
Basic introduction to machine learning J. Fessler

Jeffrey A. Fessler

EECS Department, BME Department, Dept. of Radiology
University of Michigan

ISMRM workshop on Machine Learning II

2018-10-26

Declaration: No relevant financial interests or relationships to disclose

1 / 55

Outline J. Fessler

Introduction

Data: Train/Validate/Test

Training

Artificial NN example

ML in medical imaging (time permitting)

Bibliography

2 / 55

Outline J. Fessler

Introduction

Data: Train/Validate/Test

Training

Artificial NN example

ML in medical imaging (time permitting)

Bibliography

3 / 55

Slides and code J. Fessler

https://tinyurl.com/ml2-18-jf

I Slides with bibliography
I Jupyter notebook
• Julia code for all figures shown
• Ju=Julia py=python r=R
• Julia 1.0 released Aug. 2018
• SIAM Review paper [1]
• Convenience of scripting, performance of compiled code

4 / 55

https://tinyurl.com/ml2-18-jf

Machine learning definitions J. Fessler

I https://en.wikipedia.org/wiki/Machine_learning 2018-08-02:

“Machine learning is a subset of artificial intelligence in the field of computer
science that often uses statistical techniques to give computers the ability to “learn”
(i.e., progressively improve performance on a specific task) with data, without being
explicitly programmed.”

(Written by a computer scientist, not a statistician?)

I
Statistical perspective: “Machine learning is a field of
study concerned with making quantitative inferences
and predictions based on data.” (Clay Scott, 2016)

I ML is statistics without confidence intervals, p-values, or control of Type-I/II errors?

5 / 55

https://en.wikipedia.org/wiki/Machine_learning

Machine learning definitions J. Fessler

I https://en.wikipedia.org/wiki/Machine_learning 2018-08-02:

“Machine learning is a subset of artificial intelligence in the field of computer
science that often uses statistical techniques to give computers the ability to “learn”
(i.e., progressively improve performance on a specific task) with data, without being
explicitly programmed.”
(Written by a computer scientist, not a statistician?)

I
Statistical perspective: “Machine learning is a field of
study concerned with making quantitative inferences
and predictions based on data.” (Clay Scott, 2016)

I ML is statistics without confidence intervals, p-values, or control of Type-I/II errors?

5 / 55

https://en.wikipedia.org/wiki/Machine_learning

Machine learning definitions J. Fessler

I https://en.wikipedia.org/wiki/Machine_learning 2018-08-02:

“Machine learning is a subset of artificial intelligence in the field of computer
science that often uses statistical techniques to give computers the ability to “learn”
(i.e., progressively improve performance on a specific task) with data, without being
explicitly programmed.”
(Written by a computer scientist, not a statistician?)

I
Statistical perspective: “Machine learning is a field of
study concerned with making quantitative inferences
and predictions based on data.” (Clay Scott, 2016)

I ML is statistics without confidence intervals, p-values, or control of Type-I/II errors?

5 / 55

https://en.wikipedia.org/wiki/Machine_learning

Machine learning definitions J. Fessler

I https://en.wikipedia.org/wiki/Machine_learning 2018-08-02:

“Machine learning is a subset of artificial intelligence in the field of computer
science that often uses statistical techniques to give computers the ability to “learn”
(i.e., progressively improve performance on a specific task) with data, without being
explicitly programmed.”
(Written by a computer scientist, not a statistician?)

I
Statistical perspective: “Machine learning is a field of
study concerned with making quantitative inferences
and predictions based on data.” (Clay Scott, 2016)

I ML is statistics without confidence intervals, p-values, or control of Type-I/II errors?

5 / 55

https://en.wikipedia.org/wiki/Machine_learning

ML definitions J. Fessler

Image credit:
https://www.reddit.com/r/ProgrammerHumor/

comments/88o6an/machine_learning/

6 / 55

https://www.reddit.com/r/ProgrammerHumor/comments/88o6an/machine_learning/
https://www.reddit.com/r/ProgrammerHumor/comments/88o6an/machine_learning/

Machine learning categories J. Fessler

Application:
I classification (labeling / detection / segmentation)
I regression (parameter estimation / quantification)

Training method:
I supervised learning (labeled training data)
I unsupervised learning

7 / 55

Machine learning categories J. Fessler

Application:
I classification (labeling / detection / segmentation)
I regression (parameter estimation / quantification)

Training method:
I supervised learning (labeled training data)
I unsupervised learning

7 / 55

ML categories J. Fessler

Image credit: http://prooffreaderswhimsy.blogspot.com/2014/11/machine-learning.html

8 / 55

http://prooffreaderswhimsy.blogspot.com/2014/11/machine-learning.html

Unsupervised vs Supervised Learning J. Fessler

Unsupervised Supervised

Domain experts needed...

9 / 55

Supervised learning overview: classification J. Fessler

Given paired (feature,label) training data:
(x1, y1), . . . (xN , yN)

Example:
• x ∈ R2

• y ∈ {class1=blue, class2=red}

0 14
x1

0

14

x 2

class1
class2

10 / 55

Supervised learning overview: classification J. Fessler

Given paired (feature,label) training data:
(x1, y1), . . . (xN , yN)

Goal: predict output (e.g., class) y
for a subsequent test feature x

A classifier is a function y = f (x) that maps
a feature vector into a class label,
i.e., f : Rd 7→ {1, . . . ,K} .

0 14
x1

0

14

x 2

class1
class2

10 / 55

Supervised learning overview: regression J. Fessler

Given paired (feature,label) training data:
(x1, y1), . . . (xN , yN).

Example:
• x ∈ R
• y ∈ R

0 5 10
x

0

4

8

y

training data

11 / 55

Supervised learning overview: regression J. Fessler

Given paired (feature,label) training data:
(x1, y1), . . . (xN , yN).

Goal: predict output (e.g., value) y
for a subsequent test feature x.

Key challenge in supervised learning is
generalization beyond training data
for future predictions. 0 5 10

x

0

4

8

y

training data
cubic regression

11 / 55

Unsupervised learning overview: clustering J. Fessler

No labels, just feature vector training data
x1, . . . , xN .

Example:
• x ∈ R2

0 14
x1

0

14

x 2

training data

12 / 55

Unsupervised learning overview: clustering J. Fessler

No labels, just feature vector training data
x1, . . . , xN .

