis models

$$R(\boldsymbol{x}) = \min_{\boldsymbol{Z} \in \mathbb{R}^{K \times M}} \sum_{m=1}^{M} \frac{1}{2} \|\boldsymbol{R}_{m}\boldsymbol{x} - \boldsymbol{D}\boldsymbol{z}_{m}\|_{2}^{2} + \alpha \|\boldsymbol{z}_{m}\|_{1}$$

Patch-based analysis / transform sparsity

$$R(\boldsymbol{x}) = \sum_{m=1}^{M} \|\boldsymbol{T}\boldsymbol{R}_{m}\boldsymbol{x}\|_{1}$$

• Dictionary D or transform T can be

- learned from population training
- adapted to each patient

[60]

Advanced regularizers III

Convolutional dictionary sparsity

$$R(\mathbf{x}) = \min_{\mathbf{Z}} \frac{1}{2} \left\| \mathbf{x} - \sum_{k=1}^{K} \mathbf{h}_{k} * \mathbf{z}_{k} \right\|_{2}^{2} + \alpha \sum_{k=1}^{K} \|\mathbf{z}_{k}\|_{1}$$

Convolutional analysis sparsity (cf CNN)

$$R(\boldsymbol{x}) = \sum_{k=1}^{K} \left\| \boldsymbol{h}_{k} \ast \boldsymbol{x} \right\|_{1}$$

- Filters $\{h_k\}$ learned from population training data
- Block-matching / non-local means ...
- ▶ Joint sparsity for spectral CT: mixed ℓ_2, ℓ_1 norms, or nuclear norms [64, 65]

[61]

J Fessler

[62]

[63]

X-ray CT with learned sparsifying transforms

Data

- Population adaptive methods
- Patient adaptive methods
- Spatial structure
 - Patch-based models
 - Convolutional models
- Regularizer formulation
 - Synthesis (dictionary) approach
 - Analysis (sparsifying transform) approach

J Fessler

Patch-wise transform sparsity model

Assumption: if x is a plausible image, then each patch transform $TP_m x$ is sparse.

- **P**_m \boldsymbol{x} extracts the *m*th of *M* patches from \boldsymbol{x}
- **T** is a (often square) sparsifying transform matrix.

What **T**?

Sparsifying transform learning (population adaptive)

Given training images x_1, \ldots, x_L from a representative population, find transform T_* that best sparsifies their patches:

$$\boldsymbol{T}_{*} = \mathop{\arg\min}_{\boldsymbol{T} \text{ unitary}} \min_{\{\boldsymbol{z}_{l,m}\}} \sum_{l=1}^{L} \sum_{m=1}^{M} \|\boldsymbol{T} \boldsymbol{P}_{m} \boldsymbol{x}_{l} - \boldsymbol{z}_{l,m}\|_{2}^{2} + \alpha \|\boldsymbol{z}_{l,m}\|_{0}$$

- Encourage aggregate sparsity, not patch-wise sparsity (cf K-SVD [66])
- Non-convex due to unitary constraint and $\|\cdot\|_0$
- Efficient alternating minimization algorithm [67]
 - z update : simple hard thresholding
 - **T** update : orthogonal Procrustes problem (SVD)
 - Subsequence convergence guarantees [67]

Example of learned sparsifying transform

I Fessler

3D X-ray training data

Parts of learned sparsifier T_*

(2D slices in x-y, x-z, y-z, from 3D image volume) $8 \times 8 \times 8$ patches $\implies T_*$ is $8^3 \times 8^3 = 512 \times 512$ top 8 \times 8 slice of 256 of the 512 rows of $\textit{\textbf{T}}_{*}\uparrow_{_{53/87}}$

Regularizer based on learned sparsifying transform

Regularized inverse problem [68]:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{\boldsymbol{W}}^2 + \beta \operatorname{R}(\boldsymbol{x})$$

$$\mathsf{R}(\boldsymbol{x}) = \min_{\{\boldsymbol{z}_m\}} \sum_{m=1}^M \|\boldsymbol{T}_* \mathbf{P}_m \boldsymbol{x} - \boldsymbol{z}_m\|_2^2 + \alpha \|\boldsymbol{z}_m\|_0.$$

 $\boldsymbol{\mathcal{T}}_*$ adapted to population training data

Alternating minimization optimizer:

- ► **z**_m update : simple hard thresholding
- x update : quadratic problem (many options) Linearized augmented Lagrangian method (LALM) [69]

J Fessler

Example: low-dose 3D X-ray CT simulation

X. Zheng, S. Ravishankar,

- Y. Long, JF:
- IEEE T-MI, June 2018 [68].

