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Motivation

Dual-Energy CT (DECT)

Enables characterizing concentration of constituent materials in
scanned objects, known as material decomposition1

1[Mendonca et al., IEEE T-MI, 2014]
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Image-Domain Decomposition

Image measurements (attenuation maps at high and low energy)
are directly available on commercial DECT scanners

Conventional image-domain decomposition

Direct matrix inversion decomposition2

Susceptible to artifacts and noise.

Regularized (model-based) decomposition

Statistical measurement model + Object prior model
Improves image quality and decomposition accuracy

2[Niu et al., MP, 2014]
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Regularization Approches for DECT

Non-adaptive regularization
Material-wise Edge-Preserving (EP) 3

Suppress noise while retaining boundary sharpness
Use simple prior models

Learning-based regularization
Dictionary Learning

have shown promising results for DECT4

highly non-convex and NP-Hard sparse coding
Computation: O(m3N)
m is patch size, N is the number of patches

Deep learning for spectral CT5 O(?)
Sparsifying Transform (ST) learning

DECT-ST: proposed approach
Computation: O(m2N)

3[Xue et al., MP, 2017]
4[Li et al., ISBI, 2012]
5[Chen & Li, F3D 2017]
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Material-Wise Sparsifying Transform (ST)

Sparsifying Transform Learning6:
A generalized analysis operator learning approach
Closed-form solutions for simple thresholding-based sparse coding

6[Ravishankar & Bresler, IEEE T-SP, 2015]
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Training Sparsifying Transforms

Learn two sparsifying transforms independently, for material l = 1, 2:

argmin
Ωl

min
Zl

Sparsification error︷ ︸︸ ︷
‖ΩlYl − Zl‖2F +

Transform regularizer︷ ︸︸ ︷
λ
(
‖Ωl‖2F − log |det Ωl|

)
+

Non-sparse penalty︷ ︸︸ ︷
N ′∑
i=1

η2‖Zli‖0

Ωl: m×m square transform to be learned for lth material type

Yl: m×N ′ matrix of training patches from lth material images

Zl: m×N ′ matrix of sparse codes of Yl (discard after training)

‖Ωl‖2F − log |det Ωl|: prevents trivial solutions, controls transform
condition number7

Training ST uses an efficient alternating algorithm

7[Ravishankar & Bresler, IEEE T-SP, 2015]
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Proposed DECT-ST Method

Optimization problem:

argmin
x∈R2Np

min
{zlj}

1

2
‖y −Ax‖2W +

2∑
l=1

N∑
j=1

βl

{
‖ΩlPljx− zlj‖22 + γ2l ‖zlj‖0

}
y = (yTH ,y

T
L)
T ∈ R2Np : attenuation maps at high and low energy

x = (xT1 ,x
T
2 )
T ∈ R2Np : unknown material density images

A = A0 ⊗ INp : matrix of (calibrated) mass attenuation coefficients:

A0 =

(
ϕ1H ϕ2H

ϕ1L ϕ2L

)
.

W = Wj ⊗ INp : weight matrix with Wj = diag(σ2H , σ
2
L)
−1

Pj ∈ Rm×Np : extracts the jth patch of xl as a vector Pjx

zlj ∈ Rm: sparse codes of Pljx

N : number of image patches

Zhipeng Li (UM-SJTU JI) DECT-ST 9 / 25
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Sparse Coding Step

Overall optimization problem:

argmin
x∈R2Np

min
{zlj}

1

2
‖y −Ax‖2W +

2∑
l=1

N∑
j=1

βl

{
‖ΩlPljx− zlj‖22 + γ2l ‖zlj‖0

}

Sparse code update:

{ẑlj} = argmin
{zlj}

2∑
l=1

N∑
j=1

βl

{
‖ΩlPljx− zlj‖22 + γ2l ‖zlj‖0

}
ẑlj = Hγl(ΩlPljx)

(1)

Hard-thresholding operator Hγ(b): returns 0 if |b| < γ

Zhipeng Li (UM-SJTU JI) DECT-ST 11 / 25



Image Update Step - Quadratic Majorizer

min
x∈R2Np

1

2
‖y −Ax‖2W +

R2(x)︷ ︸︸ ︷
2∑
l=1

N∑
j=1

βl ‖ΩlPljx− zlj‖22 (2)

Quadratic majorizer ψM(x,u(i)) at the ith iteration:

ψM(x;u(i)) =
1

2
‖x− ξ(i)‖2M (3)

where ξ(i) = u(i) −M−1∇R2(u
(i)).

