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Slides and code J. Fessler

https://tinyurl.com/ml2-18-jf

I Slides with bibliography
I Jupyter notebook
• Julia code for all figures shown
• Ju=Julia py=python r=R
• Julia 1.0 released Aug. 2018
• SIAM Review paper [1]
• Convenience of scripting, performance of compiled code
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Machine learning definitions J. Fessler

I https://en.wikipedia.org/wiki/Machine_learning 2018-08-02:

“Machine learning is a subset of artificial intelligence in the field of computer
science that often uses statistical techniques to give computers the ability to “learn”
(i.e., progressively improve performance on a specific task) with data, without being
explicitly programmed.”

(Written by a computer scientist, not a statistician?)

I
Statistical perspective: “Machine learning is a field of
study concerned with making quantitative inferences
and predictions based on data.” (Clay Scott, 2016)

I ML is statistics without confidence intervals, p-values, or control of Type-I/II errors?
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ML definitions J. Fessler

Image credit:
https://www.reddit.com/r/ProgrammerHumor/

comments/88o6an/machine_learning/
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Machine learning categories J. Fessler

Application:
I classification (labeling / detection / segmentation)
I regression (parameter estimation / quantification)

Training method:
I supervised learning (labeled training data)
I unsupervised learning
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ML categories J. Fessler

Image credit: http://prooffreaderswhimsy.blogspot.com/2014/11/machine-learning.html
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Unsupervised vs Supervised Learning J. Fessler

Unsupervised Supervised

Domain experts needed...
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Supervised learning overview: classification J. Fessler

Given paired (feature,label) training data:
(x1, y1), . . . (xN , yN)

Example:
• x ∈ R2

• y ∈ {class1=blue, class2=red}

0 14
x1

0

14

x 2

class1
class2
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Given paired (feature,label) training data:
(x1, y1), . . . (xN , yN)

Goal: predict output (e.g., class) y
for a subsequent test feature x

A classifier is a function y = f (x) that maps
a feature vector into a class label,
i.e., f : Rd 7→ {1, . . . ,K} .
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Supervised learning overview: regression J. Fessler

Given paired (feature,label) training data:
(x1, y1), . . . (xN , yN).

Example:
• x ∈ R
• y ∈ R

0 5 10
x

0

4

8

y

training data
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Supervised learning overview: regression J. Fessler

Given paired (feature,label) training data:
(x1, y1), . . . (xN , yN).

Goal: predict output (e.g., value) y
for a subsequent test feature x.

Key challenge in supervised learning is
generalization beyond training data
for future predictions. 0 5 10

x

0

4

8

y

training data
cubic regression
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Unsupervised learning overview: clustering J. Fessler

No labels, just feature vector training data
x1, . . . , xN .

Example:
• x ∈ R2

0 14
x1

0

14

x 2

training data
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Unsupervised learning overview: clustering J. Fessler

No labels, just feature vector training data
x1, . . . , xN .

Goal: understand data structure
• Clustering
• Dimensionality reduction
• Density estimation

0 14
x1

0

14

x 2

cluster1
cluster2
cluster3
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Unsupervised learning overview: clustering J. Fessler

No labels, just feature vector training data
x1, . . . , xN .

Another unsupervised learning problem:
novelty detection.

Many other ML problems...
0 14

x1

0

14

x 2
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More categories of ML methods J. Fessler

Distribution assumptions
I Generative: full probabilistic model for data
I Discriminative: partial or no probabilistic model

Model type / complexity:
I parametric: number of model parameters is independent of sample size
I nonparametric: number of model parameters grows with sample size

Computational form
I Linear: output y is a linear / affine function of input x
I Nonlinear
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Why nonlinearity? (Classification) J. Fessler

Example: supervised classifier learning
x = x1 ∈ R

x ∈ R2, x2 , |x1|

-6 -3 0 3 6
x1

class1
class2

-6 -3 0 3 6
x1

0

5

10

x 2

class1
class2

In this (simple, synthetic) example, nonlinear “lifting” from 1D to 2D enables a basic
“linear” classifier from (x1, x2) = (x1, |x1|).
(Inspired by https://www.youtube.com/watch?v=3liCbRZPrZA)
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Why nonlinearity? (2D Classification case) J. Fessler

x = (x1, x2) ∈ R2

x ∈ R3, x3 , |x1|+ |x2|

-6 0 6
x1

-6

0

6
x 2

class1
class2

x1
-6 0 6 x2-6

0
6

x 3
=

|x
1|

+
|x

2|

0

2

4

6

8

class1
class2

One additional nonlinear “feature” enables linear separation: x = (x1, x2, |x1|+ |x2|)
Many artificial neural nets (ANNs) use nonlinear rectified linear unit:
ReLU(x) = max(x , 0), where |x | = ReLU(x) + ReLU(−x).
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Why nonlinearity? (Regression) J. Fessler