3D X-ray CT simulation Error maps

1×10^{4}	67.8	34.6	32.1	30.7	29.2
$5 imes 10^3$	89.0	41.1	37.3	35.7	34.2

- Physics / statistics provides dramatic improvement
- Data adaptive regularization further reduces RMSE

J. Fessler

Given training images x_1, \ldots, x_L from a representative population, find a set of transforms $\left\{ \hat{T}_k \right\}_{k=1}^{K}$ that best sparsify image patches:

$$\left\{\hat{\boldsymbol{T}}_{k}\right\} = \underset{\{\boldsymbol{T}_{k} \text{ unitary}\}}{\arg\min} \min_{\{\boldsymbol{z}_{l,m}\}} \sum_{l=1}^{L} \sum_{m=1}^{M} \left(\min_{k \in \{1,\dots,K\}} \|\boldsymbol{T}_{k}\boldsymbol{\mathsf{P}}_{m}\boldsymbol{x}_{l} - \boldsymbol{z}_{l,m}\|_{2}^{2} + \alpha \|\boldsymbol{z}_{l,m}\|_{0} \right)$$

- Joint unsupervised clustering / sparsification
- Further nonconvexity due to clustering
- Efficient alternating minimization algorithm [70]

Example: 3D X-ray CT learned set of transforms

Example: 3D X-ray CT ULTRA for chest scan

Zheng et al., IEEE T-MI, June 2018 [68] (Special issue on machine learning for image reconstruction) Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/ https://github.com/xuehangzheng/PWLS-ULTRA-for-Low-Dose-3D-CT-Image-Reconstruction

Deep-learning approaches to CT image reconstruction

Overview:

- image-domain learning
 - arXiv papers starting in 2016 [71, 72]
 - Journal papers starting in 2017 [73, 74, 75]
 - Explosion of methods, e.g., GANs [76, 77], Wasserstein loss [78]
 - beyond denoising: metal artifact reduction [79], dual energy, spectral CT...
- sinogram or data-domain learning denoising, "in-painting" for metal-artifact reduction [80]
- transform learning (direct from sinogram to image) ? in 2012 for 32 × 32 images [81] extremely difficult for 3D helical CT direct from sinogram to stenosis size [82, 83]
- hybrid-domain learning (unrolled loop, *e.g.*, variational network) alternate between denoising/destreaking and reconstruction from sinogram *e.g.*, [84, 85, 86, 87, 88, 89]

I Fessler

Image-domain learning I

Image-domain learning II

J. Fessler

[75]

Image-domain learning III

[75]

J. Fessler

Convolutional sparsity revisted

Cost function for convolutional sparsity regularization:

$$\arg\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{\boldsymbol{W}}^{2} + \beta \left(\min_{\boldsymbol{z}} \sum_{k=1}^{K} \frac{1}{2} \|\boldsymbol{h}_{k} \ast \boldsymbol{x} - \boldsymbol{z}_{k}\|_{2}^{2} + \alpha \|\boldsymbol{z}_{k}\|_{1}\right)$$

Alternating minimization updates:

Sparse code:
$$\mathbf{z}_{k}^{(n+1)} = \operatorname{soft}\{\mathbf{h}_{k} * \mathbf{x}^{(n)}, \alpha\}$$

