Image reconstruction using adaptive signal models

Jeffrey A. Fessler

EECS Department, BME Department, Dept. of Radiology University of Michigan

http://web.eecs.umich.edu/~fessler

FDA 2019-07-30

Acknowledgments: Doug NoII, Sai Ravishankar, Raj Nadakuditi, Jon Nielsen, Gopal Nataraj, II Yong Chun, Xuehang Zheng, ...

Declaration: No relevant financial interests or relationships to disclose

Outline

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers Convolutional adaptive regularizers Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

J. Fessler

Outline

Introduction

ML-based image reconstruction approaches

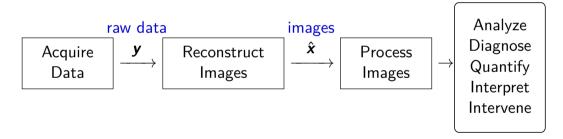
Adaptive regularization

Other ML4MI topics

Summary

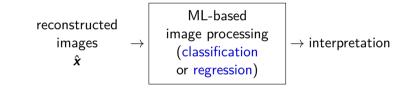
Bibliography

Overview of medical imaging:



Machine learning in medical image interpretation

Most obvious place for machine learning is post-processing:



. . .

Machine learning in medical image interpretation

Most obvious place for machine learning is post-processing:

(Many conference sessions; special issue of IEEE Trans. on Med. Imaging in May 2016 [1], ...)

Machine learning in medical image reconstruction

Another (initially less obvious?) place for machine learning (multiple conference sessions):

. . .

Machine learning in medical image reconstruction

Another (initially less obvious?) place for machine learning (multiple conference sessions):

Possibly easier (than diagnosis) due to lower bar:

- current reconstruction methods based on simplistic image models;
- human eyes are better at detection than at solving inverse problems.

Machine learning in medical image reconstruction

Another (initially less obvious?) place for machine learning (multiple conference sessions):

Possibly easier (than diagnosis) due to lower bar:

- current reconstruction methods based on simplistic image models;
- human eyes are better at detection than at solving inverse problems.

June 2018 special issue of IEEE Trans. on Medical Imaging [2]:

Image Reconstruction Is a New Frontier of Machine Learning

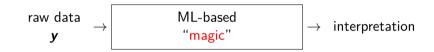
Ge Wang[©], Fellow, IEEE, Jong Chu Ye[©], Senior Member, IEEE, Klaus Mueller[©], Senior Member, IEEE, and Jeffrey A. Fessler[©], Fellow, IEEE

A more speculative opportunity for machine learning:

. . .

Machine learning in medical imaging: a holy grail?

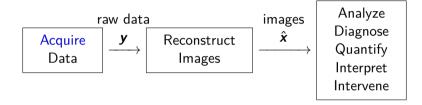
A more speculative opportunity for machine learning:



- ► CT sinogram to vessel diameter [3]
- ▶ k-space to ???

See Wiro Niessen's keynote...

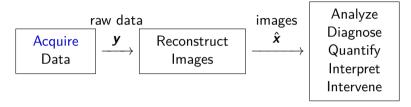
One more opportunity for ML in medical imaging:



. . .

Machine learning in medical imaging: scan design

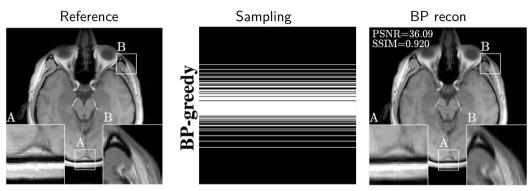
One more opportunity for ML in medical imaging:



Choose best k-space phase encoding locations based on training images:

- "Learning-based compressive MRI" [4, 5]
 (Volkan Cevher group, June 2018 IEEE T-MI)
 Single coil only so far; perhaps hard to generalize to parallel MRI?
- Yue Cao and David Levin, MRM Sep. 1993 "Feature recognizing MRI" [6–8]

Adaptive phase-encode selection



Sampling designed to optimize PSNR for basis pursuit (BP) reconstruction using shearlet transform, at 25% sampling rate.

Sampling design considers both the training data and the reconstruction method.

No high spatial frequencies!?

(Images from Gözcü et al. [5].)

Outline

Introduction

ML-based image reconstruction approaches

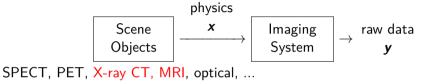
Adaptive regularization

Other ML4MI topics

Summary

Bibliography

Forward problem (data acquisition):



► Inverse problem (image formation):

► Image reconstruction topics: physics models, measurement statistical models, regularization / object priors, optimization...

Generations of medical image reconstruction methods

- 1. 70's "Analytical" methods (integral equations) FBP for SPECT / PET / X-ray CT, IFFT for MRI, ...
- 2. 80's Algebraic methods (as in "linear algebra") Solve y = Ax
- 3. 90's Statistical methods
 - LS / ML methods
 - Bayesian methods (Markov random fields, ...)
 - regularized methods
- 4. 00's Compressed sensing methods (mathematical sparsity models)
- 5. 10's Adaptive / data-driven methods machine learning, deep learning, ...

Accelerating MR imaging using adaptive regularization

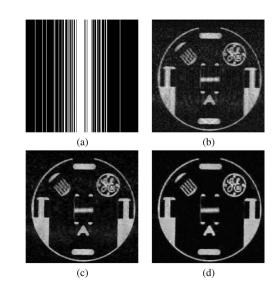
- (a) $4 \times$ under-sampled MR k-space
- (b) zero-filled reconstruction
- (c) "compressed sensing" reconstruction with TV regularization
- (d) adaptive regularization using dictionary learning

Ravishankar & Bresler, DLMRI, T-MI, May 2011,

[9, Fig. 10]

DL = dictionary learning

(not "deep learning")



Ill-posed inverse problems

$$\mathbf{v} = \mathbf{A}\mathbf{x} + \boldsymbol{\varepsilon}$$

v: measurements x : unknown image ε : noise

A: system matrix (typically wide)

compressed sensing (e.g., MRI)

 k_{v}

 k_{x}

- deblurring (restoration)
- in-painting
- denoising (not ill posed)

(A Toeplitz)

(A subset of rows of I)

(A "random" rows of DFT)

(A = I)

$$\begin{array}{c} \text{Unknown} \\ \text{image} \\ \pmb{x} \end{array} \rightarrow \begin{array}{c} \text{System model} \\ p(\pmb{y} \,|\, \pmb{x}) \end{array} \rightarrow \begin{array}{c} \text{Data} \\ \pmb{y} \end{array} \rightarrow \begin{array}{c} \text{Estimator} \\ \hat{\pmb{x}} \end{array} \rightarrow \begin{array}{c} \text{Recon.} \\ \text{image} \\ \hat{\pmb{x}} \end{array}$$

