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Medical imaging overview J. Fessler
ML for IR

Overview of medical imaging:

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂
−−−−→ Process

Images →

Analyze
Diagnose
Quantify
Interpret
Intervene
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Machine learning in medical image interpretation J. Fessler
ML for IR

Most obvious place for machine learning is post-processing:

reconstructed
images

x̂
→

ML-based
image processing
(classification
or regression)

→ interpretation

. . .
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Machine learning in medical image interpretation J. Fessler
ML for IR

Most obvious place for machine learning is post-processing:

reconstructed
images

x̂
→

ML-based
image processing
(classification
or regression)

→ interpretation

(Many conference sessions; special issue of IEEE Trans. on Med. Imaging in May 2016 [1], ...)
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Machine learning in medical image reconstruction J. Fessler
ML for IR

Another (initially less obvious?) place for machine learning (multiple conference sessions):

raw data
y → ML-based

image reconstruction → images
x̂

. . .

Possibly easier (than diagnosis) due to lower bar:
• current reconstruction methods based on simplistic image models;
• human eyes are better at detection than at solving inverse problems.
June 2018 special issue of IEEE Trans. on Medical Imaging [2]:
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Machine learning in medical imaging: a holy grail? J. Fessler
ML for IR

A more speculative opportunity for machine learning:

raw data
y → ML-based

“magic” → interpretation

. . .
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Machine learning in medical imaging: a holy grail? J. Fessler
ML for IR

A more speculative opportunity for machine learning:

raw data
y → ML-based

“magic” → interpretation

I CT sinogram to vessel diameter [3]
I k-space to ???

See Wiro Niessen’s keynote...
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Machine learning in medical imaging: scan design J. Fessler
ML for IR

One more opportunity for ML in medical imaging:

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂

−−−−−→

Analyze
Diagnose
Quantify
Interpret
Intervene

. . .
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Machine learning in medical imaging: scan design J. Fessler
ML for IR

One more opportunity for ML in medical imaging:

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂

−−−−−→

Analyze
Diagnose
Quantify
Interpret
Intervene

Choose best k-space phase encoding locations based on training images:
• “Learning-based compressive MRI” [4, 5]
(Volkan Cevher group, June 2018 IEEE T-MI)
Single coil only so far; perhaps hard to generalize to parallel MRI?
• Yue Cao and David Levin, MRM Sep. 1993 “Feature recognizing MRI” [6–8]
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Adaptive phase-encode selection J. Fessler
ML for IR

Reference Sampling BP recon

Sampling designed to optimize PSNR for basis pursuit (BP) reconstruction using
shearlet transform, at 25% sampling rate.
Sampling design considers both the training data and the reconstruction method.
No high spatial frequencies!?
(Images from Gözcü et al. [5].)

9 / 71



Outline J. Fessler
ML for IR

Introduction

ML-based image reconstruction approaches

Adaptive regularization
Patch-based adaptive regularizers
Convolutional adaptive regularizers
Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

10 / 71



Image reconstruction background J. Fessler
ML for IR

I Forward problem (data acquisition):

Scene
Objects

physics
x

−−−−−−−→ Imaging
System → raw data

y

SPECT, PET, X-ray CT, MRI, optical, ...
I Inverse problem (image formation):

Acquire
Data

raw data
y
−−−→ Reconstruct

Images → images
x̂

I Image reconstruction topics: physics models, measurement statistical models,
regularization / object priors, optimization...
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Generations of medical image reconstruction methods J. Fessler
ML for IR

1. 70’s “Analytical” methods (integral equations)
FBP for SPECT / PET / X-ray CT, IFFT for MRI, ...

2. 80’s Algebraic methods (as in “linear algebra”)
Solve y = Ax

3. 90’s Statistical methods
• LS / ML methods
• Bayesian methods (Markov random fields, ...)
• regularized methods

4. 00’s Compressed sensing methods
(mathematical sparsity models)

5. 10’s Adaptive / data-driven methods
machine learning, deep learning, ...
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Accelerating MR imaging using adaptive regularization J. Fessler
ML for IR