Image: $\mathbf{x}^{(n+1)} = \underset{\mathbf{x}}{\operatorname{arg\,min}} F(\mathbf{x}; \mathbf{y}, \mathbf{z}^{(n)})$
 $F(\mathbf{x}; \mathbf{y}, \mathbf{z}^{(n)}) \triangleq \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{W}^{2} + \beta \left(\sum_{k=1}^{K} \frac{1}{2} \|\mathbf{h}_{k} * \mathbf{x} - \mathbf{z}_{k}^{(n+1)}\|_{2}^{2} + \alpha \|\mathbf{z}_{k}^{(n+1)}\|_{1}\right)$
 $= \frac{1}{2} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{W}^{2} + \beta \frac{1}{2} \|\mathbf{x} - \mathbf{z}^{(n)}\|_{2}^{2}$ (quadratic but *large* \Longrightarrow majorize)
 $\mathbf{z}^{(n)} = \mathcal{R}(\mathbf{z}^{(n)}) = \sum_{k=1}^{K} \operatorname{flip}(\mathbf{h}_{k}) * \operatorname{soft}\{\mathbf{h}_{k} * \mathbf{x}^{(n)}\}$ (denoise \Longrightarrow learn)

Unrolled loop network with momentum and quadratic majorizer:

- ► Diagonal majorizer: $M = \text{diag}\{A' WA1\} + \beta I \succeq A' WA + \beta I$
- Learn image mapper ("refiner") R from training data (supervised). cf CNN: filter → threshold → filter

J Fessler

- $\blacktriangleright \text{ Image mapper } \mathcal{R} \text{ is shallow}$
 - \implies less risk of over-fitting / hallucination
- Momentum accelerates convergence (fewer layers)
- First unrolled loop approach to have convergence theory (under suitable assumptions on *R*)
- Image update uses original CT sinogram y and imaging physics A

[90]

II Yong Chun, Zhengyu Huang, Hongki Lim, J A Fessler Momentum-Net: Fast and convergent iterative neural network for inverse problems

http://arxiv.org/abs/1907.11818

Momentum-Net preliminary results

Illustration of benefits of momentum:

J. Fessler

Momentum-Net preliminary image results

J. Fessler

Sparse-view CT with 123/984 views, $I_0 = 10^5$, 800-1200 mod. HU display.

DL for CT now FDA approved

UNIVERSITY OF

I Fessler

- ▶ In 2019, both Canon and GE got FDA approval for DL methods for CT [91, 92]
- Canon: "AiCE Deep Learning Reconstruction" Canon press release: "Advanced Intelligent Clear-IQ Engine (AiCE) uses a deep learning algorithm to differentiate signal from noise so that it can suppress noise while enhancing signal."
- GE "Deep-learning image reconstruction" Possibly related papers [93, 94]
 - Plug-and-play ADMM (unrolled loop) [95, 96]
 - Denoiser is 17-layer residual learning CNN, trained to map 2D noisy FBP patches to clean MBIR with squared error loss
 - Report faster "convergence" than standard MBIR
 - Sliding window of 3 slices in and 1 slice out

Glimmering neural networks

J. Fessler

https://www.gehealthcare.com/products/truefidelity

DL for CT Example

J. Fessler

180 kg patient

https://www.gehealthcare.com/products/truefidelity 7

Iterative methods for CT image reconstruction:

- have had important impact on clinical CT
- remain an active research topic
- > are more painful to study realistically (than MRI) due to proprietary sinogram data
- use similar regularization methods as MRI in research
- use simpler regularization methods than MRI clinically

The future?

Iterative methods for CT image reconstruction:

- have had important impact on clinical CT
- remain an active research topic
- ▶ are more painful to study realistically (than MRI) due to proprietary sinogram data
- use similar regularization methods as MRI in research
- use simpler regularization methods than MRI clinically

The future?

Apparently iterative recon for CT perished in 2018?

Iterative methods for CT image reconstruction:

- have had important impact on clinical CT
- remain an active research topic
- ▶ are more painful to study realistically (than MRI) due to proprietary sinogram data
- use similar regularization methods as MRI in research
- use simpler regularization methods than MRI clinically

The future?

- Apparently iterative recon for CT perished in 2018?
- Apparently CT beat MRI to FDA-approved DL recon methods?

Resources

Slides: http://web.eecs.umich.edu/~fessler/papers/files/talk/20/sedona.pdf Code: Julia version of MIRT https://github.com/JeffFessler/MIRT.jl

Bibliography I

I Fessler

- M. Lustig, D. Donoho, and J. M. Pauly. Sparse MRI: The application of compressed sensing for rapid MR imaging. *Mag. Res. Med.*, 58(6):1182–95, December 2007.
- [2] FDA.