If we have a prior p(x), then the MAP estimate is:

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,max}} \operatorname{p}(\boldsymbol{x} \mid \boldsymbol{y}) = \underset{\boldsymbol{x}}{\operatorname{arg\,max}} \operatorname{log} \operatorname{p}(\boldsymbol{y} \mid \boldsymbol{x}) + \operatorname{log} \operatorname{p}(\boldsymbol{x}).$$

For gaussian measurement errors and a linear forward model:

$$-\log \mathsf{p}(oldsymbol{y} \,|\, oldsymbol{x}) \equiv rac{1}{2} \left\| oldsymbol{y} - oldsymbol{A} oldsymbol{x}
ight\|_{oldsymbol{W}}^2$$

where
$$\|\mathbf{y}\|_{\mathbf{W}}^2 = \mathbf{y}' \mathbf{W} \mathbf{y}$$

and $W^{-1} = \text{Cov}\{y \mid x\}$ is known (**A** from physics, **W** from statistics)

▶ If all images **x** are "plausible" (have non-zero probability) then

$$p(x) \propto e^{-R(x)} \Longrightarrow -\log p(x) \equiv R(x)$$

(from fantasy / imagination / wishful thinking / data)

► MAP ≡ regularized weighted least-squares (WLS) estimation:

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg max}} \log p(\mathbf{y} \mid \mathbf{x}) + \log p(\mathbf{x})$$

$$= \underset{\mathbf{x}}{\operatorname{arg min}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{W}}^{2} + \mathbf{R}(\mathbf{x})$$

- A regularizer R(x), aka log prior, is essential for high-quality solutions to ill-conditioned / ill-posed inverse problems.
- ▶ Why ill-posed? Often high ambitions...

Non-adaptive regularizers

- Tikhonov regularization (IID gaussian prior)
- ► Markov random field (MRF) models
- Roughness penalty (cf MRF prior)
- Edge-preserving regularization
- ► Total-variation (TV) regularization
- ▶ Black-box denoiser like NLM, *e.g.*, plug-and-play ADMM [10]
- Sparsity in ambient space
- Sparsifying transforms: wavelets, curvelets, . . .
- Graphical models
- ...

All "hand crafted" from statistical / mathematical models ...

Simpler methods for ML in image reconstruction

Many possible ways to use ML ideas in image reconstruction.

Basic "fast" methods:

- ► Enhance raw data (k-space, sinogram, . . .)
- Enhance poorly reconstructed image
 - patch-based
 - image-based

Computation / quality trade-offs ?

٠..

Simpler methods for ML in image reconstruction

Many possible ways to use ML ideas in image reconstruction.

Basic "fast" methods:

- ► Enhance raw data (k-space, sinogram, . . .)
- ► Enhance poorly reconstructed image
 - patch-based
 - image-based

Computation / quality trade-offs ?

Basic "slow" methods:

- Auto-tune regularization parameter(s)
- ▶ Provide an initial image for "conventional" iterative reconstruction

May not fully exploit the potential of ML

▶ ML-based "prior" image for iterative reconstruction [11]:

$$\hat{\boldsymbol{x}} = \operatorname*{\mathsf{arg\,min}}_{\boldsymbol{x}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \beta \, \|\boldsymbol{x} - \boldsymbol{x}_{\mathrm{prior}}\|_{\rho}^{\rho}$$

Fast for p=2, but p=1 more robust to errors in prior image Reminiscent of U. Wisconsin's PICCS methods, e.g., [12]

▶ ML-based "prior" image for iterative reconstruction [11]:

$$\hat{\boldsymbol{x}} = \operatorname*{\mathsf{arg\,min}}_{\boldsymbol{x}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \beta \, \|\boldsymbol{x} - \boldsymbol{x}_{\mathrm{prior}}\|_{\rho}^{\rho}$$

Fast for p=2, but p=1 more robust to errors in prior image Reminiscent of U. Wisconsin's PICCS methods, e.g., [12]

▶ Unrolled loop (recurrent NN) with learned components [13–16]

- ML-based nonlinear encoder, e.g., autoencoder or generative adversarial network (GAN) [17, 18]: nonlinear generalizations of subspace models
- learn G: maps low-dimensional latent parameter z into high-dimensional image x
- ➤ Synthesis form [19]:

$$\hat{\mathbf{x}} = G(\hat{\mathbf{z}}), \qquad \hat{\mathbf{z}} = \arg\min_{\mathbf{z}} \|\mathbf{A}G(\mathbf{z}) - \mathbf{y}\|_{2}^{2}$$

Challenges: $\hat{x} \in \text{Range}(G)$, non-convex minimization

- ML-based nonlinear encoder, e.g., autoencoder or generative adversarial network (GAN) [17, 18]: nonlinear generalizations of subspace models
- learn G: maps low-dimensional latent parameter z into high-dimensional image x
- ► Synthesis form [19]:

$$\hat{\mathbf{x}} = G(\hat{\mathbf{z}}), \qquad \hat{\mathbf{z}} = \arg\min_{\mathbf{z}} \|\mathbf{A}G(\mathbf{z}) - \mathbf{y}\|_{2}^{2}$$

Challenges: $\hat{\mathbf{x}} \in \text{Range}(G)$, non-convex minimization

► Regularizer form:

$$\hat{\mathbf{x}} = \underset{\mathbf{x}}{\operatorname{arg \, min}} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2}^{2} + \beta R_{\operatorname{encoder}}(\mathbf{x})$$

$$R_{\operatorname{encoder}}(\mathbf{x}) = \underset{\mathbf{z}}{\operatorname{min}} \|\mathbf{x} - G(\mathbf{z})\|_{p}^{p}$$

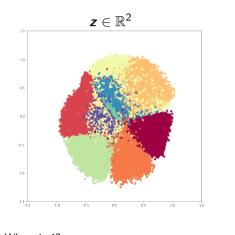
Expensive non-convex double minimization, but more robust to encoder?

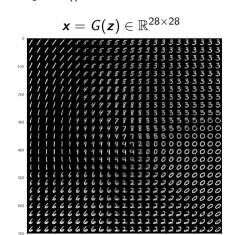
Nonlinear encoder illustration

From jupyter notebook for [20] (13 layer CNN with $\approx 300 \text{K}$ learned parameters) at

 \mapsto

https://github.com/skolouri/swae/blob/master/MNIST_SlicedWassersteinAutoEncoder_Circle.ipynb





Where is 4?