0 5 10
x

0

4

8

y

training data for regression
cubic: y = 3x3 + 2x2 + 1x + 0
linear (affine): y = 1x + 0
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Why linearity? J. Fessler

Assuming:
• Normal distributions
• Equal covariances
Optimal decision boundary is a line in 2D
(hyperplane in general)
Optimal classifier is (mostly) linear:

y =
{

class1, w ′x < threshold
class2, otherwise

0 4 8 12 16
x1

0

4

8

12

16

x 2

class1
class2

https://en.wikipedia.org/wiki/Linear_discriminant_analysis
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Training / Validation / Testing J. Fessler

I Most ML methods lack p-values, confidence intervals, Type I/II error formulae, ...
I Performance evaluation is performed empirically using testing data,
I after training the method (“learning”) using training data.

0 5 10
x

0

4

8

y

training data
test data
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Model-order selection J. Fessler

ML methods have two categories of design choices:
• Architecture / model order
• Tunable parameters (coefficients)
We can learn the coefficients from training data for any given model order:

0 5 10
x

0

4

8

y

training data
2 harmonics
9 harmonics
20 harmonics
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Training data: not for model selection J. Fessler

Fitting “error” with various numbers of sinusoids:

0 10 20 30
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data

0 10 20 30
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data
fit to test data

• More sinusoids (more degrees of freedom / larger model order)
=⇒ “better” fit to the training data

• Over-fit if model order is “too high” =⇒ poor generalization / test results
• Cannot use the test data for training / model-order selection!
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Validation data (e.g., cross validation) J. Fessler

Separate training data into two groups:
I training data

for fitting parameters (coefficients)
I validation data

for selecting model order / architecture

0 5 10
x

0

4

8

y

training data (fitting)
validation data (model selection)

• (50-50% holdout shown here; one of many cross validation options)
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Validation data for model-order selection J. Fessler

0 7 20
model order: # of sinusoids

0

13
fit

:
||y

y|
| 2

fit to training data
fit to validation data

0 7 20
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data
fit to validation data
fit to test data

I Options for model-order selection:
• Choose minimum of validation loss curve
• Stop increasing model order when validation loss first increases
(first sign of over-fitting)

I Attempts to assess how well the results will generalize to new data (red vs cyan)

23 / 55



Validation data for model-order selection J. Fessler

0 7 20
model order: # of sinusoids

0

13
fit

:
||y

y|
| 2

fit to training data
fit to validation data

0 7 20
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data
fit to validation data
fit to test data

I Options for model-order selection:
• Choose minimum of validation loss curve
• Stop increasing model order when validation loss first increases
(first sign of over-fitting)

I Attempts to assess how well the results will generalize to new data (red vs cyan)

23 / 55



Validation data for model-order selection J. Fessler

0 7 20
model order: # of sinusoids

0

13
fit

:
||y

y|
| 2

fit to training data
fit to validation data

0 7 20
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data
fit to validation data
fit to test data

I Options for model-order selection:
• Choose minimum of validation loss curve
• Stop increasing model order when validation loss first increases
(first sign of over-fitting)

I Attempts to assess how well the results will generalize to new data (red vs cyan)

23 / 55



Outline J. Fessler

Introduction

Data: Train/Validate/Test

Training

Artificial NN example

ML in medical imaging (time permitting)

Bibliography

24 / 55



Training an artificial neural network: overview J. Fessler

Input:
features →

artificial
NN → Output:

prediction

Goal (supervised learning):
train NN so that output closely matches training data, without over fitting

(requires math...)

25 / 55



Training an artificial neural network: details J. Fessler

Input:
features
x ∈ Rd

→
NN

parameters
θ

→

Output:
prediction:

response (regression)
ŷ = f (x;θ) ∈ Rm

I Supervised training problem: given training data (x1, y1), . . . , (xN , yN),
learn parameters θ of NN so that ŷn , f (xn;θ) ≈ yn.

I Quantify “≈” using a loss function `(ŷn, yn) such as `(ŷ , y) = ‖ŷ − y‖22 .