510k premarket notification of HyperSense (GE Medical Systems), 2017.

[3] FDA.

510k premarket notification of Compressed Sensing Cardiac Cine (Siemens), 2017.

[4] FDA.

510k premarket notification of Compressed SENSE, 2018.

- [5] D. E. Kuhl and R. Q. Edwards. Image separation radioisotope scanning. *Radiology*, 80(4):653–62, April 1963.
- [6] D. A. Chesler. Three-dimensional activity distribution from multiple positron scintgraphs. J. Nuc. Med., 12(6):347–8, June 1971.
- [7] M. Goitein.

Three-dimensional density reconstruction from a series of two-dimensional projections. *Nucl. Instr. Meth.*, 101(3):509–18, June 1972.

[8] W. H. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 62(1):55–9, January 1972.

Bibliography II

J Fessler

[9] L. Lucy.

An iterative technique for the rectification of observed distributions. *The Astronomical Journal*, 79(6):745–54, June 1974.

[10] A. J. Rockmore and A. Macovski. A maximum likelihood approach to emission image reconstruction from projections. *IEEE Trans. Nuc. Sci.*, 23(4):1428–32, August 1976.

- [11] L. A. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission tomography. *IEEE Trans. Med. Imag.*, 1(2):113–22, October 1982.
- [12] S. Geman and D. E. McClure. Bayesian image analysis: an application to single photon emission tomography. In Proc. of Stat. Comp. Sect. of Amer. Stat. Assoc., pages 12–8, 1985.
- [13] H. M. Hudson and R. S. Larkin. Accelerated image reconstruction using ordered subsets of projection data. *IEEE Trans. Med. Imag.*, 13(4):601–9, December 1994.
- [14] J. Qi, R. M. Leahy, S. R. Cherry, A. Chatziioannou, and T. H. Farquhar. High resolution 3D Bayesian image reconstruction using the microPET small-animal scanner. *Phys. Med. Biol.*, 43(4):1001–14, April 1998.
- [15] S. Ahn, S. G. Ross, E. Asma, J. Miao, X. Jin, L. Cheng, S. D. Wollenweber, and R. M. Manjeshwar. Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET. *Phys. Med. Biol.*, 60(15):5733–52, August 2015.

Bibliography III

[16] J. Nuyts, D. Beque, P. Dupont, and L. Mortelmans.

A concave prior penalizing relative differences for maximum-a-posteriori reconstruction in emission tomography. *IEEE Trans. Nuc. Sci.*, 49(1-1):56–60, February 2002.

[17] J. Llacer, E. Veklerov, L. R. Baxter, S. T. Grafton, L. K. Griffeth, R. A. Hawkins, C. K. Hoh, J. C. Mazziotta, E. J. Hoffman, and C. E. Metz. Results of a clinical receiver operating characteristic study comparing filtered backprojection and maximum likelihood estimator images in FDG PET studies.

J. Nuc. Med., 34(7):1198-203, July 1993.

- [18] S. R. Meikle, B. F. Hutton, D. L. Bailey, P. K. Hooper, and M. J. Fulham. Accelerated EM reconstruction in total-body PET: potential for improving tumour detectability. *Phys. Med. Biol.*, 39(10):1689–794, October 1994.
- [19] B. Yang, L. Ying, and J. Tang. Artificial neural network enhanced Bayesian PET image reconstruction. *IEEE Trans. Med. Imag.*, 37(6):1297–309, June 2018.
- [20] X. Hong, Y. Zan, F. Weng, W. Tao, Q. Peng, and Q. Huang. Enhancing the image quality via transferred deep residual learning of coarse PET sinograms. *IEEE Trans. Med. Imag.*, 2018.
- [21] K. Kim, D. Wu, K. Gong, J. Dutta, J. H. Kim, Y. D. Son, H. K. Kim, G. E. Fakhri, and Q. Li. Penalized PET reconstruction using deep learning prior and local linear fitting. *IEEE Trans. Med. Imag.*, 37(6):1478–87, June 2018.
- [22] K. Gong, J. Guan, K. Kim, X. Zhang, J. Yang, Y. Seo, G. E. Fakhri, J. Qi, and Q. Li. Iterative PET image reconstruction using convolutional neural network representation. *IEEE Trans. Med. Imag.*, 38(3):675–85, March 2019.