From Google's [21]:

Much more realistic than linear interpolation (averaging). "setting a new milestone in visual quality" [21].

From Google's [21]:



Non-physical output!

Outline

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers Convolutional adaptive regularizers

Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

- Data
 - ▶ Population adaptive methods (e.g., X-ray CT)
 - ► Patient adaptive methods (e.g., dynamic MRI?)
- Spatial structure
 - Patch-based models
 - Convolutional models
- Regularizer formulation
 - Synthesis (dictionary) approach
 - Analysis (sparsifying transforms) approach

Many options...

Outline

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers

Convolutional adaptive regularizers

Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

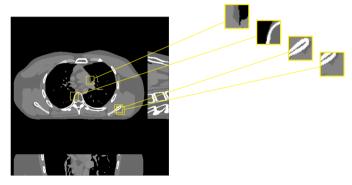
X-ray CT with learned sparsifying transforms

- Data
 - Population adaptive methods
 - Patient adaptive methods
- Spatial structure
 - Patch-based models
 - Convolutional models
- Regularizer formulation
 - Synthesis (dictionary) approach
 - Analysis (sparsifying transform) approach

Patch-wise transform sparsity model

Assumption: if x is a plausible image, then each $\Omega P_m x$ is sparse.

- $ightharpoonup P_m x$ extracts the mth of M patches from x
- $lackbox{ }\Omega$ is a square sparsifying transform matrix



Sparsifying transform learning (population adaptive)

Given training images x_1, \ldots, x_L from a representative population, find transform Ω_* that best sparsifies their patches:

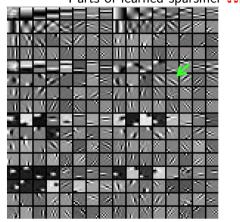
$$\boldsymbol{\Omega}_{*} = \mathop{\arg\min}_{\boldsymbol{\Omega}} \mathop{\min}_{\text{unitary}} \sum_{l=1}^{L} \sum_{m=1}^{M} \left\| \boldsymbol{\Omega} \boldsymbol{P}_{m} \boldsymbol{x}_{l} - \boldsymbol{z}_{l,m} \right\|_{2}^{2} + \alpha \left\| \boldsymbol{z}_{l,m} \right\|_{0}$$

- Encourage aggregate sparsity, not patch-wise sparsity (cf K-SVD [22])
- Non-convex due to unitary constraint and $\|\cdot\|_0$
- ▶ Efficient alternating minimization algorithm [23]
 - z update : simple hard thresholding
 - ullet Ω update : orthogonal Procrustes problem (SVD)
 - Subsequence convergence guarantees [23]

Example of learned sparsifying transform

3D X-ray training data

Parts of learned sparsifier Ω_*



(2D slices in x-y, x-z, y-z, from 3D image volume)

 $8 \times 8 \times 8$ patches $\Longrightarrow \Omega_*$ is $8^3 \times 8^3 = 512 \times 512$

top 8 \times 8 slice of 256 of the 512 rows of $\Omega_* \uparrow_{_{29/75}}$

Regularized inverse problem [24]:

$$\hat{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{\mathbf{W}}^2 + \beta \, \mathbf{R}(\mathbf{x})$$

$$\mathsf{R}(\mathbf{x}) = \min_{\{\mathbf{z}_m\}} \sum_{m=1}^{M} \|\mathbf{\Omega}_* \mathbf{P}_m \mathbf{x} - \mathbf{z}_m\|_2^2 + \alpha \|\mathbf{z}_m\|_0.$$

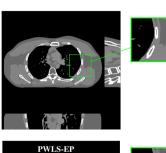
 Ω_* adapted to population training data

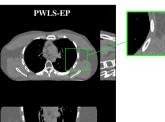
Alternating minimization optimizer:

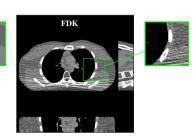
- $ightharpoonup z_m$ update : simple hard thresholding
- x update : quadratic problem (many options) Linearized augmented Lagrangian method (LALM) [25]

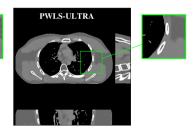
Example: low-dose 3D X-ray CT simulation

X. Zheng, S. Ravishankar, Y. Long, JF: IEEE T-MI, June 2018 [24]

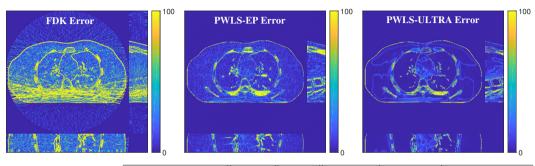








3D X-ray CT simulation Error maps



	X-ray Intensity	FDK	EP	ST Ω_*	ULTRA	$ULTRA\text{-}\{ au_j\}$
RMSE in HU	1×10^4	67.8	34.6	32.1	30.7	29.2
	$5 imes 10^3$	89.0	41.1	37.3	35.7	34.2

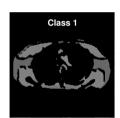
- ▶ Physics / statistics provides dramatic improvement
- Data adaptive regularization further reduces RMSE

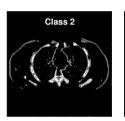
Given training images x_1, \ldots, x_L from a representative population, find a set of transforms $\{\hat{\Omega}_k\}_{k=1}^K$ that best sparsify image patches:

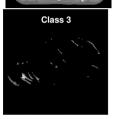
$$\begin{split} \left\{ \hat{\boldsymbol{\Omega}}_{k} \right\} &= \underset{\left\{ \boldsymbol{\Omega}_{k} \text{ unitary} \right\}}{\text{arg min}} \underset{\left\{ \boldsymbol{k}_{l,m} \in \left\{ 1,...,K \right\} \right\}}{\text{min}} \\ &= \sum_{l=1}^{L} \sum_{m=1}^{M} \left\| \boldsymbol{\Omega}_{k_{l,m}} \boldsymbol{P}_{m} \boldsymbol{x}_{l} - \boldsymbol{z}_{l,m} \right\|_{2}^{2} + \alpha \left\| \boldsymbol{z}_{l,m} \right\|_{0} \end{split}$$

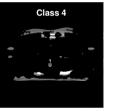
- Joint unsupervised clustering / sparsification
- Further nonconvexity due to clustering
- Efficient alternating minimization algorithm [26]

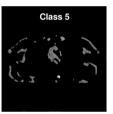
Example: 3D X-ray CT learned set of transforms