Goal: understand data structure
• Clustering
• Dimensionality reduction
• Density estimation

0 14
x1

0

14

x 2

cluster1
cluster2
cluster3

12 / 55

Unsupervised learning overview: clustering J. Fessler

No labels, just feature vector training data
x1, . . . , xN .

Another unsupervised learning problem:
novelty detection.

Many other ML problems...
0 14

x1

0

14

x 2

12 / 55

More categories of ML methods J. Fessler

Distribution assumptions
I Generative: full probabilistic model for data
I Discriminative: partial or no probabilistic model

Model type / complexity:
I parametric: number of model parameters is independent of sample size
I nonparametric: number of model parameters grows with sample size

Computational form
I Linear: output y is a linear / affine function of input x
I Nonlinear

13 / 55

Why nonlinearity? (Classification) J. Fessler

Example: supervised classifier learning
x = x1 ∈ R

x ∈ R2, x2 , |x1|

-6 -3 0 3 6
x1

class1
class2

-6 -3 0 3 6
x1

0

5

10

x 2

class1
class2

In this (simple, synthetic) example, nonlinear “lifting” from 1D to 2D enables a basic
“linear” classifier from (x1, x2) = (x1, |x1|).
(Inspired by https://www.youtube.com/watch?v=3liCbRZPrZA)

14 / 55

https://www.youtube.com/watch?v=3liCbRZPrZA

Why nonlinearity? (Classification) J. Fessler

Example: supervised classifier learning
x = x1 ∈ R x ∈ R2, x2 , |x1|

-6 -3 0 3 6
x1

class1
class2

-6 -3 0 3 6
x1

0

5

10

x 2

class1
class2

In this (simple, synthetic) example, nonlinear “lifting” from 1D to 2D enables a basic
“linear” classifier from (x1, x2) = (x1, |x1|).
(Inspired by https://www.youtube.com/watch?v=3liCbRZPrZA)

14 / 55

https://www.youtube.com/watch?v=3liCbRZPrZA

Why nonlinearity? (2D Classification case) J. Fessler

x = (x1, x2) ∈ R2

x ∈ R3, x3 , |x1|+ |x2|

-6 0 6
x1

-6

0

6
x 2

class1
class2

x1
-6 0 6 x2-6

0
6

x 3
=

|x
1|

+
|x

2|

0

2

4

6

8

class1
class2

One additional nonlinear “feature” enables linear separation: x = (x1, x2, |x1|+ |x2|)
Many artificial neural nets (ANNs) use nonlinear rectified linear unit:
ReLU(x) = max(x , 0), where |x | = ReLU(x) + ReLU(−x).

15 / 55

Why nonlinearity? (2D Classification case) J. Fessler

x = (x1, x2) ∈ R2 x ∈ R3, x3 , |x1|+ |x2|

-6 0 6
x1

-6

0

6
x 2

class1
class2

x1
-6 0 6 x2-6

0
6

x 3
=

|x
1|

+
|x

2|

0

2

4

6

8

class1
class2

One additional nonlinear “feature” enables linear separation: x = (x1, x2, |x1|+ |x2|)

Many artificial neural nets (ANNs) use nonlinear rectified linear unit:
ReLU(x) = max(x , 0), where |x | = ReLU(x) + ReLU(−x).

15 / 55

Why nonlinearity? (2D Classification case) J. Fessler

x = (x1, x2) ∈ R2 x ∈ R3, x3 , |x1|+ |x2|

-6 0 6
x1

-6

0

6
x 2

class1
class2

x1
-6 0 6 x2-6

0
6

x 3
=

|x
1|

+
|x

2|

0

2

4

6

8

class1
class2

One additional nonlinear “feature” enables linear separation: x = (x1, x2, |x1|+ |x2|)
Many artificial neural nets (ANNs) use nonlinear rectified linear unit:
ReLU(x) = max(x , 0), where |x | = ReLU(x) + ReLU(−x).

15 / 55

Why nonlinearity? (Regression) J. Fessler

0 5 10
x

0

4

8

y

training data for regression
cubic: y = 3x3 + 2x2 + 1x + 0
linear (affine): y = 1x + 0

16 / 55

Why linearity? J. Fessler

Assuming:
• Normal distributions
• Equal covariances
Optimal decision boundary is a line in 2D
(hyperplane in general)
Optimal classifier is (mostly) linear:

y =
{

class1, w ′x < threshold
class2, otherwise

0 4 8 12 16
x1

0

4

8

12

16

x 2

class1
class2

https://en.wikipedia.org/wiki/Linear_discriminant_analysis

17 / 55

https://en.wikipedia.org/wiki/Linear_discriminant_analysis

Outline J. Fessler

Introduction

Data: Train/Validate/Test

Training

Artificial NN example

ML in medical imaging (time permitting)

Bibliography

18 / 55

Training / Validation / Testing J. Fessler

I Most ML methods lack p-values, confidence intervals, Type I/II error formulae, ...
I Performance evaluation is performed empirically using testing data,
I after training the method (“learning”) using training data.

0 5 10
x

0

4

8

y

training data
test data

19 / 55

Model-order selection J. Fessler

ML methods have two categories of design choices:
• Architecture / model order
• Tunable parameters (coefficients)
We can learn the coefficients from training data for any given model order:

0 5 10
x

0

4

8

y

training data
2 harmonics
9 harmonics
20 harmonics

20 / 55

Training data: not for model selection J. Fessler

Fitting “error” with various numbers of sinusoids:

0 10 20 30
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data

0 10 20 30
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data
fit to test data

• More sinusoids (more degrees of freedom / larger model order)
=⇒ “better” fit to the training data

• Over-fit if model order is “too high” =⇒ poor generalization / test results
• Cannot use the test data for training / model-order selection!

21 / 55

Training data: not for model selection J. Fessler

Fitting “error” with various numbers of sinusoids:

0 10 20 30
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data

0 10 20 30
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data
fit to test data

• More sinusoids (more degrees of freedom / larger model order)
=⇒ “better” fit to the training data
• Over-fit if model order is “too high” =⇒ poor generalization / test results

• Cannot use the test data for training / model-order selection!

21 / 55

Training data: not for model selection J. Fessler

Fitting “error” with various numbers of sinusoids:

0 10 20 30
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data

0 10 20 30
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data
fit to test data

• More sinusoids (more degrees of freedom / larger model order)
=⇒ “better” fit to the training data
• Over-fit if model order is “too high” =⇒ poor generalization / test results
• Cannot use the test data for training / model-order selection!