Bibliography IV

- [23] H. Lim, I. Y. Chun, Y. K. Dewaraja, and J. A. Fessler. Improved low-count quantitative PET reconstruction with a variational neural network, 2019.
- [24] I. Haggstrom, C. R. Schmidtlein, G. Campanella, and T. J. Fuchs. DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem. *Med. Im. Anal.*, 54:253–62, May 2019.
- [25] C. E. Floyd. An artificial neural network for SPECT image reconstruction. IEEE Trans. Med. Imag., 10(3):485–7, September 1991.
- [26] S. Lam, R. Gupta, H. Kelly, H. D. Curtin, and R. Forghani. Multiparametric evaluation of head and neck squamous cell carcinoma using a single-source dual-energy CT with fast kVp switching: state of the art. *Cancers.* 7(4):2201–16, 2015.

Cancers, 7(4):2201–10, 2015.

- [27] A. J. Mathews, G. Gang, R. Levinson, W. Zbijewski, S. Kawamoto, J. H. Siewerdsen, and J. W. Stayman. Experimental evaluation of dual multiple aperture devices for fluence field modulated x-ray computed tomography. In Proc. SPIE 10132 Medical Imaging: Phys. Med. Im., page 1013220, 2017.
- [28] D. P. Cormode, S. Si-Mohamed, D. Bar-Ness, M. Sigovan, P. C. Naha, J. Balegamire, F. Lavenne, P. Coulon, E. Roessi, M. Bartels, M. Rokni, I. Blevis, L. Boussel, and P. Douek. Multicolor spectral photon-counting computed tomography: in vivo dual contrast imaging with a high count rate scanner. *Nature*, 7:4784, 2017.
- [29] M. J. Muckley, B. Chen, T. Vahle, T. O'Donnell, F. Knoll, A. Sodickson, D. Sodickson, and R. Otazo. Image reconstruction for interrupted-beam X-ray CT on diagnostic clinical scanners. *Phys. Med. Biol.*, 64(15):155007, 2019.

Bibliography V

[30] G. Hounsfield.

A method of apparatus for examination of a body by radiation such as x-ray or gamma radiation, 1972. US Patent 1283915. British patent 1283915, London.

[31] S. Kaczmarz.

Angenaherte auflosung von systemen linearer gleichungen. Bull. Acad. Polon. Sci. Lett. A, 35:355–7, 1937. Approximate solution to systems of linear equations.

- [32] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques (ART) for the three-dimensional electron microscopy and X-ray photography. J. Theor. Biol., 29(3):471–81, December 1970.
- [33] R. Gordon and G. T. Herman. Reconstruction of pictures from their projections. Comm. ACM, 14(12):759–68, December 1971.

[34] G. T. Herman, A. Lent, and S. W. Rowland.

ART: mathematics and applications (a report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques).

J. Theor. Biol., 42(1):1–32, November 1973.

[35] R. Gordon.

A tutorial on ART (algebraic reconstruction techniques). *IEEE Trans. Nuc. Sci.*, 21(3):78–93, June 1974.

[36] R. L. Kashyap and M. C. Mittal. Picture reconstruction from projections. *IEEE Trans. Comp.*, 24(9):915–23, September 1975.

Bibliography VI

J Fessler

[37] A. J. Rockmore and A. Macovski. A maximum likelihood approach to transmission image reconstruction from projections. *IEEE Trans. Nuc. Sci.*, 24(3):1929–35, June 1977.

- [38] K. Lange and R. Carson. EM reconstruction algorithms for emission and transmission tomography. J. Comp. Assisted Tomo., 8(2):306–16, April 1984.
- [39] K. Sauer and C. Bouman. A local update strategy for iterative reconstruction from projections. *IEEE Trans. Sig. Proc.*, 41(2):534–48, February 1993.
- [40] S. H. Manglos, G. M. Gagne, A. Krol, F. D. Thomas, and R. Narayanaswamy. Transmission maximum-likelihood reconstruction with ordered subsets for cone beam CT. *Phys. Med. Biol.*, 40(7):1225–41, July 1995.
- [41] C. Kamphuis and F. J. Beekman. Accelerated iterative transmission CT reconstruction using an ordered subsets convex algorithm. *IEEE Trans. Med. Imag.*, 17(6):1001–5, December 1998.
- [42] H. Erdogan and J. A. Fessler. Ordered subsets algorithms for transmission tomography. *Phys. Med. Biol.*, 44(11):2835–51, November 1999.
- [43] E. Hansis, J. Bredno, D. Sowards-Emmerd, and L. Shao. Iterative reconstruction for circular cone-beam CT with an offset flat-panel detector. In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., pages 2228–31, 2010.