I Training is an optimization problem (minimize average loss):

θ∗ = arg min
θ

L(θ; X ,Y ), L(θ; X ,Y ) , 1
N

N∑
n=1

`(f (xn;θ), yn).
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I Training is an optimization problem (minimize average loss):

θ∗ = arg min
θ

L(θ; X ,Y ), L(θ; X ,Y ) , 1
N

N∑
n=1

`(f (xn;θ), yn).

26 / 55



Simplest example: affine NN (dense / fully connected) J. Fessler

x2 Σ ŷ = f (x,θ) = W x + b
Output

x1
Input

xd

...

Bias
b

w1
w2

w d

• x ∈ Rd is input
• W ∈ Rm×d are weights
• b ∈ Rm is offset or bias
• y ∈ Rm is output (response / prediction)
• NN parameters are weights and bias: θ = (W ,b)
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Training an affine NN J. Fessler

Squared error loss: `(ŷ , y) = ‖ŷ − y‖22 =⇒ training cost function is:

L(θ; X ,Y ) =
∥∥∥[y1 . . . yN

]
−W

[
x1 . . . xN

]
− b1′N

∥∥∥2
F
.

Optimization has analytical solution from ∇θL = 0, leads to MMSE form:

ŷ = f (x,θ∗) = µy + Kyx K−1x︸ ︷︷ ︸
W ∗

(x − µx ), µx = 1
N

N∑
n=1

xn, µy = 1
N

N∑
n=1

yn,

Kx = 1
N

N∑
n=1

(xn − µx )(xn − µx )′, Kyx = 1
N

N∑
n=1

(yn − µy )(xn − µx )′.

I Need N ≥ d so that feature covariance matrix Kx is invertible
(more training samples N than feature dimension d).
Otherwise some regularization of weights is needed.

I This simple case is one of very few with analytical (noniterative) solution for θ∗
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Training an affine NN J. Fessler
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Nonlinear artificial neuron J. Fessler

Perceptron: Rosenblatt, 1957 [2]

x2 Σ
nonlinearity

ψ
ŷ = ψ(W x + b)

Output
x1

Input

xd

...

Bias
b

w1
w2

w d

I No analytical solution for training NN parameters W ,b
I Iterative methods required
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Kernel ridge regression (nonlinearity) J. Fessler

x →
Nonlinear
function

φ : Rd 7→ RD
→ z →

Affine
function
W z + b

→ ŷ = f (x;θ) = Wφ(x) + b ∈ Rm

For MSE training loss and fixed φ, MMSE estimator is

ŷ = µy + Kyz K−1z (z − µz) = µy + Kyz K−1z (φ(x)− µz), µz = 1
N

N∑
n=1

zn,

zn , φ(xn), K z = 1
N

N∑
n=1

(zn − µz)(zn − µz)′, Kyz = 1
N

N∑
n=1

(yn − µy )(zn − µz)′.

I Typically D = dim(z)� d = dim(x), so even more samples N could be needed.
I Solution is to use ridge regression: replace K−1z with (K z + αI)−1;

choose α by cross validation.
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ŷ = µy + Kyz K−1z (z − µz) = µy + Kyz K−1z (φ(x)− µz), µz = 1
N

N∑
n=1

zn,

zn , φ(xn), K z = 1
N

N∑
n=1

(zn − µz)(zn − µz)′, Kyz = 1
N

N∑
n=1

(yn − µy )(zn − µz)′.

I Typically D = dim(z)� d = dim(x), so even more samples N could be needed.
I Solution is to use ridge regression: replace K−1z with (K z + αI)−1;

choose α by cross validation.
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Kernel ridge regression (nonlinearity) J. Fessler

x →
Nonlinear
function

φ : Rd 7→ RD
→ z →

Affine
function
W z + b

→ ŷ = f (x;θ) = Wφ(x) + b ∈ Rm

For MSE training loss and fixed φ, MMSE estimator is

ŷ = µy + Kyz K−1z (z − µz) = µy + Kyz K−1z (φ(x)− µz), µz = 1
N

N∑
n=1

zn,
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N
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Kernel ridge regression universality J. Fessler

x →
Nonlinear
function

φ : Rd 7→ RD
→ z → Affine

function → ŷ = Wφ(x) + b

I Affine function W z + b is same as a fully connected NN layer without nonlinearity.
I Choosing a nonlinear function φ based on a Gaussian kernel is universal:

can approximate regular functions to arbitrary accuracy as N increases [3, 4] using:

φ(x) =
[
e−‖x−x1‖2Λ . . . e−‖x−xN‖2Λ

]T
.