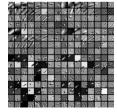


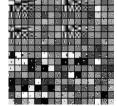


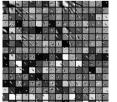


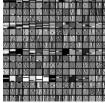


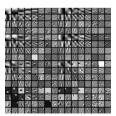




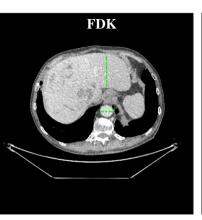


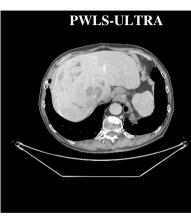






Example: 3D X-ray CT ULTRA for chest scan





Zheng et al., IEEE T-MI, June 2018 [24]

Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/

Outline

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers Convolutional adaptive regularizers Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

X-ray CT with learned convolutional filters

- Data
 - Population adaptive methods
 - Patient adaptive methods
- Spatial structure
 - Patch-based models
 - Convolutional models
- Regularizer formulation
 - Synthesis (dictionary) approach
 - Analysis (sparsifying transform) approach

Drawback of basic patch-based methods:

 $512 \times 512 \times 512$ 3D X-ray CT image volume

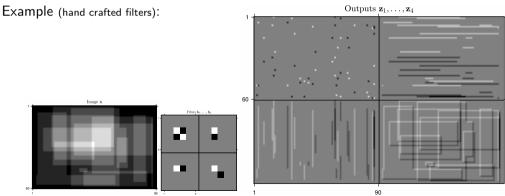
 $8 \times 8 \times 8$ patches

 \implies 512³ · 8³ · 4 = 256 Gbyte of patch data for stride=1

Convolutional sparsity: analysis model

Assumption: For a plausible image x, the filter outputs $\{h_k * x\}$ are sparse, for some filters $\{h_k\}_{k=1}^K$ [27]

- ▶ For more plausible images, the outputs $\{h_k * x\}$ are more sparse.
- * denotes convolution
- ► Inherently shift invariant and no patches



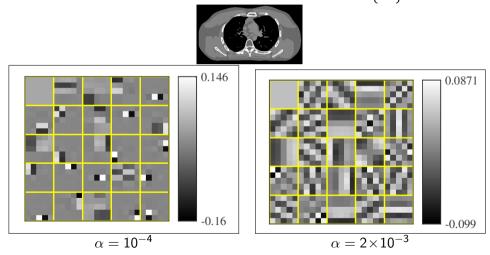
Sparsifying filter learning (population adaptive)

Given training images x_1, \ldots, x_L from a representative population, find filters $\left\{\hat{\mathbf{h}}_k\right\}_{k=1}^K$ that best sparsify them:

$$\left\{\hat{\boldsymbol{h}}_{k}\right\} = \underset{\left\{\boldsymbol{h}_{k}\right\} \in \mathcal{H}}{\operatorname{arg \, min}} \min_{\left\{\boldsymbol{z}_{l,k}\right\}} \sum_{l=1}^{L} \sum_{k=1}^{K} \left\|\boldsymbol{h}_{k} * \boldsymbol{x}_{l} - \boldsymbol{z}_{l,k}\right\|_{2}^{2} + \alpha \left\|\boldsymbol{z}_{l,k}\right\|_{0}^{2}$$

- To encourage filter diversity:
 - $\mathcal{H} = \{ \mathbf{H} : \mathbf{H}\mathbf{H}' = \mathbf{I} \}, \ \mathbf{H} = [\mathbf{h}_1 \ \dots \ \mathbf{h}_K]$
 - cf. tight-frame condition $\sum_{k=1}^{K} \|\mathbf{h}_k * \mathbf{x}\|_2^2 \propto \|\mathbf{x}\|_2^2$
- ► Encourage aggregate sparsity, period
- Non-convex due to constraint \mathcal{H} and $\|\cdot\|_0$
- ▶ Efficient alternating minimization algorithm [28]
 - z update is simply hard thresholding
 - Filter update uses diagonal majorizer, proximal map (SVD)
 - Subsequence convergence guarantees [28]

2D X-ray CT training data and learned 5×5 sparsifying filters $\{\hat{\mathbf{h}}_{\mathbf{k}}\}$ [28]:



Regularized inverse problem [28]:

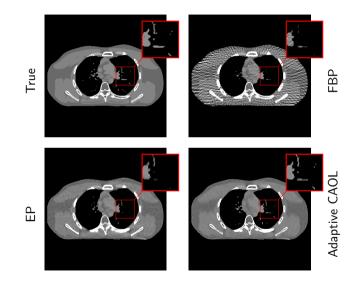
$$\begin{split} \hat{\boldsymbol{x}} &= \operatorname*{arg\,min}_{\boldsymbol{x}\succeq \boldsymbol{0}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{\boldsymbol{W}}^2 + \beta \, \mathsf{R}(\boldsymbol{x}) \\ \mathsf{R}(\boldsymbol{x}) &= \operatorname*{arg\,min}_{\{\boldsymbol{z}_k\}} \sum_{k=1}^K \left\|\hat{\boldsymbol{h}}_k * \boldsymbol{x} - \boldsymbol{z}_k\right\|_2^2 + \alpha \, \|\boldsymbol{z}_k\|_0 \,. \end{split}$$

 $\left\{\hat{m{h}}_{m{k}}
ight\}$ adapted to population training data

Block proximal gradient with majorizer (BPG-M) optimizer:

- $ightharpoonup z_k$ update is simple hard thresholding
- x update is a quadratic problem: diagonal majorizer

I. Y. Chun, JF, 2018, arXiv 1802.05584 [28]



Quantitative results

123 views (out of usual 984) \Longrightarrow 8× dose reduction

RMSE (in HU):

FBP	82.8
EP	40.8
Adaptive filters	35.2

- Physics / statistics provides dramatic improvement
- Data-adaptive regularization further reduces RMSE

Extension to multiple layers (cf CNN) I

Convolutional sparsity model: $h_k * x$ is sparse for $k = 1, ..., K_1$ Learning 1 "layer" of filters:

$$\{\hat{\boldsymbol{h}}_{k}^{[1]}\} = \operatorname*{arg\,min\,\,min}_{\{\boldsymbol{h}_{k}^{[1]}\} \in \mathcal{H}} \sum_{l=1}^{L} \sum_{k=1}^{K_{1}} \left\|\boldsymbol{h}_{k}^{[1]} * \boldsymbol{x}_{l} - \boldsymbol{z}_{l,k}^{[1]} \right\|_{2}^{2} + \alpha \left\|\boldsymbol{z}_{l,k}^{[1]} \right\|_{0}^{2}$$