Bibliography VII

J Fessler

[44] J-B. Thibault, K. Sauer, C. Bouman, and J. Hsieh. A three-dimensional statistical approach to improved image quality for multi-slice helical CT. *Med. Phys.*, 34(11):4526-44, November 2007.

[45] D. Kim and J. A. Fessler. Optimized first-order methods for smooth convex minimization. Mathematical Programming, 159(1):81–107, September 2016.

[46] D. Kim and J. A. Fessler. Optimized first-order methods for smooth convex minimization, 2014.

[47] D. Kim and J. A. Fessler. An optimized first-order method for image restoration. In Proc. IEEE Intl. Conf. on Image Processing, pages 3675–9, 2015.

- [48] Y. Drori. The exact information-based complexity of smooth convex minimization. J. Complexity, 39:1–16. April 2017.
- [49] A. B. Taylor, J. M. Hendrickx, and Francois Glineur.

Smooth strongly convex interpolation and exact worst-case performance of first- order methods. *Mathematical Programming*, 161(1):307–45, January 2017.

[50] M. Muckley, D. C. Noll, and J. A. Fessler.

Accelerating SENSE-type MR image reconstruction algorithms with incremental gradients. In *Proc. Intl. Soc. Mag. Res. Med.*, page 4400, 2014.

Bibliography VIII

I Fessler

[51] D. Kim, S. Ramani, and J. A. Fessler. Combining ordered subsets and momentum for accelerated X-ray CT image reconstruction. *IEEE Trans. Med. Imag.*, 34(1):167–78, January 2015.

[52] D. Kim and J. A. Fessler. Optimized momentum steps for accelerating X-ray CT ordered subsets image reconstruction. In Proc. 3rd Intl. Mtg. on Image Formation in X-ray CT, pages 103-6, 2014.

 M. Yavuz and J. A. Fessler. New statistical models for randoms-precorrected PET scans. In J Duncan and G Gindi, editors, Information Processing in Medical Im., volume 1230 of Lecture Notes in Computer Science, pages 190–203. Springer-Verlag, Berlin, 1997.

- [54] S. Ye, S. Ravishankar, Y. Long, and J. A. Fessler. Adaptive sparse modeling and shifted-Poisson likelihood based approach for low-dose CT image reconstruction. In Proc. IEEE Wkshp. Machine Learning for Signal Proc., pages 1-6, 2017.
- [55] S. Ye, S. Ravishankar, Y. Long, and J. A. Fessler. SPULTRA: low-dose CT image reconstruction with joint statistical and learned image models. *IEEE Trans. Med. Imag.*, 2019. To appear.
- [56] Q. Ding, Y. Long, X. Zhang, and J. A. Fessler. Modeling mixed Poisson-Gaussian noise in statistical image reconstruction for X-ray CT. In Proc. 4th Intl. Mtg. on Image Formation in X-ray CT, pages 399–402, 2016.