(a) 4× under-sampled MR k-space
(b) zero-filled reconstruction
(c) “compressed sensing”
reconstruction with TV regularization
(d) adaptive regularization
using dictionary learning
Ravishankar & Bresler, DLMRI, T-MI, May 2011,
[9, Fig. 10]
DL = dictionary learning
(not “deep learning”)
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Ill-posed inverse problems J. Fessler
ML for IR

y = Ax + ε

y : measurements ε : noise
x : unknown image A : system matrix (typically wide)

I compressed sensing (e.g., MRI) (A “random” rows of DFT)

ky

kx
I deblurring (restoration) (A Toeplitz)
I in-painting (A subset of rows of I)
I denoising (not ill posed) (A = I)
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Inverse problems via MAP estimation J. Fessler
ML for IR

Unknown
image

x
→ System model

p(y | x) → Data
y → Estimator →

Recon.
image

x̂

If we have a prior p(x), then the MAP estimate is:

x̂ = arg max
x

p(x | y) = arg max
x

log p(y | x) + log p(x) .

For gaussian measurement errors and a linear forward model:

− log p(y | x) ≡ 1
2 ‖y − Ax‖2W

where ‖y‖2W = y ′W y and W−1 = Cov{y | x} is known
(A from physics, W from statistics)
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Priors for MAP estimation J. Fessler
ML for IR

I If all images x are “plausible” (have non-zero probability) then

p(x) ∝ e−R(x) =⇒ − log p(x) ≡ R(x)

(from fantasy / imagination / wishful thinking / data)

I MAP ≡ regularized weighted least-squares (WLS) estimation:

x̂ = arg max
x

log p(y | x) + log p(x)

= arg min
x

1
2 ‖y − Ax‖2W + R(x)

I A regularizer R(x), aka log prior, is essential for high-quality solutions to
ill-conditioned / ill-posed inverse problems.

I Why ill-posed? Often high ambitions...
16 / 71



Non-adaptive regularizers J. Fessler
ML for IR

I Tikhonov regularization (IID gaussian prior)
I Markov random field (MRF) models
I Roughness penalty (cf MRF prior)
I Edge-preserving regularization
I Total-variation (TV) regularization
I Black-box denoiser like NLM, e.g., plug-and-play ADMM [10]
I Sparsity in ambient space
I Sparsifying transforms: wavelets, curvelets, . . .
I Graphical models
I . . .

All “hand crafted” from statistical / mathematical models ...
17 / 71



Simpler methods for ML in image reconstruction J. Fessler
ML for IR

Many possible ways to use ML ideas in image reconstruction.

Basic “fast” methods:
I Enhance raw data (k-space, sinogram, . . . )
I Enhance poorly reconstructed image
• patch-based
• image-based

Computation / quality trade-offs ?
. . .
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Simpler methods for ML in image reconstruction J. Fessler
ML for IR

Many possible ways to use ML ideas in image reconstruction.

Basic “fast” methods:
I Enhance raw data (k-space, sinogram, . . . )
I Enhance poorly reconstructed image
• patch-based
• image-based

Computation / quality trade-offs ?

Basic “slow” methods:
I Auto-tune regularization parameter(s)
I Provide an initial image for “conventional” iterative reconstruction

May not fully exploit the potential of ML
18 / 71



Advanced “fast” methods for ML-based IR J. Fessler
ML for IR

I ML-based “prior” image for iterative reconstruction [11]:

x̂ = arg min
x
‖Ax − y‖22 + β ‖x − xprior‖pp

Fast for p = 2, but p = 1 more robust to errors in prior image
Reminiscent of U. Wisconsin’s PICCS methods, e.g., [12]

I Unrolled loop (recurrent NN) with learned components [13–16]
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Nonlinear encoder methods for ML-based IR J. Fessler
ML for IR

• ML-based nonlinear encoder, e.g., autoencoder or generative adversarial network
(GAN) [17, 18]: nonlinear generalizations of subspace models
• learn G : maps low-dimensional latent parameter z into high-dimensional image x
I Synthesis form [19]:

x̂ = G(ẑ), ẑ = arg min
z
‖AG(z)− y‖22

Challenges: x̂ ∈ Range(G), non-convex minimization

I Regularizer form:
x̂ = arg min

x
‖Ax − y‖22 + βRencoder(x)

Rencoder(x) = min
z
‖x − G(z)‖pp

Expensive non-convex double minimization, but more robust to encoder?