Learning 2 layers of filters [28]:

$$\begin{split} \left(\{ \hat{\boldsymbol{h}}_{k}^{[1]} \}, \{ \hat{\boldsymbol{h}}_{k}^{[2]} \} \right) &= \underset{\{\boldsymbol{h}_{k}^{[1]} \}, \{\boldsymbol{h}_{k}^{[2]} \} \in \mathcal{H}}{\text{arg min}} \underset{\{\boldsymbol{z}_{l,k}^{[1]} \}}{\text{min min}} \\ & \sum_{l=1}^{L} \sum_{k=1}^{K_{1}} \left\| \boldsymbol{h}_{k}^{[1]} * \boldsymbol{x}_{l} - \boldsymbol{z}_{l,k}^{[1]} \right\|_{2}^{2} + \alpha \left\| \boldsymbol{z}_{l,k}^{[1]} \right\|_{0}^{2} \\ & + \sum_{l=1}^{L} \sum_{k=1}^{K_{2}} \left\| \boldsymbol{h}_{k}^{[2]} * \left(\boldsymbol{P}_{k} \boldsymbol{z}_{l}^{[1]} \right) - \boldsymbol{z}_{l,k}^{[2]} \right\|_{2}^{2} + \alpha \left\| \boldsymbol{z}_{l,k}^{[2]} \right\|_{0} \end{split}$$

Here P_k is a pooling operator for the output of first layer Block proximal gradient with majorizer (BPG-M) optimizer I. Y. Chun, JF, 2018, arXiv 1802.05584 [28]

Use multi-level learned filters as (interpretable?) regularizer for CT.

Outline

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers

Convolutional adaptive regularizers

Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

MR with adapted patch dictionary

- Data
 - Population adaptive methods
 - Patient adaptive methods
- Spatial structure
 - Patch-based models
 - Convolutional models
- Regularizer formulation
 - Synthesis (dictionary) approach
 - Analysis (sparsifying transform) approach

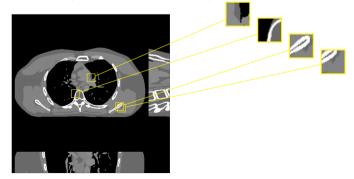
Patch-wise dictionary sparsity model

Assumption: if x is a plausible image, then each patch has

$$P_p x \approx D z_p$$

for a sparse coefficient vector \mathbf{z}_p . (Synthesis approach.)

- $ightharpoonup P_p x$ extracts the pth of P patches from x
- **D** is a (typically overcomplete) dictionary for patches



MR reconstruction using adaptive dictionary regularizer

Dictionary-blind MR image reconstruction:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \beta \, \mathbf{R}(\boldsymbol{x})$$

$$\mathbf{R}(\boldsymbol{x}) = \operatorname*{min}_{\boldsymbol{D} \in \mathcal{D}} \operatorname*{min}_{\boldsymbol{z}} \sum_{m=1}^{M} \left(\|\boldsymbol{P}_{m}\boldsymbol{x} - \boldsymbol{D}\boldsymbol{z}_{m}\|_{2}^{2} + \lambda^{2} \|\boldsymbol{z}_{m}\|_{0} \right)$$

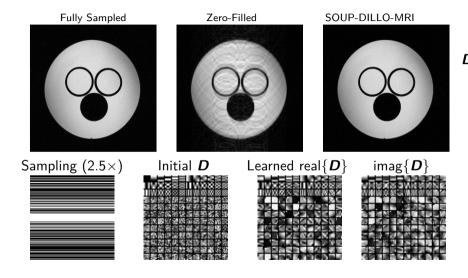
where P_m extracts mth of M image patches.

In words: of the many images...

Alternating (nested) minimization:

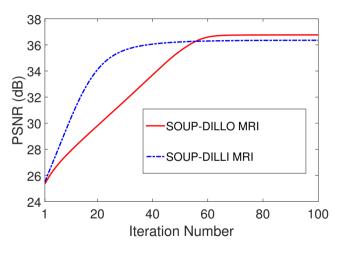
- Fixing x and D, update each row of $Z = [z_1 \dots z_M]$ sequentially via hard-thresholding.
- Fixing x and Z, update D using SOUP-DIL [29].
- \triangleright Fixing **Z** and **D**, updating **x** is a quadratic problem.
 - Efficient FFT solution for single-coil Cartesian MRI.
 - Use CG for non-Cartesian and/or parallel MRI.
- Non-convex, but monotone decreasing and some convergence theory [29].

2D CS MRI results I



 6×6 patches $m{D} \in \mathbb{C}^{6^2 \times 144}$ $m{D}_0$: [DCT | random] [29]

2D CS MRI results II



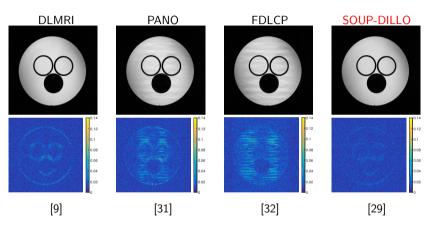
(SNR vs fully sampled image.) Using $\|\mathbf{z}_m\|_0$ leads to higher SNR than $\|\mathbf{z}_m\|_1$. Adaptive case is non-convex anyway...

Matlab code: http://web.eecs.umich.edu/~fessler/irt/reproduce/ https://gitlab.eecs.umich.edu/fessler/soupdil_dinokat

PSNR:

lm.	Samp.	Acc.	0-fill	Sparse MRI	PANO	DLMRI	SOUP- DILLI	SOUP- DILLO
а	Cart.	7×	27.9	28.6	31.1	31.1	30.8	31.1
b	Cart.	2.5×	27.7	31.6	41.3	40.2	38.5	42.3
С	Cart.	2.5×	24.9	29.9	34.8	36.7	36.6	37.3
С	Cart.	4×	25.9	28.8	32.3	32.1	32.2	32.3
d	Cart.	2.5×	29.5	32.1	36.9	38.1	36.7	38.4
е	Cart.	2.5×	28.1	31.7	40.0	38.0	37.9	41.5
f	2D rand.	5×	26.3	27.4	30.4	30.5	30.3	30.6
g	Cart.	2.5x	32.8	39.1	41.6	41.7	42.2	43.2
Ref.				[30]	[31]	[9]	[29]	[29]

2D CS MRI results IV



Summary: 2D static MR reconstruction from under-sampled data with adaptive dictionary learning and convergent algorithm, faster than K-SVD approach of DLMRI.