Bibliography IX

UNIVERSITY OF MICHIGAN

J Fessler

- [57] Q. Ding, Y. Long, X. Zhang, and J. A. Fessler. Statistical image reconstruction using mixed Poisson-Gaussian noise model for X-ray CT. *Inverse Prob. and Imaging*, 2019. Submitted.
- B. R. Whiting.
 Signal statistics in x-ray computed tomography.
 In Proc. SPIE 4682 Medical Imaging: Med. Phys., pages 53–60, 2002.
- [59] J. Xu and B. M. W. Tsui. Electronic noise modeling in statistical iterative reconstruction. *IEEE Trans. Im. Proc.*, 18(6):1228–38, June 2009.
- [60] S. Ravishankar, J. C. Ye, and J. A. Fessler. Image reconstruction: from sparsity to data-adaptive methods and machine learning. *Proc. IEEE*, 108(1):86–109, January 2020.
- [61] I. Y. Chun and J. A. Fessler. Convolutional dictionary learning: acceleration and convergence. IEEE Trans. Im. Proc., 27(4):1697–712, April 2018.
- [62] I. Y. Chun and J. A. Fessler. Convolutional analysis operator learning: acceleration and convergence. *IEEE Trans. Im. Proc.*, 29(1):2108–22, January 2020.
- [63] C. Ailong, L. Lei, Z. Zhizhong, W. Linyuan, and Y. Bin. Block-matching sparsity regularization-based image reconstruction for low-dose computed tomography. *Med. Phys.*, 45(6):2439–52, June 2018.

Bibliography X

J Fessler

- [64] B. Zhao, H. Ding, Y. Lu, G. Wang, J. Zhao, and S. Molloi. Dual-dictionary learning-based iterative image reconstruction for spectral computed tomography application. *Phys. Med. Biol.*, 57(24):8217–30, December 2012.
- [65] Y. Zhang, X. Mou, G. Wang, and H. Yu. Tensor-based dictionary learning for spectral CT reconstruction. *IEEE Trans. Med. Imag.*, 36(1):142–54, January 2017.
- [66] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation. *IEEE Trans. Sig. Proc.*, 54(11):4311–22, November 2006.
- [67] S. Ravishankar and Y. Bresler. Io sparsifying transform learning with efficient optimal updates and convergence guarantees. IEEE Trans. Sig. Proc., 63(9):2389–404, May 2015.
- [68] X. Zheng, S. Ravishankar, Y. Long, and J. A. Fessler. PWLS-ULTRA: An efficient clustering and learning-based approach for low-dose 3D CT image reconstruction. *IEEE Trans. Med. Imag.*, 37(6):1498–510, June 2018.
- [69] H. Nien and J. A. Fessler. Relaxed linearized algorithms for faster X-ray CT image reconstruction. *IEEE Trans. Med. Imag.*, 35(4):1090–8, April 2016.
- [70] S. Ravishankar and Y. Bresler. Data-driven learning of a union of sparsifying transforms model for blind compressed sensing. *IEEE Trans. Computational Imaging*, 2(3):294-309, September 2016.

Bibliography XI

- [71] H. Chen, Y. Zhang, W. Zhang, P. Liao, K. Li, J. Zhou, and G. Wang. Low-dose CT denoising with convolutional neural network, 2016.
- [72] Y. S. Han, J. Yoo, and J. C. Ye. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis, 2016.
- [73] H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang. Low-dose CT with a residual encoder-decoder convolutional neural network (RED-CNN). *IEEE Trans. Med. Imag.*, 36(12):2524–35, December 2017.
- [74] E. Kang, J. Min, and J. C. Ye. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. *Med. Phys.*, 44(10):e360-75, October 2017.
- [75] K. H. Jin, M. T. McCann, E. Froustey, and M. Unser. Deep convolutional neural network for inverse problems in imaging. *IEEE Trans. Im. Proc.*, 26(9):4509–22, September 2017.
- [76] J. M. Wolterink, T. Leiner, M. A. Viergever, and I. Isgum. Generative adversarial networks for noise reduction in low-dose CT. *IEEE Trans. Med. Imag.*, 36(12):2536–45, December 2017.
- [77] E. Kang, H. J. Koo, D. H. Yang, J. B. Seo, and J. C. Ye. Cycle-consistent adversarial denoising network for multiphase coronary CT angiography. *Med. Phys.*, 46(2):550–62, February 2019.
- [78] Q. Yang, P. Yan, Y. Zhang, H. Yu, Y. Shi, X. Mou, M. K. Kalra, Y. Zhang, L. Sun, and G. Wang. Low dose CT image denoising using a generative adversarial network with Wasserstein distance and perceptual loss. *IEEE Trans. Med. Imag.*, 37(6):1348–57, June 2018.