20 / 71



Nonlinear encoder methods for ML-based IR J. Fessler
ML for IR

• ML-based nonlinear encoder, e.g., autoencoder or generative adversarial network
(GAN) [17, 18]: nonlinear generalizations of subspace models
• learn G : maps low-dimensional latent parameter z into high-dimensional image x
I Synthesis form [19]:
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Nonlinear encoder illustration J. Fessler
ML for IR

From jupyter notebook for [20] (13 layer CNN with ≈ 300K learned parameters) at
https://github.com/skolouri/swae/blob/master/MNIST_SlicedWassersteinAutoEncoder_Circle.ipynb

z ∈ R2

Where is 4?

7→ x = G(z) ∈ R28×28

21 / 71
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Generative Adversarial Networks (GAN) example J. Fessler
ML for IR

From Google’s [21]:

Much more realistic than linear interpolation (averaging).
“setting a new milestone in visual quality” [21].
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Generative Adversarial Networks (GAN) example J. Fessler
ML for IR

From Google’s [21]:

Non-physical output!
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Adaptive regularization methods for inverse problems J. Fessler
ML for IR

I Data
I Population adaptive methods (e.g., X-ray CT)
I Patient adaptive methods (e.g., dynamic MRI?)

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transforms) approach

Many options...
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X-ray CT with learned sparsifying transforms J. Fessler
ML for IR

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach

26 / 71



Patch-wise transform sparsity model J. Fessler
ML for IR

Assumption: if x is a plausible image, then each ΩPmx is sparse.
I Pmx extracts the mth of M patches from x
I Ω is a square sparsifying transform matrix
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Sparsifying transform learning (population adaptive) J. Fessler
ML for IR

Given training images x1, . . . , xL from a representative population, find transform Ω∗
that best sparsifies their patches:

Ω∗ = arg min
Ω unitary

min
{z l,m}

L∑
l=1

M∑
m=1
‖ΩPmx l − z l ,m‖22 + α ‖z l ,m‖0

I Encourage aggregate sparsity, not patch-wise sparsity
(cf K-SVD [22])

I Non-convex due to unitary constraint and ‖·‖0
I Efficient alternating minimization algorithm [23]
• z update is simply hard thresholding
• Ω update is an orthogonal Procrustes problem (SVD)
• Subsequence convergence guarantees [23]
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Example of learned sparsifying transform J. Fessler
ML for IR

3D X-ray training data Parts of learned sparsifier Ω∗

(2D slices in x-y, x-z, y-z, from 3D image volume)
8× 8× 8 patches =⇒ Ω∗ is 83 × 83 = 512× 512

top 8× 8 slice of 256 of the 512 rows of Ω∗ ↑ 29 / 71



Regularizer based on learned sparsifying transform J. Fessler
ML for IR

Regularized inverse problem [24]:

x̂ = arg min
x
‖Ax − y‖2W + βR(x)

R(x) = min
{zm}

M∑
m=1
‖Ω∗Pmx − zm‖22 + α ‖zm‖0 .

Ω∗ adapted to population training data

Alternating minimization optimizer:
I zm update is simple hard thresholding
I x update is a quadratic problem: many options

Linearized augmented Lagrangian method (LALM) [25]
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Example: low-dose 3D X-ray CT simulation J. Fessler
ML for IR

X. Zheng, S. Ravishankar,
Y. Long, JF:
IEEE T-MI, June 2018 [24]

FDK

FDK

PWLS-EP

PWLS-EP

PWLS-ULTRA

PWLS-ULTRA
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3D X-ray CT simulation Error maps J. Fessler
ML for IR

0

100

FDK Error

0

100

PWLS-EP Error

0

100

PWLS-ULTRA Error

RMSE in HU
X-ray Intensity FDK EP ST Ω∗ ULTRA ULTRA-{τj}

1× 104 67.8 34.6 32.1 30.7 29.2
5× 103 89.0 41.1 37.3 35.7 34.2

I Physics / statistics provides dramatic improvement
I Data adaptive regularization further reduces RMSE

32 / 71



Union of Learned TRAnsforms (ULTRA) J. Fessler
ML for IR

Given training images x1, . . . , xL from a representative population, find a set of
transforms

{
Ω̂k
}K
k=1

that best sparsify image patches:

{
Ω̂k
}

= arg min
{Ωk unitary}

min
{kl,m∈{1,...,K}}

min
{z l,m}

L∑
l=1

M∑
m=1

∥∥∥Ωkl,mPmx l − z l ,m
∥∥∥2
2

+ α ‖z l ,m‖0

I Joint unsupervised clustering / sparsification
I Further nonconvexity due to clustering
I Efficient alternating minimization algorithm [26]
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Example: 3D X-ray CT learned set of transforms J. Fessler
ML for IR

Class 1 Class 2 Class 3 Class 4 Class 5

X. Zheng, S. Ravishankar, Y. Long, JF: IEEE T-MI, June 2018 [24]
34 / 71



Example: 3D X-ray CT ULTRA for chest scan J. Fessler
ML for IR

FDK PWLS-EP PWLS-ULTRA

Zheng et al., IEEE T-MI, June 2018 [24]
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X-ray CT with learned convolutional filters J. Fessler
ML for IR

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach

Drawback of basic patch-based methods:
512× 512× 512 3D X-ray CT image volume
8× 8× 8 patches
=⇒ 5123 · 83 · 4 = 256 Gbyte of patch data for stride=1
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Convolutional sparsity model J. Fessler
ML for IR

Assumption: There is a set of filters {hk}Kk=1
such that the images {hk ∗ x} are sparse for a plausible image x.
I For more plausible images, {hk ∗ x} is more sparse.
I ∗ denotes convolution
I Inherently shift invariant and no patches
Example (hand crafted filters):

1 90

1

60

1 6

1

6

1 90

1

60
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Sparsifying filter learning (population adaptive) J. Fessler
ML for IR

Given training images x1, . . . , xL from a representative population, find filters
{

ĥk
}K
k=1

that best sparsify them:{
ĥk
}

= arg min
{hk}∈H

min
{z l,k}

L∑
l=1

K∑
k=1
‖hk ∗ x l − z l ,k‖22 + α ‖z l ,k‖0

I To encourage filter diversity:
• H =

{
H : HH ′ = I

}
, H = [h1 . . . hK ]

• cf. tight-frame condition
∑K

k=1 ‖hk ∗ x‖22 ∝ ‖x‖
2
2

I Encourage aggregate sparsity, period
I Non-convex due to constraint H and ‖·‖0
I Efficient alternating minimization algorithm [27]
• z update is simply hard thresholding
• Filter update uses diagonal majorizer, proximal map (SVD)
• Subsequence convergence guarantees [27]
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Examples of learned sparsifying filters J. Fessler
ML for IR

2D X-ray CT training data and learned 5× 5 sparsifying filters
{

ĥk
}
[27]:

α = 10−4 α = 2×10−3
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Regularizer based on learned sparsifying filters J. Fessler
ML for IR

Regularized inverse problem [27]:

x̂ = arg min
x�0

‖Ax − y‖2W + βR(x)

R(x) = arg min
{zk}

K∑
k=1

∥∥∥ĥk ∗ x − zk
∥∥∥2
2

+ α ‖zk‖0 .

{
ĥk
}
adapted to population training data

Block proximal gradient with majorizer (BPG-M) optimizer:
I zk update is simple hard thresholding
I x update is a quadratic problem: diagonal majorizer
I. Y. Chun, JF, 2018, arXiv 1802.05584 [27]

41 / 71
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Example: sparse-view 2D X-ray CT simulation J. Fessler
ML for IR

Tr
ue

FB
P

EP

Ad
ap
tiv

e
CA

O
L
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Quantitative results J. Fessler
ML for IR

123 views (out of usual 984) =⇒ 8× dose reduction

RMSE (in HU):
FBP 82.8
EP 40.8

Adaptive filters 35.2

I Physics / statistics provides dramatic improvement
I Data-adaptive regularization further reduces RMSE
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Extension to multiple layers (cf CNN) I J. Fessler
ML for IR

Convolutional sparsity model: hk ∗ x is sparse for k = 1, . . . ,K1
Learning 1 “layer” of filters:

{ĥ[1]
k } = arg min

{h[1]
k }∈H

min
{z [1]

l,k}

L∑
l=1

K1∑
k=1

∥∥∥h[1]
k ∗ x l − z [1]

l ,k

∥∥∥2
2

+ α
∥∥∥z [1]

l ,k

∥∥∥
0
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Extension to multiple layers (cf CNN) II J. Fessler
ML for IR