21 / 55

Validation data (e.g., cross validation) J. Fessler

Separate training data into two groups:
I training data

for fitting parameters (coefficients)
I validation data

for selecting model order / architecture

0 5 10
x

0

4

8

y

training data (fitting)
validation data (model selection)

• (50-50% holdout shown here; one of many cross validation options)

22 / 55

http://en.wikipedia.org/wiki/Cross-validation_(statistics)

Validation data for model-order selection J. Fessler

0 7 20
model order: # of sinusoids

0

13
fit

:
||y

y|
| 2

fit to training data
fit to validation data

0 7 20
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data
fit to validation data
fit to test data

I Options for model-order selection:
• Choose minimum of validation loss curve
• Stop increasing model order when validation loss first increases
(first sign of over-fitting)

I Attempts to assess how well the results will generalize to new data (red vs cyan)

23 / 55

Validation data for model-order selection J. Fessler

0 7 20
model order: # of sinusoids

0

13
fit

:
||y

y|
| 2

fit to training data
fit to validation data

0 7 20
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data
fit to validation data
fit to test data

I Options for model-order selection:
• Choose minimum of validation loss curve
• Stop increasing model order when validation loss first increases
(first sign of over-fitting)

I Attempts to assess how well the results will generalize to new data (red vs cyan)

23 / 55

Validation data for model-order selection J. Fessler

0 7 20
model order: # of sinusoids

0

13
fit

:
||y

y|
| 2

fit to training data
fit to validation data

0 7 20
model order: # of sinusoids

0

13

fit
:

||y
y|

| 2

fit to training data
fit to validation data
fit to test data

I Options for model-order selection:
• Choose minimum of validation loss curve
• Stop increasing model order when validation loss first increases
(first sign of over-fitting)

I Attempts to assess how well the results will generalize to new data (red vs cyan)

23 / 55

Outline J. Fessler

Introduction

Data: Train/Validate/Test

Training

Artificial NN example

ML in medical imaging (time permitting)

Bibliography

24 / 55

Training an artificial neural network: overview J. Fessler

Input:
features →

artificial
NN → Output:

prediction

Goal (supervised learning):
train NN so that output closely matches training data, without over fitting

(requires math...)

25 / 55

Training an artificial neural network: details J. Fessler

Input:
features
x ∈ Rd

→
NN

parameters
θ

→

Output:
prediction:

response (regression)
ŷ = f (x;θ) ∈ Rm

I Supervised training problem: given training data (x1, y1), . . . , (xN , yN),
learn parameters θ of NN so that ŷn , f (xn;θ) ≈ yn.

I Quantify “≈” using a loss function `(ŷn, yn) such as `(ŷ , y) = ‖ŷ − y‖22 .

I Training is an optimization problem (minimize average loss):

θ∗ = arg min
θ

L(θ; X ,Y), L(θ; X ,Y) , 1
N

N∑
n=1

`(f (xn;θ), yn).

26 / 55

Training an artificial neural network: details J. Fessler

Input:
features
x ∈ Rd

→
NN

parameters
θ

→

Output:
prediction:

response (regression)
ŷ = f (x;θ) ∈ Rm

I Supervised training problem: given training data (x1, y1), . . . , (xN , yN),
learn parameters θ of NN so that ŷn , f (xn;θ) ≈ yn.

I Quantify “≈” using a loss function `(ŷn, yn) such as `(ŷ , y) = ‖ŷ − y‖22 .

I Training is an optimization problem (minimize average loss):

θ∗ = arg min
θ

L(θ; X ,Y), L(θ; X ,Y) , 1
N

N∑
n=1

`(f (xn;θ), yn).

26 / 55

Training an artificial neural network: details J. Fessler

Input:
features
x ∈ Rd

→
NN

parameters
θ

→

Output:
prediction:

response (regression)
ŷ = f (x;θ) ∈ Rm

I Supervised training problem: given training data (x1, y1), . . . , (xN , yN),
learn parameters θ of NN so that ŷn , f (xn;θ) ≈ yn.

I Quantify “≈” using a loss function `(ŷn, yn) such as `(ŷ , y) = ‖ŷ − y‖22 .

I Training is an optimization problem (minimize average loss):

θ∗ = arg min
θ

L(θ; X ,Y), L(θ; X ,Y) , 1
N

N∑
n=1

`(f (xn;θ), yn).

26 / 55

Training an artificial neural network: details J. Fessler

Input:
features
x ∈ Rd

→
NN

parameters
θ

→

Output:
prediction:

response (regression)
ŷ = f (x;θ) ∈ Rm

I Supervised training problem: given training data (x1, y1), . . . , (xN , yN),
learn parameters θ of NN so that ŷn , f (xn;θ) ≈ yn.

I Quantify “≈” using a loss function `(ŷn, yn) such as `(ŷ , y) = ‖ŷ − y‖22 .

I Training is an optimization problem (minimize average loss):

θ∗ = arg min
θ

L(θ; X ,Y), L(θ; X ,Y) , 1
N

N∑
n=1

`(f (xn;θ), yn).

26 / 55

Simplest example: affine NN (dense / fully connected) J. Fessler

x2 Σ ŷ = f (x,θ) = W x + b
Output

x1
Input

xd

...

Bias
b

w1
w2

w d

• x ∈ Rd is input
• W ∈ Rm×d are weights
• b ∈ Rm is offset or bias
• y ∈ Rm is output (response / prediction)
• NN parameters are weights and bias: θ = (W ,b)

27 / 55

Training an affine NN J. Fessler

Squared error loss: `(ŷ , y) = ‖ŷ − y‖22 =⇒ training cost function is:

L(θ; X ,Y) =
∥∥∥[y1 . . . yN

]
−W

[
x1 . . . xN

]
− b1′N

∥∥∥2
F
.

Optimization has analytical solution from ∇θL = 0, leads to MMSE form:

ŷ = f (x,θ∗) = µy + Kyx K−1x︸ ︷︷ ︸
W ∗

(x − µx), µx = 1
N

N∑
n=1

xn, µy = 1
N

N∑
n=1

yn,

Kx = 1
N

N∑
n=1

(xn − µx)(xn − µx)′, Kyx = 1
N

N∑
n=1

(yn − µy)(xn − µx)′.