Summary of patch-based, data-driven adaptive regularizers

Use training data to learn:

- dictionary **D** (for patches)
- sparsifying transform(s) Ω (for patches)
- or convolutional versions thereof [27, 33]

ML-based regularized optimization problem using M image patches:

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \beta R_{\text{ML}}(\boldsymbol{x})$$

$$R_{\text{ML-DL}}(\boldsymbol{x}) = \min_{\{\boldsymbol{z}_{m}\}} \sum_{m=1}^{M} \|\boldsymbol{P}_{m}\boldsymbol{x} - \boldsymbol{D}\boldsymbol{z}_{m}\|_{2}^{2} + \alpha \|\boldsymbol{z}_{m}\|_{0}$$

$$R_{\text{ML-ST}}(\boldsymbol{x}) = \min_{\{\boldsymbol{z}_{m}\}} \sum_{m=1}^{M} \|\boldsymbol{\Omega}\boldsymbol{P}_{m}\boldsymbol{x} - \boldsymbol{z}_{m}\|_{2}^{2} + \alpha \|\boldsymbol{z}_{m}\|_{0}$$

Alternative: blind adaptive learned dictionary [9] or learned sparsifying transform [34]. Double minimization (so very "deep?") More interpretable than CNNs?

Outline

Introduction

ML-based image reconstruction approaches

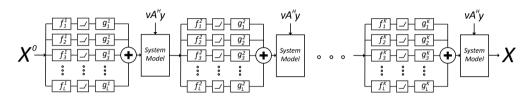
Adaptive regularization

Other ML4MI topics

Summary

Bibliography

Unrolled loop method with 20 layers trained with $1.3 \cdot 10^6$ MR image 8×8 patches Ravishankar et al., ISBI 2018 [15]



Tested with 5 different MR images:

Training an unrolled loop II

Undersampling	Image	Zero-filled	Sparse MRI	UTMRI	Unrolled
3.3×	1	25.6	26.7	28.3	28.2
	2	25.2	26.6	27.9	27.8
	3	26.0	27.3	29.3	28.9
	4	25.4	26.7	28.2	28.1
	5	27.2	28.9	30.6	30.3
Avg. PSNR change	-	-	1.36	2.98	2.78
5×	1	24.7	25.9	27.6	27.5
	2	24.2	25.5	27.2	27.0
	3	24.9	26.3	28.5	28.0
	4	24.4	25.7	27.6	27.4
	5	26.2	27.9	29.8	29.5
Avg. PSNR change	-	-	1.38	3.26	3.0
Approx recon time	-	-	100s	240s	50s

Results:

Sparse MRI [35] total variation (TV) and wavelets UTMRI [26] (union of learned sparsifying transforms): adaptive, not "deep"

Momentum-Net overview

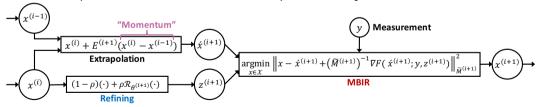
Background cost function for convolutional sparsity regularization: $\arg\min_{\mathbf{x}} f(\mathbf{x}; \mathbf{y}) + \beta \left(\min_{\zeta} \sum_{k=1}^{K} \|h_k * \mathbf{x} - \zeta_k\|_2^2 + \alpha \|\zeta_k\|_1\right)$

Block-coordinate descent (BCD) with majorizer update of image:

$$\mathbf{x}^{(n+1)} = \arg\min_{\mathbf{x}} F(\mathbf{x}; \mathbf{y}, \mathbf{z}^{(n)}) = f(\mathbf{x}; \mathbf{y}) + \beta \|\mathbf{x} - \mathbf{z}^{(n)}\|_{2}^{2}$$

 $\mathbf{z}^{(n)} = \mathcal{R}(\mathbf{z}^{(n)}) = \sum_{k=1}^{K} \text{flip}(h_{k}) * \text{soft}(h_{k} * \mathbf{x}^{(n)})$: denoised $\mathbf{x}^{(n)}$

Unrolled loop network with momentum and quadratic majorizer:



Learn image mapper \mathcal{R} from training data.

Momentum-Net benefits

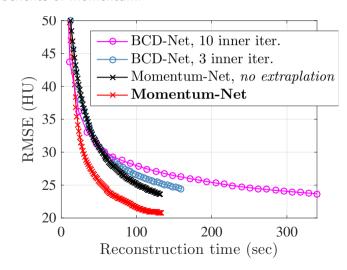
- ► Image mapper \mathcal{R} is shallow \implies less risk of over-fitting / hallucination
- ► Momentum accelerates convergence (fewer layers)
- First unrolled loop approach to have convergence theory (under suitable assumptions on \mathcal{R})
- MBIR update uses original sinogram and imaging physics

[36]

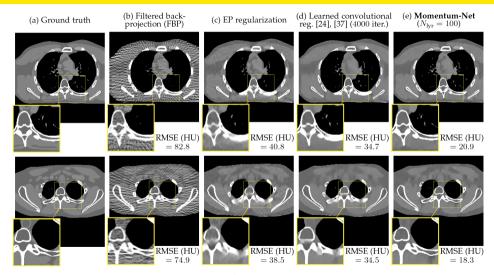
II Yong Chun, Zhengyu Huang, Hongki Lim, J A Fessler Momentum-Net: Fast and convergent iterative neural network for inverse problems

http://arxiv.org/abs/1907.11818

Illustration of benefits of momentum:



Momentum-Net preliminary image results



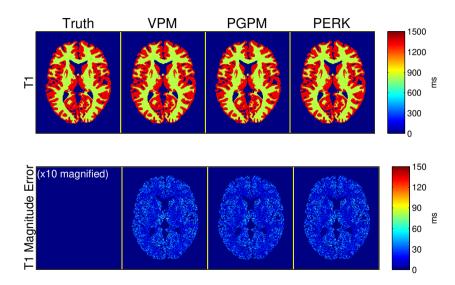
Sparse-view CT with 123/984 views, $I_0 = 10^5$, 800-1200 HU display.

Shallow machine learning for qMRI

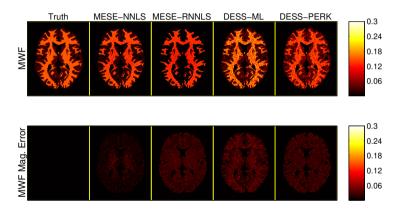
Quantitative MRI: images \rightarrow estimation \rightarrow parameters (T1,T2,...)