I Training is very easy and fast because only free parameters are linear ones: W and b
I Shallow learning
I Suitable for low-dimensional problems like parameter quantification.
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Quantitative MRI example J. Fessler

Quantitative MRI: images→ estimation → parameters (T1,T2,. . . )

I Traditional nonlinear estimation methods:
• nonlinear least squares
• dictionary matching (quantized maximum likelihood via variable projection)

I Machine-learning methods
• deep neural network regression [5–8]
typically long training times
• parameter estimation via kernel regression (PERK)

Gopal Nataraj et al., ISBI 2017 [9], IEEE T-MI 2018 [3], arXiv 1809.08908 [10], poster #65 [11]
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MWF PERK example J. Fessler

Myelin water fraction (MWF) estimated from 3 DESS scans
with optimized flip angles 33.0, 18.3, 15.1◦ and TRs 17.5, 30.2, 60.3 ms. [10–12]

1 200

1

200

→ PERK →

1 200

1

200 0

0.3

For details, see Gopal Nataraj at poster #65
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Training as an optimization problem J. Fessler

Input → NN with parameters θ → Output
Learning NN parameters (training) requires optimization (minimize average loss):

θ∗ = arg min
θ

L(θ; X ,Y ), L(θ; X ,Y ) , 1
N
∑N

n=1 `(f (xn;θ), yn)

I Cannot solve ∇θL = 0 analytically in general.
I Natural approach is (slow!) gradient descent iteration for k = 0, 1, . . .

θk+1 = θk − α∇θL(θk),

• step size α > 0 aka “learning rate”
• the gradient ∇θL(θk) is the vector of partial derivatives of the loss function
w.r.t. every NN parameter.
• Initializer θ0 often random
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Accelerating training J. Fessler

I Use mini-batch approximation to gradient of loss:

∇θL(θk) = 1
N

N∑
n=1︸ ︷︷ ︸

all data

∇θ`(f (xn;θk), yn) ≈ 1
|Sk |

∑
n∈Sk︸ ︷︷ ︸

some data

∇θ`(f (xn;θk), yn),

where Sk is a (often random) subset of the data at kth iteration.
• Mini-batch size often matched to # of compute threads.
• Aka stochastic gradient descent (SGD) or incremental gradients.

I Momentum
I Automated step-size selection [13]
I Use GPUs...
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Backpropagation J. Fessler

The gradient operation looks simple on paper:

∇θ`(f (x;θ), y) =


∂
∂θ1
`(f (x;θ), y)

...
∂
∂θK

`(f (x;θ), y)

 ,
but for deep networks the model is a cascade of many functions, one per layer:

x → f1(·;θ) → f2(·;θ) → · · · → fL(·;θ) → f (x;θ) = fL(· · · f2(f1(x;θ);θ);θ).

I In practice most layers have different parameters, but some parameters may affect
multiple layers (especially RNN)

I Backpropagation = chain rule for differentiation, hopefully efficiently coded [14] [15]
I Convenient software tools provide automatic differentiation

(Python: TensorFlow, PyTorch, ...) (Julia: Flux, ...) (Matlab: MatConvNet?)

36 / 55



Backpropagation J. Fessler

The gradient operation looks simple on paper:

∇θ`(f (x;θ), y) =


∂
∂θ1
`(f (x;θ), y)

...
∂
∂θK

`(f (x;θ), y)

 ,
but for deep networks the model is a cascade of many functions, one per layer:

x → f1(·;θ) → f2(·;θ) → · · · → fL(·;θ) → f (x;θ) = fL(· · · f2(f1(x;θ);θ);θ).

I In practice most layers have different parameters, but some parameters may affect
multiple layers (especially RNN)

I Backpropagation = chain rule for differentiation, hopefully efficiently coded [14] [15]
I Convenient software tools provide automatic differentiation

(Python: TensorFlow, PyTorch, ...) (Julia: Flux, ...) (Matlab: MatConvNet?)
36 / 55



Backpropagation illustration (1) J. Fessler

Consider a two-layer NN with a single weight to be learned in the first layer:

Input
x → Layer1

hw (·)
hw (x)
−−−−→ Layer2

g(·)
g(hw (x))
−−−−−−−→ Output

ŷ = g(hw (x)) →
Loss
L(w)

Loss function for a single training sample:

L(w) = `(g(hw (x)), y).