I Need N ≥ d so that feature covariance matrix Kx is invertible
(more training samples N than feature dimension d).
Otherwise some regularization of weights is needed.

I This simple case is one of very few with analytical (noniterative) solution for θ∗

28 / 55

Training an affine NN J. Fessler

Squared error loss: `(ŷ , y) = ‖ŷ − y‖22 =⇒ training cost function is:

L(θ; X ,Y) =
∥∥∥[y1 . . . yN

]
−W

[
x1 . . . xN

]
− b1′N

∥∥∥2
F
.

Optimization has analytical solution from ∇θL = 0, leads to MMSE form:

ŷ = f (x,θ∗) = µy + Kyx K−1x︸ ︷︷ ︸
W ∗

(x − µx), µx = 1
N

N∑
n=1

xn, µy = 1
N

N∑
n=1

yn,

Kx = 1
N

N∑
n=1

(xn − µx)(xn − µx)′, Kyx = 1
N

N∑
n=1

(yn − µy)(xn − µx)′.

I Need N ≥ d so that feature covariance matrix Kx is invertible
(more training samples N than feature dimension d).
Otherwise some regularization of weights is needed.

I This simple case is one of very few with analytical (noniterative) solution for θ∗

28 / 55

Training an affine NN J. Fessler

Squared error loss: `(ŷ , y) = ‖ŷ − y‖22 =⇒ training cost function is:

L(θ; X ,Y) =
∥∥∥[y1 . . . yN

]
−W

[
x1 . . . xN

]
− b1′N

∥∥∥2
F
.

Optimization has analytical solution from ∇θL = 0, leads to MMSE form:

ŷ = f (x,θ∗) = µy + Kyx K−1x︸ ︷︷ ︸
W ∗

(x − µx), µx = 1
N

N∑
n=1

xn, µy = 1
N

N∑
n=1

yn,

Kx = 1
N

N∑
n=1

(xn − µx)(xn − µx)′, Kyx = 1
N

N∑
n=1

(yn − µy)(xn − µx)′.

I Need N ≥ d so that feature covariance matrix Kx is invertible
(more training samples N than feature dimension d).
Otherwise some regularization of weights is needed.

I This simple case is one of very few with analytical (noniterative) solution for θ∗

28 / 55

Training an affine NN J. Fessler

Squared error loss: `(ŷ , y) = ‖ŷ − y‖22 =⇒ training cost function is:

L(θ; X ,Y) =
∥∥∥[y1 . . . yN

]
−W

[
x1 . . . xN

]
− b1′N

∥∥∥2
F
.

Optimization has analytical solution from ∇θL = 0, leads to MMSE form:

ŷ = f (x,θ∗) = µy + Kyx K−1x︸ ︷︷ ︸
W ∗

(x − µx), µx = 1
N

N∑
n=1

xn, µy = 1
N

N∑
n=1

yn,

Kx = 1
N

N∑
n=1

(xn − µx)(xn − µx)′, Kyx = 1
N

N∑
n=1

(yn − µy)(xn − µx)′.

I Need N ≥ d so that feature covariance matrix Kx is invertible
(more training samples N than feature dimension d).
Otherwise some regularization of weights is needed.

I This simple case is one of very few with analytical (noniterative) solution for θ∗
28 / 55

Nonlinear artificial neuron J. Fessler

Perceptron: Rosenblatt, 1957 [2]

x2 Σ
nonlinearity

ψ
ŷ = ψ(W x + b)

Output
x1

Input

xd

...

Bias
b

w1
w2

w d

I No analytical solution for training NN parameters W ,b
I Iterative methods required

29 / 55

Kernel ridge regression (nonlinearity) J. Fessler

x →
Nonlinear
function

φ : Rd 7→ RD
→ z →

Affine
function
W z + b

→ ŷ = f (x;θ) = Wφ(x) + b ∈ Rm

For MSE training loss and fixed φ, MMSE estimator is

ŷ = µy + Kyz K−1z (z − µz) = µy + Kyz K−1z (φ(x)− µz), µz = 1
N

N∑
n=1

zn,

zn , φ(xn), K z = 1
N

N∑
n=1

(zn − µz)(zn − µz)′, Kyz = 1
N

N∑
n=1

(yn − µy)(zn − µz)′.

I Typically D = dim(z)� d = dim(x), so even more samples N could be needed.
I Solution is to use ridge regression: replace K−1z with (K z + αI)−1;

choose α by cross validation.

30 / 55

Kernel ridge regression (nonlinearity) J. Fessler

x →
Nonlinear
function

φ : Rd 7→ RD
→ z →

Affine
function
W z + b

→ ŷ = f (x;θ) = Wφ(x) + b ∈ Rm

For MSE training loss and fixed φ, MMSE estimator is

ŷ = µy + Kyz K−1z (z − µz) = µy + Kyz K−1z (φ(x)− µz), µz = 1
N

N∑
n=1

zn,

zn , φ(xn), K z = 1
N

N∑
n=1

(zn − µz)(zn − µz)′, Kyz = 1
N

N∑
n=1

(yn − µy)(zn − µz)′.

I Typically D = dim(z)� d = dim(x), so even more samples N could be needed.
I Solution is to use ridge regression: replace K−1z with (K z + αI)−1;

choose α by cross validation.

30 / 55

Kernel ridge regression (nonlinearity) J. Fessler

x →
Nonlinear
function

φ : Rd 7→ RD
→ z →

Affine
function
W z + b

→ ŷ = f (x;θ) = Wφ(x) + b ∈ Rm

For MSE training loss and fixed φ, MMSE estimator is

ŷ = µy + Kyz K−1z (z − µz) = µy + Kyz K−1z (φ(x)− µz), µz = 1
N

N∑
n=1

zn,

zn , φ(xn), K z = 1
N

N∑
n=1

(zn − µz)(zn − µz)′, Kyz = 1
N

N∑
n=1

(yn − µy)(zn − µz)′.

I Typically D = dim(z)� d = dim(x), so even more samples N could be needed.
I Solution is to use ridge regression: replace K−1z with (K z + αI)−1;

choose α by cross validation.
30 / 55

Kernel ridge regression universality J. Fessler

x →
Nonlinear
function

φ : Rd 7→ RD
→ z → Affine

function → ŷ = Wφ(x) + b

I Affine function W z + b is same as a fully connected NN layer without nonlinearity.
I Choosing a nonlinear function φ based on a Gaussian kernel is universal:

can approximate regular functions to arbitrary accuracy as N increases [3, 4] using:

φ(x) =
[
e−‖x−x1‖2Λ . . . e−‖x−xN‖2Λ

]T
.