- ► Traditional nonlinear estimation methods:
 - nonlinear least squares
 - dictionary matching (quantized maximum likelihood via variable projection)
- Machine-learning methods
 - deep neural network regression [37–40]
 Requires long training times
 - parameter estimation via kernel regression (PERK)
 Gopal Nataraj et al., ISBI 2017, IEEE T-MI 2018 [41, 42]

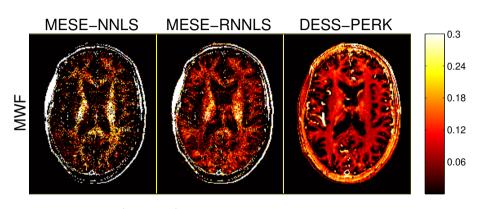
Parameter estimation via kernel regression (PERK) example



6 parameters (T1 slow/fast, T2 slow/fast, M_0 , fast fraction) Estimated from 3 optimized dual-echo steady state (DESS) scans [43]



PERK training: 33.8s, testing 0.99s / slice



MESE scan took $32m (16m \times 2)$ DESS scan took 3m15s Take away: "traditional" machine learning is still useful...

Outline

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Other ML4MI topics

Summary

Bibliography

Summary

- ► Machine learning has great potential for medical imaging
- ► Much excitement but many challenges
- ► Image reconstruction seems especially suitable for ML ideas
- Data-driven, adaptive regularizers beneficial for low-dose CT and under-sampled MRI
- More comparisons between model-based methods with adaptive regularizers and CNN-based methods needed
- ▶ Machine learning tools like kernel regression remain useful

Recommended reading (incomplete lists)

- Overviews: [44–46]
- ► Generative models: [20, 47]:
- ▶ Deep learning myths [48]
- ▶ NN complexity analysis / function approximation [49–51] [52]
- ► Application to MR fingerprinting [37, 40]
- ► MR reconstruction / enhancement using CNN [16, 53–60]
- Dynamic MR reconstruction using CNN [61]
- **>** ...

Resources

Talk and code available online at http://web.eecs.umich.edu/~fessler

Bibliography I

- [1] H. Greenspan, B. van Ginneken, and R. M. Summers. "Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique." In: *IEEE Trans. Med. Imag.* 35.5 (May 2016), 1153–9.
- [2] G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler. "Image reconstruction is a new frontier of machine learning." In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1289–96.
- [3] E. Haneda, B. Claus, P. FitzGerald, G. Wang, and B. De Man. "CT sinogram analysis using deep learning." In: Proc. 5th Intl. Mtg. on Image Formation in X-ray CT. 2018, 419–22.
- [4] L. Baldassarre, Y-H. Li, J. Scarlett, B. Gozcu, I. Bogunovic, and V. Cevher. "Learning-based compressive subsampling." In: IEEE J. Sel. Top. Sig. Proc. 10.4 (June 2016), 809–22.
- [5] B. Gozcu, R. K. Mahabadi, Y-H. Li, E. Ilicak, T. Cukur, J. Scarlett, and V. Cevher. "Learning-based compressive MRI." In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1394–406.
- [6] Y. Cao and D. N. Levin. "Feature-recognizing MRI." In: Mag. Res. Med. 30.3 (Sept. 1993), 305–17.
- [7] Y. Cao, D. N. Levin, and L. Yao. "Locally focused MRI." In: Mag. Res. Med. 34.6 (Dec. 1995), 858-67.
- [8] Y. Cao and D. N. Levin. "Using an image database to constrain the acquisition and reconstruction of MR images of the human head." In: IEEE Trans. Med. Imag. 14.2 (June 1995), 350–61.
- [9] S. Ravishankar and Y. Bresler. "MR image reconstruction from highly undersampled k-space data by dictionary learning." In: IEEE Trans. Med. Imag. 30.5 (May 2011), 1028–41.
- [10] S. H. Chan, X. Wang, and O. A. Elgendy. "Plug-and-play ADMM for image restoration: fixed-point convergence and applications." In: IEEE Trans. Computational Imaging 3.1 (Mar. 2017), 84–98.
- [11] G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye, F. Liu, S. Arridge, J. Keegan, Y. Guo, and D. Firmin. "DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction." In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1310–21.

Bibliography II

- [12] G-H. Chen, J. Tang, and S. Leng. "Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets." In: Med. Phys. 35.2 (Feb. 2008), 660–3.
- [13] K. Gregor and Y. LeCun. "Learning fast approximations of sparse coding." In: Proc. Intl. Conf. Mach. Learn. 2010.
- [14] Y. Chen and T. Pock. "Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration." In: IEEE Trans. Patt. Anal. Mach. Int. 39.6 (June 2017), 1256–72.
- [15] S. Ravishankar, A. Lahiri, C. Blocker, and J. A. Fessler. "Deep dictionary-transform learning for image reconstruction." In: Proc. IEEE Intl. Symp. Biomed. Imag. 2018, 1208–12.
- [16] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll. "Learning a variational network for reconstruction of accelerated MRI data." In: Mag. Res. Med. 79.6 (June 2018), 3055–71.
- [17] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks. 2014.
- [18] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. "InfoGAN: interpretable representation learning by information maximizing generative adversarial nets." In: Neural Info. Proc. Sys. 2016, 2172–80.
- [19] A. Bora, A. Jalal, E. Price, and A. G. Dimakis. "Compressed sensing using generative models." In: Proc. Intl. Conf. Mach. Learn. Vol. 70. 2017, 537–46.
- [20] S. Kolouri, P. E. Pope, C. E. Martin, and G. K. Rohde. Sliced-Wasserstein autoencoder: an embarrassingly simple generative model. 2018.
- [21] D. Berthelot, T. Schumm, and L. Metz. BEGAN: boundary equilibrium generative adversarial networks. 2017.
- [22] M. Aharon, M. Elad, and A. Bruckstein. "K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation." In: IEEE Trans. Sig. Proc. 54.11 (Nov. 2006), 4311–22.
- [23] S. Ravishankar and Y. Bresler. "Io sparsifying transform learning with efficient optimal updates and convergence guarantees." In: IEEE Trans. Sig. Proc. 63.9 (May 2015), 2389–404.