Learning 2 layers of filters [27]:(
{ĥ[1]

k }, {ĥ
[2]
k }
)

= arg min
{h[1]

k },{h
[2]
k }∈H

min
{z [1]

l,k}
min
{z [2]

l,k}

L∑
l=1

K1∑
k=1

∥∥∥h[1]
k ∗ x l − z [1]

l ,k

∥∥∥2
2

+ α
∥∥∥z [1]

l ,k

∥∥∥
0

+
L∑

l=1

K2∑
k=1

∥∥∥h[2]
k ∗

(
Pkz [1]

l

)
− z [2]

l ,k

∥∥∥2
2

+ α
∥∥∥z [2]

l ,k

∥∥∥
0

Here Pk is a pooling operator for the output of first layer
Block proximal gradient with majorizer (BPG-M) optimizer
I. Y. Chun, JF, 2018, arXiv 1802.05584 [27]
Use multi-level learned filters as (interpretable?) regularizer for CT.
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MR with adapted dictionary J. Fessler
ML for IR

I Data
I Population adaptive methods
I Patient adaptive methods

I Spatial structure
I Patch-based models
I Convolutional models

I Regularizer formulation
I Synthesis (dictionary) approach
I Analysis (sparsifying transform) approach
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Patch-wise dictionary sparsity model J. Fessler
ML for IR

Assumption: if x is a plausible image, then each patch has
Pmx ≈ Dzm,

for a sparse coefficient vector zm. (Synthesis approach.)
I Pmx extracts the mth of M patches from x
I D is a (typically overcomplete) dictionary for patches

48 / 71



MR reconstruction using adaptive dictionary regularizer J. Fessler
ML for IR

Dictionary-blind MR image reconstruction:

x̂ = arg min
x

1
2 ‖y − Ax‖22 + βR(x)

R(x) = min
D∈D

min
Z ′∈C

M∑
m=1

(
‖Pmx −Dzm‖22 + λ2 ‖zm‖0

)
where Pm extracts mth of M image patches.
In words: of the many images...
Alternating (nested) minimization:
I Fixing x and D, update each row of Z = [z1 . . . zM ] sequentially via

hard-thresholding.
I Fixing x and Z , update D using SOUP-DIL [28].
I Fixing Z and D, updating x is a quadratic problem.
• Efficient FFT solution for single-coil Cartesian MRI.
• Use CG for non-Cartesian and/or parallel MRI.

I Non-convex, but monotone decreasing and some convergence theory [28].
49 / 71



2D CS MRI results I J. Fessler
ML for IR

Fully Sampled Zero-Filled SOUP-DILLO-MRI

Sampling (2.5×) Initial D Learned real{D} imag{D}

6× 6 patches
D ∈ C62×144

[28]
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2D CS MRI results II J. Fessler
ML for IR

Iteration Number

1 20 40 60 80 100

P
S

N
R

 (
d

B
)

24

26

28

30

32

34

36

38

SOUP-DILLO MRI

SOUP-DILLI MRI

(SNR compared to fully sam-
pled image.)
Using ‖zm‖0 leads to higher
SNR than ‖zm‖1.
Adaptive case is non-convex
anyway...
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2D CS MRI results III J. Fessler
ML for IR

(a) (b) (c) (d) (e) (f) (g)

Im. Samp. Acc. 0-fill Sparse
MRI PANO DLMRI SOUP-

DILLI
SOUP-
DILLO

a Cart. 7x 27.9 28.6 31.1 31.1 30.8 31.1
b Cart. 2.5x 27.7 31.6 41.3 40.2 38.5 42.3
c Cart. 2.5x 24.9 29.9 34.8 36.7 36.6 37.3
c Cart. 4x 25.9 28.8 32.3 32.1 32.2 32.3
d Cart. 2.5x 29.5 32.1 36.9 38.1 36.7 38.4
e Cart. 2.5x 28.1 31.7 40.0 38.0 37.9 41.5
f 2D rand. 5x 26.3 27.4 30.4 30.5 30.3 30.6
g Cart. 2.5x 32.8 39.1 41.6 41.7 42.2 43.2

Ref. [29] [30] [9] [28] [28]
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2D CS MRI results IV J. Fessler
ML for IR