I Training is very easy and fast because only free parameters are linear ones: W and b
I Shallow learning
I Suitable for low-dimensional problems like parameter quantification.

31 / 55

Quantitative MRI example J. Fessler

Quantitative MRI: images→ estimation → parameters (T1,T2,. . .)

I Traditional nonlinear estimation methods:
• nonlinear least squares
• dictionary matching (quantized maximum likelihood via variable projection)

I Machine-learning methods
• deep neural network regression [5–8]
typically long training times
• parameter estimation via kernel regression (PERK)

Gopal Nataraj et al., ISBI 2017 [9], IEEE T-MI 2018 [3], arXiv 1809.08908 [10], poster #65 [11]

32 / 55

MWF PERK example J. Fessler

Myelin water fraction (MWF) estimated from 3 DESS scans
with optimized flip angles 33.0, 18.3, 15.1◦ and TRs 17.5, 30.2, 60.3 ms. [10–12]

1 200

1

200

→ PERK →

1 200

1

200 0

0.3

For details, see Gopal Nataraj at poster #65

33 / 55

Training as an optimization problem J. Fessler

Input → NN with parameters θ → Output
Learning NN parameters (training) requires optimization (minimize average loss):

θ∗ = arg min
θ

L(θ; X ,Y), L(θ; X ,Y) , 1
N
∑N

n=1 `(f (xn;θ), yn)

I Cannot solve ∇θL = 0 analytically in general.
I Natural approach is (slow!) gradient descent iteration for k = 0, 1, . . .

θk+1 = θk − α∇θL(θk),

• step size α > 0 aka “learning rate”
• the gradient ∇θL(θk) is the vector of partial derivatives of the loss function
w.r.t. every NN parameter.
• Initializer θ0 often random

34 / 55

Training as an optimization problem J. Fessler

Input → NN with parameters θ → Output
Learning NN parameters (training) requires optimization (minimize average loss):

θ∗ = arg min
θ

L(θ; X ,Y), L(θ; X ,Y) , 1
N
∑N

n=1 `(f (xn;θ), yn)

I Cannot solve ∇θL = 0 analytically in general.

I Natural approach is (slow!) gradient descent iteration for k = 0, 1, . . .

θk+1 = θk − α∇θL(θk),

• step size α > 0 aka “learning rate”
• the gradient ∇θL(θk) is the vector of partial derivatives of the loss function
w.r.t. every NN parameter.
• Initializer θ0 often random

34 / 55

Training as an optimization problem J. Fessler

Input → NN with parameters θ → Output
Learning NN parameters (training) requires optimization (minimize average loss):

θ∗ = arg min
θ

L(θ; X ,Y), L(θ; X ,Y) , 1
N
∑N

n=1 `(f (xn;θ), yn)

I Cannot solve ∇θL = 0 analytically in general.
I Natural approach is (slow!) gradient descent iteration for k = 0, 1, . . .

θk+1 = θk − α∇θL(θk),

• step size α > 0 aka “learning rate”
• the gradient ∇θL(θk) is the vector of partial derivatives of the loss function
w.r.t. every NN parameter.
• Initializer θ0 often random

34 / 55

Accelerating training J. Fessler

I Use mini-batch approximation to gradient of loss:

∇θL(θk) = 1
N

N∑
n=1︸ ︷︷ ︸

all data

∇θ`(f (xn;θk), yn) ≈ 1
|Sk |

∑
n∈Sk︸ ︷︷ ︸

some data

∇θ`(f (xn;θk), yn),

where Sk is a (often random) subset of the data at kth iteration.
• Mini-batch size often matched to # of compute threads.
• Aka stochastic gradient descent (SGD) or incremental gradients.

I Momentum
I Automated step-size selection [13]
I Use GPUs...

35 / 55

http://en.wikipedia.org/wiki/Stochastic_gradient_descent

Accelerating training J. Fessler

I Use mini-batch approximation to gradient of loss:

∇θL(θk) = 1
N

N∑
n=1︸ ︷︷ ︸

all data

∇θ`(f (xn;θk), yn) ≈ 1
|Sk |

∑
n∈Sk︸ ︷︷ ︸

some data

∇θ`(f (xn;θk), yn),

where Sk is a (often random) subset of the data at kth iteration.
• Mini-batch size often matched to # of compute threads.
• Aka stochastic gradient descent (SGD) or incremental gradients.

I Momentum
I Automated step-size selection [13]
I Use GPUs...

35 / 55

http://en.wikipedia.org/wiki/Stochastic_gradient_descent

Backpropagation J. Fessler

The gradient operation looks simple on paper:

∇θ`(f (x;θ), y) =

∂
∂θ1
`(f (x;θ), y)

...
∂
∂θK

`(f (x;θ), y)

 ,
but for deep networks the model is a cascade of many functions, one per layer:

x → f1(·;θ) → f2(·;θ) → · · · → fL(·;θ) → f (x;θ) = fL(· · · f2(f1(x;θ);θ);θ).

I In practice most layers have different parameters, but some parameters may affect
multiple layers (especially RNN)

I Backpropagation = chain rule for differentiation, hopefully efficiently coded [14] [15]
I Convenient software tools provide automatic differentiation

(Python: TensorFlow, PyTorch, ...) (Julia: Flux, ...) (Matlab: MatConvNet?)

36 / 55

Backpropagation J. Fessler

The gradient operation looks simple on paper:

∇θ`(f (x;θ), y) =

∂
∂θ1
`(f (x;θ), y)

...
∂
∂θK

`(f (x;θ), y)

 ,
but for deep networks the model is a cascade of many functions, one per layer:

x → f1(·;θ) → f2(·;θ) → · · · → fL(·;θ) → f (x;θ) = fL(· · · f2(f1(x;θ);θ);θ).