Bibliography XII

J Fessler

- [79] Y. Zhang and H. Yu. Convolutional neural network based metal artifact reduction in X-ray computed tomography. *IEEE Trans. Med. Imag.*, 37(6):1370–81, June 2018.
- [80] M. U. Ghani and W. C. Karl. Fast accurate CT metal artifact reduction using data domain deep learning, 2019.
- [81] M. Argyrou, D. Maintas, C. Tsoumpas, and E. Stiliaris. Tomographic image reconstruction based on artificial neural network (ANN) techniques. In Proc. IEEE Nuc. Sci. Symp. Med. Im. Conf., pages 3324–7, 2012.
- [82] E. Haneda, B. Claus, P. FitzGerald, G. Wang, and B. De Man. CT sinogram analysis using deep learning. In Proc. 5th Intl. Mtg. on Image Formation in X-ray CT, pages 419–22, 2018.
- [83] Q. De Man, E. Haneda, B. Claus, P. Fitzgerald, B. De Man, G. Qian, H. Shan, J. Min, M. Sabuncu, and G. Wang. A two-dimensional feasibility study of deep learning-based feature detection and characterization directly from CT sinograms. *Med. Phys.*, 46(12):e790-800, December 2019.
- [84] D. Wu, K. Kim, G. E. Fakhri, and Q. Li. Iterative low-dose CT reconstruction with priors trained by artificial neural network. *IEEE Trans. Med. Imag.*, 36(12):2479–86, December 2017.
- [85] J. Adler and O. Oktem. Learned primal-dual reconstruction. IEEE Trans. Med. Imag., 37(6):1322–32, June 2018.

Bibliography XIII

- [86] H. Chen, Y. Zhang, Y. Chen, J. Zhang, W. Zhang, H. Sun, Y. Lv, P. Liao, J. Zhou, and G. Wang. LEARN: Learned experts: assessment-based reconstruction network for sparse-data CT. *IEEE Trans. Med. Imag.*, 37(6):1333–47, June 2018.
- [87] H. Gupta, K. H. Jin, H. Q. Nguyen, M. T. McCann, and M. Unser. CNN-based projected gradient descent for consistent image reconstruction. *IEEE Trans. Med. Imag.*, 37(6):1440–53, June 2018.
- [88] C. Shen, Y. Gonzalez, L. Chen, S. B. Jiang, and X. Jia. Intelligent parameter tuning in optimization-based iterative CT reconstruction via deep reinforcement learning. *IEEE Trans. Med. Imag.*, 37(6):1430–9, June 2018.
- [89] H. Shan, A. Padole, F. Homayounieh, U. Kruger, R. D. Khera, C. Nitiwarangkul, M. K. Kalra, and G. Wang. Competitive performance of a modularized deep neural network compared to commercial algorithms for low-dose CT image reconstruction. *Nature Mach. Intel.*, 1(6):269-76, 2019.
- [90] I. Y. Chun, Z. Huang, H. Lim, and J. A. Fessler. Momentum-Net: Fast and convergent iterative neural network for inverse problems, 2019.
- [91] FDA.

510k premarket notification of AiCE Deep Learning Reconstruction (Canon), 2019.

[92] FDA.

510k premarket notification of Deep Learning Image Reconstruction (GE Medical Systems), 2019.

[93] D. H. Ye, S. Srivastava, J. Thibault, K. Sauer, and C. Bouman. Deep residual learning for model-based iterative CT reconstruction using plug-and-play framework. In Proc. IEEE Conf. Acoust. Speech Sig. Proc., pages 6668–72, 2018.

L Fessler

- [94] A. Ziabari, D. H. Ye, S. Srivastava, K. D. Sauer, J. Thibault, and C. A. Bouman. 2.5D deep learning for CT image reconstruction using A multi-GPU implementation. In asccs, pages 2044–9, 2018.
- [95] S. V. Venkatakrishnan, C. A. Bouman, and B. Wohlberg. Plug-and-play priors for model based reconstruction. In *IEEE GlobalSIP*, pages 945–8, 2013.
- [96] S. Sreehari, S. V. Venkatakrishnan, B. Wohlberg, G. T. Buzzard, L. F. Drummy, J. P. Simmons, and C. A. Bouman. Plug-and-play priors for bright field electron tomography and sparse interpolation. *IEEE Trans. Computational Imaging*, 2(4):408–23, December 2016.