DLMRI PANO FDLCP SOUP-DILLO

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

[9] [30] [31] [28]

Summary: 2D static MR reconstruction from under-sampled data
with adaptive dictionary learning and convergent algorithm,
faster than K-SVD approach of DLMRI.
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Summary of patch-based, data-driven adaptive regularizers J. Fessler
ML for IR

Use training data to learn:
• dictionary D (for patches)
• sparsifying transform(s) Ω (for patches)
• or convolutional versions thereof [32, 33]
ML-based regularized optimization problem using M image patches:

x̂ = arg min
x
‖Ax − y‖22 + βRML(x)

RML−DL(x) = min
{zm}

M∑
m=1
‖Pmx −Dzm‖22 + α ‖zm‖0

RML−ST(x) = min
{zm}

M∑
m=1
‖ΩPmx − zm‖22 + α ‖zm‖0

Alternative: blind adaptive learned dictionary [9] or learned sparsifying transform [34].
Double minimization (so very “deep?”) More interpretable than CNNs?
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Training an unrolled loop I J. Fessler
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Unrolled loop method with 20 layers trained with 1.3 · 106 MR image 8× 8 patches
Ravishankar et al., ISBI 2018 [15]
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Tested with 5 different MR images:
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Training an unrolled loop II J. Fessler
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Results:

Undersampling Image Zero-filled Sparse MRI UTMRI Unrolled
3.3× 1 25.6 26.7 28.3 28.2

2 25.2 26.6 27.9 27.8
3 26.0 27.3 29.3 28.9
4 25.4 26.7 28.2 28.1
5 27.2 28.9 30.6 30.3

Avg. PSNR change - - 1.36 2.98 2.78
5× 1 24.7 25.9 27.6 27.5

2 24.2 25.5 27.2 27.0
3 24.9 26.3 28.5 28.0
4 24.4 25.7 27.6 27.4
5 26.2 27.9 29.8 29.5

Avg. PSNR change - - 1.38 3.26 3.0
Approx recon time - - 100s 240s 50s

Sparse MRI [35] total variation (TV) and wavelets
UTMRI [26] (union of learned sparsifying transforms): adaptive, not “deep”
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Shallow machine learning for qMRI J. Fessler
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Quantitative MRI: images→ estimation → parameters (T1,T2,. . . )

I Traditional nonlinear estimation methods:
• nonlinear least squares
• dictionary matching (quantized maximum likelihood via variable projection)

I Machine-learning methods
• deep neural network regression [36–39]
Requires long training times
• parameter estimation via kernel regression (PERK)

Gopal Nataraj et al., ISBI 2017, IEEE T-MI 2018 [40, 41]
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Parameter estimation via kernel regression (PERK) example J. Fessler
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PERK applied to myelin water imaging J. Fessler
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6 parameters (T1 slow/fast, T2 slow/fast, M0, fast fraction)
Estimated from 3 optimized dual-echo steady state (DESS) scans [42]
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PERK training: 33.8s, testing 0.99s / slice
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PERK in vivo myelin water fraction results J. Fessler
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MESE scan took 32m (16m ×2)
DESS scan took 3m15s
Take away: “traditional” machine learning is still useful...

61 / 71



Outline J. Fessler
ML for IR

Introduction

ML-based image reconstruction approaches

Adaptive regularization
Patch-based adaptive regularizers
Convolutional adaptive regularizers
Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

62 / 71



Summary J. Fessler
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I Machine learning has great potential for medical imaging
I Much excitement but many challenges
I Image reconstruction seems especially suitable for ML ideas
I Data-driven, adaptive regularizers beneficial for low-dose CT and under-sampled

MRI
I More comparisons between model-based methods with adaptive regularizers and

CNN-based methods needed
I Machine learning tools like kernel regression remain useful
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Recommended reading (incomplete lists) J. Fessler
ML for IR

I Overviews: [43, 45, 46]
I Generative models: [20, 47]:
I Deep learning myths [48]
I NN complexity analysis / function approximation [49–51] [52]
I Application to MR fingerprinting [36, 39]
I MR reconstruction / enhancement using CNN [16, 53–60]
I Dynamic MR reconstruction using CNN [61]
I . . .
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Resources J. Fessler
ML for IR

Talk and code available online at
http://web.eecs.umich.edu/~fessler
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