I In practice most layers have different parameters, but some parameters may affect
multiple layers (especially RNN)

I Backpropagation = chain rule for differentiation, hopefully efficiently coded [14] [15]
I Convenient software tools provide automatic differentiation

(Python: TensorFlow, PyTorch, ...) (Julia: Flux, ...) (Matlab: MatConvNet?)
36 / 55

Backpropagation illustration (1) J. Fessler

Consider a two-layer NN with a single weight to be learned in the first layer:

Input
x → Layer1

hw (·)
hw (x)
−−−−→ Layer2

g(·)
g(hw (x))
−−−−−−−→ Output

ŷ = g(hw (x)) →
Loss
L(w)

Loss function for a single training sample:

L(w) = `(g(hw (x)), y).

Chain rule for derivative of loss w.r.t. weight w :

∂

∂w L(w) = L̇(w) = ∂

∂w `(fw (x), y) = ˙̀(g(hw (x)), y) ġ(hw (x)) ḣw (x).

Two key ingredients two compute:
• Model at each layer of NN
• Derivatives of model at each layer, evaluated at layer input

37 / 55

Backpropagation illustration (1) J. Fessler

Consider a two-layer NN with a single weight to be learned in the first layer:

Input
x → Layer1

hw (·)
hw (x)
−−−−→ Layer2

g(·)
g(hw (x))
−−−−−−−→ Output

ŷ = g(hw (x)) →
Loss
L(w)

Loss function for a single training sample:

L(w) = `(g(hw (x)), y).

Chain rule for derivative of loss w.r.t. weight w :

∂

∂w L(w) = L̇(w) = ∂

∂w `(fw (x), y) = ˙̀(g(hw (x)), y) ġ(hw (x)) ḣw (x).

Two key ingredients two compute:
• Model at each layer of NN
• Derivatives of model at each layer, evaluated at layer input

37 / 55

Backpropagation illustration (1) J. Fessler

Consider a two-layer NN with a single weight to be learned in the first layer:

Input
x → Layer1

hw (·)
hw (x)
−−−−→ Layer2

g(·)
g(hw (x))
−−−−−−−→ Output

ŷ = g(hw (x)) →
Loss
L(w)

Loss function for a single training sample:

L(w) = `(g(hw (x)), y).

Chain rule for derivative of loss w.r.t. weight w :

∂

∂w L(w) = L̇(w) = ∂

∂w `(fw (x), y) = ˙̀(g(hw (x)), y) ġ(hw (x)) ḣw (x).

Two key ingredients two compute:
• Model at each layer of NN
• Derivatives of model at each layer, evaluated at layer input

37 / 55

Backpropagation illustration (2) J. Fessler

L̇(w) = ˙̀(g(hw (x)), y) ġ(hw (x)) ḣw (x)
= ḣw (x) ġ(hw (x)) ˙̀(g(hw (x)), y).

38 / 55

Backpropagation illustration (2) J. Fessler

L̇(w) = ˙̀(g(hw (x)), y) ġ(hw (x)) ḣw (x)
= ḣw (x) ġ(hw (x)) ˙̀(g(hw (x)), y).

38 / 55

Backpropagation illustration (2) J. Fessler

L̇(w) = ˙̀(g(hw (x)), y) ġ(hw (x)) ḣw (x)
= ḣw (x) ġ(hw (x)) ˙̀(g(hw (x)), y).

38 / 55

Backpropagation illustration (2) J. Fessler

L̇(w) = ˙̀(g(hw (x)), y) ġ(hw (x)) ḣw (x)
= ḣw (x) ġ(hw (x)) ˙̀(g(hw (x)), y).

38 / 55

Supervised NN training example: binary classification J. Fessler

-6 0 6
x1

-6

0

6
x 2

class1
class2

x1

x2
Output

Hidden
layer

Input
layer

Output
layer

• Nonlinearity is essential here

• Each hidden node is a perceptron with ReLU(x) = max(x , 0)
• Train output to be 1 for class2 and -1 for class1.

39 / 55

Supervised NN training example: binary classification J. Fessler

-6 0 6
x1

-6

0

6
x 2

class1
class2

x1

x2
Output

Hidden
layer

Input
layer

Output
layer

• Nonlinearity is essential here
• Each hidden node is a perceptron with ReLU(x) = max(x , 0)
• Train output to be 1 for class2 and -1 for class1.

39 / 55

Example Flux code J. Fessler

I Julia’s Flux library [16] http://fluxml.ai/Flux.jl
I ML ingredients: training data (X ,Y), model/architecture, loss function, optimizer
I For full Jupyter notebook see https://tinyurl.com/ml2-18-jf

nhidden = 10 # neurons in hidden layer
model = Chain (Dense (2, nhidden ,relu), Dense (nhidden ,1)) # NN arch
loss(x, y) = mse(model (x), y)
iters = 10000 # hand crafted ...
dataset = Base. Iterators . repeated ((X, Y), iters)
Flux. train !(loss , dataset , ADAM(params (model)))

40 / 55

http://fluxml.ai/Flux.jl
https://tinyurl.com/ml2-18-jf

Flux NN training J. Fessler

0 25 50 75 100
epoch/100

0.0

0.2

0.4

0.6

M
SE

 lo
ss

training loss
validation loss

-6 0 6
x1

-6

0

6

x 2

100 epochs

Class 1
Class 2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

-6 0 6
x1

-6

0

6

x 2

200 epochs

Class 1
Class 2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

-6 0 6
x1

-6

0

6

x 2

300 epochs

Class 1
Class 2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

-6 0 6
x1

-6

0

6

x 2

400 epochs

Class 1
Class 2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

-6 0 6
x1

-6

0

6

x 2

500 epochs

Class 1
Class 2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

-6 0 6
x1

-6

0

6

x 2

600 epochs

Class 1
Class 2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

41 / 55

Flux results for binary classification J. Fessler

Classifier results Hidden layer functions

-6 0 6
x1

-6

0

6

x 2

Class 1
Class 2

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

-6 0 6
-6

0

6

-6 0 6
-6

0

6

-6 0 6
-6

0

6

-6 0 6
-6

0

6

-6 0 6
-6

0

6

-6 0 6
-6

0

6

-6 0 6
x1

-6

0

6

x 2

-6 0 6
-6

0

6

-6 0 6
-6

0

6

0

2

4

0

5

10

0

2

4

0

1

2

0

5

0

2

4

0

1

2

0

2

4

0

2

4

Principles generalize from binary classification to multiclass problems.