Bibliography III

- [24] X. Zheng, S. Ravishankar, Y. Long, and J. A. Fessler. "PWLS-ULTRA: An efficient clustering and learning-based approach for low-dose 3D CT image reconstruction." In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1498–510.
- [25] H. Nien and J. A. Fessler. "Relaxed linearized algorithms for faster X-ray CT image reconstruction." In: IEEE Trans. Med. Imag. 35.4 (Apr. 2016), 1090–8.
- [26] S. Ravishankar and Y. Bresler. "Data-driven learning of a union of sparsifying transforms model for blind compressed sensing." In: IEEE Trans. Computational Imaging 2.3 (Sept. 2016), 294–309.
- [27] I. Y. Chun and J. A. Fessler. Convolutional analysis operator learning: acceleration and convergence. 2018.
- [28] I. Y. Chun and J. A. Fessler. "Convolutional analysis operator learning: acceleration and convergence." In: IEEE Trans. Im. Proc. (2019). Submitted.
- [29] S. Ravishankar, R. R. Nadakuditi, and J. A. Fessler. "Efficient sum of outer products dictionary learning (SOUP-DIL) and its application to inverse problems." In: IEEE Trans. Computational Imaging 3.4 (Dec. 2017), 694–709.
- [30] M. Lustig and J. M. Pauly. "SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space." In: Mag. Res. Med. 64.2 (Aug. 2010), 457–71.
- [31] X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen. "Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator." In: Med. Im. Anal. 18.6 (Aug. 2014), 843–56.
- [32] Z. Zhan, J-F. Cai, D. Guo, Y. Liu, Z. Chen, and X. Qu. "Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction." In: IEEE Trans. Biomed. Engin. 63.9 (Sept. 2016), 1850–61.
- [33] I. Y. Chun and J. A. Fessler. "Convolutional dictionary learning: acceleration and convergence." In: IEEE Trans. Im. Proc. 27.4 (Apr. 2018), 1697–712.
- [34] S. Ravishankar and Y. Bresler. "Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to MRI." In: SIAM J. Imaging Sci. 8.4 (2015), 2519–57.

Bibliography IV

- [35] M. Lustig, D. Donoho, and J. M. Pauly. "Sparse MRI: The application of compressed sensing for rapid MR imaging." In: Mag. Res. Med. 58.6 (Dec. 2007), 1182–95.
- [36] I. Y. Chun, Z. Huang, H. Lim, and J. A. Fessler. Momentum-Net: Fast and convergent iterative neural network for inverse problems. 2019.
- [37] P. Virtue, S. X. Yu, and M. Lustig, "Better than real: Complex-valued neural nets for MRI fingerprinting," In: Proc. IEEE Intl. Conf. on Image Processing. 2017, 3953–7.
- [38] A. Lahiri, J. A. Fessler, and L. Hernandez-Garcia. "Optimized design of MRF scan parameters for ASL signal acquisition." In: ISMRM Workshop on MR Fingerprinting. 2017.
- [39] A. Lahiri, J. A. Fessler, and L. Hernandez-Garcia. "Optimized scan design for ASL fingerprinting and multiparametric estimation using neural network regression." In: Proc. Intl. Soc. Mag. Res. Med. 2018, p. 309.
- [40] O. Cohen, B. Zhu, and M. S. Rosen. "MR fingerprinting Deep RecOnstruction NEtwork (DRONE)." In: Mag. Res. Med. 80.3 (Sept. 2018), 885–94.
- [41] G. Nataraj, J-F. Nielsen, and J. A. Fessler. "Dictionary-free MRI parameter estimation via kernel ridge regression." In: Proc. IEEE Intl. Symp. Biomed. Imag. 2017, 5–9.
- [42] G. Nataraj, J.-F. Nielsen, C. D. Scott, and J. A. Fessler. "Dictionary-free MRI PERK: Parameter estimation via regression with kernels." In: IEEE Trans. Med. Imag. 37.9 (Sept. 2018), 2103–14.
- [43] G. Nataraj, J-F. Nielsen, M. Gao, and J. A. Fessler. Fast, precise myelin water quantification using DESS MRI and kernel learning. Submitted. 2018.
- [44] G. Wang. "A perspective on deep imaging." In: IEEE Access 4 (Nov. 2016), 8914–24.
- [45] G. Wang, M. Kalra, and C. G. Orton. "Machine learning will transform radiology significantly within the next five years." In: Med. Phys. 44.6 (June 2017), 2041–4.

Bibliography V

- [46] M. T. McCann, K. H. Jin, and M. Unser. "Convolutional neural networks for inverse problems in imaging: A review." In: IEEE Sig. Proc. Mag. 34.6 (Nov. 2017), 85–95.
- [47] I. Deshpande, Z. Zhang, and A. Schwing. "Generative modeling using the sliced Wasserstein distance." In: Proc. IEEE Conf. on Comp. Vision and Pattern Recognition, 2018.
- [48] S. Rakhlin. MythBusters: A Deep Learning Edition. Slides dated Jan 18-19, 2018. 2018.
- [49] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural networks. 2017.
- [50] T. Liang, T. Poggio, A. Rakhlin, and J. Stokes. Fisher-Rao metric, geometry, and complexity of neural networks. 2017.
- [51] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. "On the expressive power of deep neural networks." In: Proc. Intl. Conf. Mach. Learn. Vol. 70. 2017, 2847–54.
- [52] S. Liang and R. Srikant. "Why deep neural networks for function approximation?" In: Proc. Intl. Conf. on Learning Representations. 2017.
- [53] S. Ravishankar, I. Y. Chun, and J. A. Fessler. "Physics-driven deep training of dictionary-based algorithms for MR image reconstruction." In: Proc., IEEE Asilomar Conf. on Signals, Systems, and Comp. Invited. 2017, 1859–63.
- [54] M. Mardani, E. Gong, J. Y. Cheng, S. S. Vasanawala, G. Zaharchuk, L. Xing, and J. M. Pauly. "Deep generative adversarial neural networks for compressive sensing MRI." In: IEEE Trans. Med. Imag. 38.1 (Jan. 2019), 167–79.
- [55] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen. "Image reconstruction by domain-transform manifold learning." In: Nature 555 (Mar. 2018), 487–92.
- [56] Y. Han, J. Yoo, H. H. Kim, H. J. Shin, K. Sung, and J. C. Ye. "Deep learning with domain adaptation for accelerated projection-reconstruction MR." In: Mag. Res. Med. 80.3 (Sept. 2018), 1189–205.
- [57] K. H. Jin and M. Unser. "3D BPConvNet to reconstruct parallel MRI." In: Proc. IEEE Intl. Symp. Biomed. Imag. 2018, 361-4.

Bibliography VI

- [58] H. Jeelani, J. Martin, F. Vasquez, M. Salerno, and D. S. Weller. "Image quality affects deep learning reconstruction of MRI." In: Proc. IEEE Intl. Symp. Biomed. Imag. 2018, 357–60.
- [59] T. M. Quan, T. Nguyen-Duc, and W-K. Jeong. "Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss." In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1488–97.
- [60] T. Eo, Y. Jun, T. Kim, J. Jang, H-J. Lee, and D. Hwang. "KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images." In: Mag. Res. Med. (2018).
- [61] J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert. "A deep cascade of convolutional neural networks for dynamic MR image reconstruction." In: IEEE Trans. Med. Imag. 37.2 (Feb. 2018), 491–503.