Chain rule for derivative of loss w.r.t. weight w :

∂

∂w L(w) = L̇(w) = ∂

∂w `(fw (x), y) = ˙̀(g(hw (x)), y) ġ(hw (x)) ḣw (x).

Two key ingredients two compute:
• Model at each layer of NN
• Derivatives of model at each layer, evaluated at layer input
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Backpropagation illustration (2) J. Fessler

L̇(w) = ˙̀(g(hw (x)), y) ġ(hw (x)) ḣw (x)
= ḣw (x) ġ(hw (x)) ˙̀(g(hw (x)), y).
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Supervised NN training example: binary classification J. Fessler

-6 0 6
x1

-6

0

6
x 2

class1
class2

x1

x2
Output

Hidden
layer

Input
layer

Output
layer

• Nonlinearity is essential here

• Each hidden node is a perceptron with ReLU(x) = max(x , 0)
• Train output to be 1 for class2 and -1 for class1.
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Example Flux code J. Fessler

I Julia’s Flux library [16] http://fluxml.ai/Flux.jl
I ML ingredients: training data (X ,Y ), model/architecture, loss function, optimizer
I For full Jupyter notebook see https://tinyurl.com/ml2-18-jf

nhidden = 10 # neurons in hidden layer
model = Chain ( Dense (2, nhidden ,relu), Dense (nhidden ,1)) # NN arch
loss(x, y) = mse( model (x), y)
iters = 10000 # hand crafted ...
dataset = Base. Iterators . repeated ((X, Y), iters )
Flux. train !( loss , dataset , ADAM( params ( model )))
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Flux NN training J. Fessler
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Flux results for binary classification J. Fessler

Classifier results Hidden layer functions

-6 0 6
x1

-6

0

6

x 2

Class 1
Class 2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

-6 0 6
-6

0

6

-6 0 6
-6

0

6

-6 0 6
-6

0

6

-6 0 6
-6

0

6

-6 0 6
-6

0

6

-6 0 6
-6

0

6

-6 0 6
x1

-6

0

6

x 2

-6 0 6
-6

0

6

-6 0 6
-6

0

6

0

2

4

0

5

10

0

2

4

0

1

2

0

5

0

2

4

0

1

2

0

2

4

0

2

4

Principles generalize from binary classification to multiclass problems.
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NN-based denoising example J. Fessler

See https://tinyurl.com/ml2-18-jf
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Outline J. Fessler

Introduction

Data: Train/Validate/Test

Training

Artificial NN example

ML in medical imaging (time permitting)

Bibliography
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Roles for machine learning in medical imaging J. Fessler

I Image analysis (post-processing):
• classification: diagnosis / segmentation / treatment planning, ...
• regression: localization / registration / quantification, ...
(object size, e.g., vessel diameter, contrast concentration, T1, T2, ...)

I Image reconstruction
I Image acquisition
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Machine learning in medical image interpretation J. Fessler

Most obvious place for machine learning is post-processing:

reconstructed
images

x̂
→

ML-based
image processing
(classification
or regression)

→ interpretation

Special issue of IEEE Trans. on Med. Imaging, May 2016 [17]
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Machine learning in medical image reconstruction J. Fessler

raw data
y → ML-based

image reconstruction → images
x̂

Special issue of IEEE Trans. on Medical Imaging, June 2018 [18]
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Machine learning in medical imaging: scan design J. Fessler

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂

−−−−−→

Analyze
Diagnose
Quantify
Interpret
Intervene

I Choose best k-space phase encoding locations based on training images:
• “Learning-based compressive MRI” [19, 20]
(Volkan Cevher group, June 2018 IEEE T-MI)
• Yue Cao and David Levin, MRM Sep. 1993 “Feature recognizing MRI” [21–23]

I Process fMRI data in real time, provide brain-state feedback to subject [24, 25]
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Recommended reading (incomplete lists) J. Fessler

I Machine learning books: [26] [27] [28] [29] [30] [31] [32] [33]
I Survey paper(s) [34]
I Optimization: [35]
I DL overviews: [36–38]
I Generative models: [39, 40]:
I Deep learning myths [41]
I NN complexity analysis / function approximation [42–44] [45]
I Application to MR fingerprinting [5, 8]
I MR reconstruction / enhancement using CNN [46–54]
I Dynamic MR reconstruction using CNN [55]
I . . .
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Resources J. Fessler

Talk and code available online at
https://tinyurl.com/ml2-18-jf
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