42 / 55

NN-based denoising example J. Fessler

See https://tinyurl.com/ml2-18-jf

43 / 55

https://tinyurl.com/ml2-18-jf

Outline J. Fessler

Introduction

Data: Train/Validate/Test

Training

Artificial NN example

ML in medical imaging (time permitting)

Bibliography

44 / 55

Roles for machine learning in medical imaging J. Fessler

I Image analysis (post-processing):
• classification: diagnosis / segmentation / treatment planning, ...
• regression: localization / registration / quantification, ...
(object size, e.g., vessel diameter, contrast concentration, T1, T2, ...)

I Image reconstruction
I Image acquisition

45 / 55

Machine learning in medical image interpretation J. Fessler

Most obvious place for machine learning is post-processing:

reconstructed
images

x̂
→

ML-based
image processing
(classification
or regression)

→ interpretation

Special issue of IEEE Trans. on Med. Imaging, May 2016 [17]

46 / 55

Machine learning in medical image reconstruction J. Fessler

raw data
y → ML-based

image reconstruction → images
x̂

Special issue of IEEE Trans. on Medical Imaging, June 2018 [18]

47 / 55

Machine learning in medical imaging: scan design J. Fessler

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂

−−−−−→

Analyze
Diagnose
Quantify
Interpret
Intervene

I Choose best k-space phase encoding locations based on training images:
• “Learning-based compressive MRI” [19, 20]
(Volkan Cevher group, June 2018 IEEE T-MI)
• Yue Cao and David Levin, MRM Sep. 1993 “Feature recognizing MRI” [21–23]

I Process fMRI data in real time, provide brain-state feedback to subject [24, 25]

48 / 55

Machine learning in medical imaging: scan design J. Fessler

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂

−−−−−→

Analyze
Diagnose
Quantify
Interpret
Intervene

I Choose best k-space phase encoding locations based on training images:
• “Learning-based compressive MRI” [19, 20]
(Volkan Cevher group, June 2018 IEEE T-MI)
• Yue Cao and David Levin, MRM Sep. 1993 “Feature recognizing MRI” [21–23]

I Process fMRI data in real time, provide brain-state feedback to subject [24, 25]

48 / 55

Recommended reading (incomplete lists) J. Fessler

I Machine learning books: [26] [27] [28] [29] [30] [31] [32] [33]
I Survey paper(s) [34]
I Optimization: [35]
I DL overviews: [36–38]
I Generative models: [39, 40]:
I Deep learning myths [41]
I NN complexity analysis / function approximation [42–44] [45]
I Application to MR fingerprinting [5, 8]
I MR reconstruction / enhancement using CNN [46–54]
I Dynamic MR reconstruction using CNN [55]
I . . .

49 / 55

Resources J. Fessler

Talk and code available online at
https://tinyurl.com/ml2-18-jf

50 / 55

https://tinyurl.com/ml2-18-jf

Bibliography I J. Fessler

[1] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah. “Julia: A fresh approach to numerical computing.” In: SIAM Review 59.1 (2017),
65–98.

[2] F. Rosenblatt. The Perceptron - a perceiving and recognizing automaton. Tech. rep. 85-460-1. Cornell: Aeronautical Laboratory, Jan. 1957.

[3] G. Nataraj, J-F. Nielsen, C. D. Scott, and J. A. Fessler. “Dictionary-free MRI PERK: Parameter estimation via regression with kernels.” In:
IEEE Trans. Med. Imag. 37.9 (Sept. 2018), 2103–14.

[4] I. Steinwart and A. Christmann. Support vector machines. Springer, 2008.

[5] P. Virtue, S. X. Yu, and M. Lustig. “Better than real: Complex-valued neural nets for MRI fingerprinting.” In: Proc. IEEE Intl. Conf. on
Image Processing. 2017, 3953–7.

[6] A. Lahiri, J. A. Fessler, and L. Hernandez-Garcia. “Optimized design of MRF scan parameters for ASL signal acquisition.” In: ISMRM
Workshop on MR Fingerprinting. 2017.

[7] A. Lahiri, J. A. Fessler, and L. Hernandez-Garcia. “Optimized scan design for ASL fingerprinting and multiparametric estimation using
neural network regression.” In: Proc. Intl. Soc. Mag. Res. Med. 2018, p. 309.

[8] O. Cohen, B. Zhu, and M. S. Rosen. “MR fingerprinting Deep RecOnstruction NEtwork (DRONE).” In: Mag. Res. Med. 80.3 (Sept. 2018),
885–94.

[9] G. Nataraj, J-F. Nielsen, and J. A. Fessler. “Dictionary-free MRI parameter estimation via kernel ridge regression.” In: Proc. IEEE Intl.
Symp. Biomed. Imag. 2017, 5–9.

[10] G. Nataraj, J-F. Nielsen, M. Gao, and J. A. Fessler. Fast, precise myelin water quantification using DESS MRI and kernel learning.
Submitted. 2018.

[11] G. Nataraj, M. Gao, J-F. Nielsen, and J. A. Fessler. “Kernel regression for fast myelin water imaging.” In: ismrm-ml2. 2018, p. 65.

[12] G. Nataraj, J-F. Nielsen, M. Gao, and J. A. Fessler. “Fast, precise myelin water quantification using DESS MRI and kernel learning.” In:
Mag. Res. Med. (2018). Submitted.

51 / 55

Bibliography II J. Fessler

[13] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. 2014.

[14] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. “Learning representations by back-propagating errors.” In: Nature 323.6088 (Oct.
1986), 533–6.

[15] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel. “Backpropagation applied to handwritten
zip code recognition.” In: Neural Computation 1.4 (Dec. 1989), 541–51.

[16] M. Innes. “Flux: Elegant machine learning with Julia.” In: J. of Open Source Software 3.25 (2018), p. 602.

[17] H. Greenspan, B. van Ginneken, and R. M. Summers. “Guest editorial deep learning in medical imaging: overview and future promise of an
exciting new technique.” In: IEEE Trans. Med. Imag. 35.5 (May 2016), 1153–9.

[18] G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler. “Image reconstruction is a new frontier of machine learning.” In: IEEE Trans. Med. Imag.
37.6 (June 2018), 1289–96.

[19] L. Baldassarre, Y-H. Li, J. Scarlett, B. Gozcu, I. Bogunovic, and V. Cevher. “Learning-based compressive subsampling.” In: IEEE J. Sel.
Top. Sig. Proc. 10.4 (June 2016), 809–22.