Image update:

x(i+1) = argmin
x

1

2
‖y −Ax‖2W + ψM(x;u(i)), (4)

Zhipeng Li (UM-SJTU JI) DECT-ST 12 / 25



Image Update Step - Majorizing Matrix

Design of the diagonal majorizing matrix M:

M � ∇2R2(x) = 2

2∑
l=1

βl

N∑
j=1

P′ljΩl
′ΩlPlj . (5)

With patch stride of 1 pixel, the entries of the diagonal matrix∑N
j=1 P′ljPlj corresponding to the lth material are equal to mINp

Diagonal majorizer M :

M =

(
2βmλmax(Ω

′
1Ω1)INp 0

0 2βmλmax(Ω
′
2Ω2)INp

)
.

Zhipeng Li (UM-SJTU JI) DECT-ST 13 / 25



Image Update Step

Pixel-wise update involves one 2× 2 matrix per voxel:

x
(i+1)
j = argmin

xj

1

2
‖yj −A0xj‖2Wj

+
1

2
‖xj − ξ

(i)
j ‖

2
Mj
, (6)

where Mj ∈ R2×2 is a diagonal weighting matrix for (x1j , x2j)
T .

Quadratic majorizer used within FGM (Fast Gradient Method)8

(Instead of usual generic Lipschitz constant)

blockdiag{A′0WjA0 + Mj}−1 vs
1

L

8[Nesterov, Doklady AN USSR, 1983]
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Fan-beam DECT with XCAT phantom9

Training
Training set: patches extracted from five slices of water and bone
images of XCAT phantom, respectively.
Patch size 8× 8 and patch stride 1× 1.

Example training image slices for water (left) and bone (right).

9[Segars et al., MP, 2008]
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Learned Transforms

Learned transforms Ωl for water (left) and bone (right).

Transforms (Ω1,Ω2) are initialized with 2D DCT.

Rows of learned transforms shown as 8× 8 patches.

Zhipeng Li (UM-SJTU JI) DECT-ST 17 / 25



DECT Simulation Setup

NCAT phantom sinogram simulation:

Image size: 1024× 1024
Poly-energetic source: 80kVp and 140kVp
with 1.86× 105 and 1× 106 incident
photons per ray
Sinogram size: 888× 984
Reconstruct attenuation images via FBP

Reconstruction and decomposition:

Image size: 512× 512
Pixel size: 0.98× 0.98 mm2

Optimal parameter combinations to achieve
the best image quality and decompositon
accuracy
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RMSE Comparison

Table: RMSE of estimated material densities in mg/cm3.

Method Direct Inversion DECT-EP DECT-ST

Water 77.7 39.5 35.1
Bone 78.7 53.8 46.2

Direct Inversion: obtain material images directly by matrix inversion

DECT-EP: Hyperbola Edge-Preserving regularizer with
δ1 = 0.01 g/cm3 and δ2 = 0.02 g/cm3

DECT-ST further decreases RMSE achieved by DECT-EP

Zhipeng Li (UM-SJTU JI) DECT-ST 19 / 25



Results
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Estimated material images of water and bone,
display window [0.3 1.7] g/cm3 and [0.14 0.25] g/cm3, respectively.
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Patient Study

Obtained by Siemens SOMATOM Force CT scanner using DECT
imaging protocols

Dual-source at 150 kVp and 80kVp
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Thigh CT images of a patient. Display window is [0.12 0.32] cm−1.
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Results
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Estimated material images of water and bone;
display window [0.25 1.5] g/cm3 and [0 0.3] g/cm3, respectively.
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Conclusions
We proposed DECT-ST that combines an image-domain WLS term
with regularizer involving learned sparsifying transforms.
DECT-ST outperformed the DECT-EP method (which uses a fixed
finite differencing type sparsifying model) in terms of image quality
and material decomposition accuracy.

Future Work
Investigate cross-material ST that accounts for correlation between
material images.
Investigate decomposition methods using a more accurate DECT
measurement model10 with ST-based regularization.

10[Long & Fessler, IEEE T-MI, 2014]
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Thanks for your attention!
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