[20] B. Gozcu, R. K. Mahabadi, Y-H. Li, E. Ilicak, T. Cukur, J. Scarlett, and V. Cevher. “Learning-based compressive MRI.” In: IEEE Trans.
Med. Imag. 37.6 (June 2018), 1394–406.

[21] Y. Cao and D. N. Levin. “Feature-recognizing MRI.” In: Mag. Res. Med. 30.3 (Sept. 1993), 305–17.

[22] Y. Cao, D. N. Levin, and L. Yao. “Locally focused MRI.” In: Mag. Res. Med. 34.6 (Dec. 1995), 858–67.

[23] Y. Cao and D. N. Levin. “Using an image database to constrain the acquisition and reconstruction of MR images of the human head.” In:
IEEE Trans. Med. Imag. 14.2 (June 1995), 350–61.

[24] S. M. LaConte, S. J. Peltier, and X. P. Hu. “Real-time fMRI using brain-state classification.” In: Hum. Brain Map. 28.10 (Oct. 2007),
1033–4.

52 / 55

Bibliography III J. Fessler

[25] T. Watanabe, Y. Sasaki, K. Shibata, and M. Kawato. “Advances in fMRI Real-Time Neurofeedback.” In: Trends in Cognitive Sciences
21.12 (Dec. 2017), 997–1010.

[26] K. Mardia, J. Kent, and J. Bibby. Multivariate analysis. Academic Press, 1979.

[27] R. O. Duda, P. E. Hart, and D. G. Stork. Pattern classification. New York: Wiley, 2001.

[28] B. Scholkopf and S. Smola. Learning with kernels. MIT, 2002.

[29] C. Bishop. Pattern recognition and machine learning. Springer, 2006.

[30] T. Hastie, R. Tibshirani, and J. Friedman. The elements of statistical learning. Springer, 2009.

[31] M. Mohri, A. Rostamizadeh, and A. Talwalkar. Foundations of machine learning. MIT, 2012.

[32] K. P. Murphy. Machine learning: A probabilistic perspective. MIT, 2012.

[33] S. Shalev-Shwartz and S. Ben-David. Understanding machine learning: from theory to algorithms. Cambridge, 2014.

[34] O. Simeone. “A brief introduction to machine learning for engineers.” In: Found. & Trends in Sig. Pro. 12.3-4 (2018), 200–431.

[35] S. Boyd and L. Vandenberghe. Convex optimization. UK: Cambridge, 2004.

[36] G. Wang. “A perspective on deep imaging.” In: IEEE Access 4 (Nov. 2016), 8914–24.

[37] G. Wang, M. Kalra, and C. G. Orton. “Machine learning will transform radiology significantly within the next five years.” In: Med. Phys.
44.6 (June 2017), 2041–4.

[38] M. T. McCann, K. H. Jin, and M. Unser. “Convolutional neural networks for inverse problems in imaging: A review.” In: IEEE Sig. Proc.
Mag. 34.6 (Nov. 2017), 85–95.

[39] I. Deshpande, Z. Zhang, and A. Schwing. “Generative modeling using the sliced Wasserstein distance.” In: Proc. IEEE Conf. on Comp.
Vision and Pattern Recognition. 2018.

53 / 55

Bibliography IV J. Fessler

[40] S. Kolouri, P. E. Pope, C. E. Martin, and G. K. Rohde. Sliced-Wasserstein autoencoder: an embarrassingly simple generative model. 2018.

[41] S. Rakhlin. MythBusters: A Deep Learning Edition. Slides dated Jan 18-19, 2018. 2018.

[42] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural networks. 2017.

[43] T. Liang, T. Poggio, A. Rakhlin, and J. Stokes. Fisher-Rao metric, geometry, and complexity of neural networks. 2017.

[44] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. “On the expressive power of deep neural networks.” In: Proc. Intl.
Conf. Mach. Learn. Vol. 70. 2017, 2847–54.

[45] S. Liang and R. Srikant. “Why deep neural networks for function approximation?” In: Proc. Intl. Conf. on Learning Representations. 2017.

[46] S. Ravishankar, I. Y. Chun, and J. A. Fessler. “Physics-driven deep training of dictionary-based algorithms for MR image reconstruction.”
In: Proc., IEEE Asilomar Conf. on Signals, Systems, and Comp. Invited. 2017, 1859–63.

[47] M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Dally, J. M. Pauly, and L. Xing. Deep
generative adversarial networks for compressed sensing automates MRI. 2017.

[48] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll. “Learning a variational network for
reconstruction of accelerated MRI data.” In: Mag. Res. Med. 79.6 (June 2018), 3055–71.

[49] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen. “Image reconstruction by domain-transform manifold learning.” In: Nature
555 (Mar. 2018), 487–92.

[50] Y. Han, J. Yoo, H. H. Kim, H. J. Shin, K. Sung, and J. C. Ye. “Deep learning with domain adaptation for accelerated
projection-reconstruction MR.” In: Mag. Res. Med. 80.3 (Sept. 2018), 1189–205.

[51] K. H. Jin and M. Unser. “3D BPConvNet to reconstruct parallel MRI.” In: Proc. IEEE Intl. Symp. Biomed. Imag. 2018, 361–4.

[52] H. Jeelani, J. Martin, F. Vasquez, M. Salerno, and D. S. Weller. “Image quality affects deep learning reconstruction of MRI.” In: Proc.
IEEE Intl. Symp. Biomed. Imag. 2018, 357–60.

54 / 55

Bibliography V J. Fessler

[53] T. M. Quan, T. Nguyen-Duc, and W-K. Jeong. “Compressed sensing MRI reconstruction using a generative adversarial network with a
cyclic loss.” In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1488–97.

[54] T. Eo, Y. Jun, T. Kim, J. Jang, H-J. Lee, and D. Hwang. “KIKI-net: cross-domain convolutional neural networks for reconstructing
undersampled magnetic resonance images.” In: Mag. Res. Med. (2018).

[55] J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert. “A deep cascade of convolutional neural networks for dynamic MR
image reconstruction.” In: IEEE Trans. Med. Imag. 37.2 (Feb. 2018), 491–503.

55 / 55

	Introduction
	Data: Train/Validate/Test
	Training
	Artificial NN example
	ML in medical imaging (time permitting)
	Bibliography

