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Medical imaging overview J. Fessler
Caveats...

Overview of medical imaging:

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂
−−−−→ Process

Images →

Analyze
Diagnose
Quantify
Interpret
Intervene
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Machine learning in medical image interpretation J. Fessler
Caveats...

Most obvious place for machine learning is post-processing:

reconstructed
images

x̂
→

ML-based
image processing

(classification
or regression)

→ interpretation

. . .

5 / 45



Machine learning in medical image interpretation J. Fessler
Caveats...

Most obvious place for machine learning is post-processing:

reconstructed
images

x̂
→

ML-based
image processing

(classification
or regression)

→ interpretation

(Several ISMRM sessions; special issue of IEEE Trans. on Med. Imaging in May 2016 [1].)
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Machine learning in medical image reconstruction J. Fessler
Caveats...

Another (initially less obvious?) place for machine learning (this course, Tue 16:15 session):

raw data
y → ML-based

image reconstruction → images
x̂

. . .

Possibly easier (than diagnosis) due to lower bar:
• current reconstruction methods based on simplistic image models;
• human eyes are better at detection than inverse problems.

June 2018 special issue of IEEE Trans. on Medical Imaging [2]:
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Machine learning in medical imaging: a holy grail? J. Fessler
Caveats...

A more speculative opportunity for machine learning:

raw data
y → ML-based

“magic” → interpretation

. . .
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Machine learning in medical imaging: a holy grail? J. Fessler
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A more speculative opportunity for machine learning:

raw data
y → ML-based

“magic” → interpretation

I CT sinogram to vessel diameter [3]
I k-space to ???

Caveat: seeing is believing...
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Machine learning in medical imaging: scan design J. Fessler
Caveats...

One more opportunity for ML in medical imaging:

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂

−−−−−→

Analyze
Diagnose
Quantify
Interpret
Intervene
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Machine learning in medical imaging: scan design J. Fessler
Caveats...

One more opportunity for ML in medical imaging:

Acquire
Data

raw data
y
−−−→ Reconstruct

Images

images
x̂

−−−−−→

Analyze
Diagnose
Quantify
Interpret
Intervene

k-space sampling design using ML methods:
“Learning-based compressive MRI” [4, 5]
(Volkan Cevher group, June 2018 IEEE T-MI)
Caveat: single coil only so far; hard to generalize to parallel MRI?
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Simpler methods for ML in image reconstruction J. Fessler
Caveats...

Many possible ways to use ML ideas in image reconstruction

Basic “fast” methods:
I Enhance raw data (k-space, sinogram, . . . )
I Enhance poorly reconstructed image
• patch-based
• image-based

Caveat: computation / quality trade-offs
. . .
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Many possible ways to use ML ideas in image reconstruction

Basic “fast” methods:
I Enhance raw data (k-space, sinogram, . . . )
I Enhance poorly reconstructed image
• patch-based
• image-based

Caveat: computation / quality trade-offs

Basic “slow” methods:
I Auto-tune regularization parameter(s)
I Provide an initial image for “conventional” iterative recon

Caveat: may not fully exploit the potential of ML
10 / 45



Advanced “fast” methods for ML-based IR J. Fessler
Caveats...

I ML-based “prior” image for iterative reconstruction [6]:

x̂ = arg min
x
‖Ax − y‖2

2 + β ‖x − xprior‖pp

Caveat: fast for p = 2, but p = 1 more robust to errors in prior image

I Unrolled loop (recurrent NN) with learned components [7–10]
(See talks by Thomas Pock and others)

Caveat: all the issues with CNN methods forthcoming
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Nonlinear encoder methods for ML-based IR J. Fessler
Caveats...

• ML-based nonlinear encoder, e.g., autoencoder or generative adversarial network
(GAN) [11, 12]: nonlinear generalizations of subspace models
• learn G : maps low-dimensional latent parameter z into high-dimensional image x
I Synthesis form [13]:

x̂ = G(ẑ), ẑ = arg min
z
‖AG(z)− y‖2

2

Caveat: x̂ ∈ Range(G), non-convex minimization

I Regularizer form:
x̂ = arg min

x
‖Ax − y‖2

2 + βRencoder(x)

Rencoder(x) = min
z
‖x − G(z)‖pp

Caveat: expensive non-convex double minimization, but more robust to encoder
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Nonlinear encoder illustration J. Fessler
Caveats...

From jupyter notebook for [14] (13 layer CNN with ≈ 300K learned parameters) at
https://github.com/skolouri/swae/blob/master/MNIST_SlicedWassersteinAutoEncoder_Circle.ipynb

z ∈ R2

Caveat: Where is 4?

7→ x = G(z) ∈ R28×28
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Generative Adversarial Networks (GAN) example J. Fessler
Caveats...

From Google’s [15]:

Much more realistic than linear interpolation (averaging)
“setting a new milestone in visual quality” [15]
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Generative Adversarial Networks (GAN) example J. Fessler
Caveats...

From Google’s [15]:

Caveat: non-physical output
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Caveat: data size J. Fessler
Caveats...

From Dr. Bradley Erikson’s synopsis (http://cds.ismrm.org/protected/18MPresentations/abstracts/E1347.html):

• ImageNet (http://image-net.org/about-stats): 14,197,122 images
• 2017 Nature paper on skin cancer classification [16]: 129,450 clinical images
• Chest X-ray study [17]: 100,000 images

. . .
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Caveat: data size J. Fessler
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From Dr. Bradley Erikson’s synopsis (http://cds.ismrm.org/protected/18MPresentations/abstracts/E1347.html):

• ImageNet (http://image-net.org/about-stats): 14,197,122 images
• 2017 Nature paper on skin cancer classification [16]: 129,450 clinical images
• Chest X-ray study [17]: 100,000 images

Mitigation:
• Train and process image patches (e.g., local operations like denoising)
• Transfer learning (pre-trained networks) [18]
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Caveat: local minimizers J. Fessler
Caveats...

NN training highly nonconvex
=⇒ many local minimizers
. . .
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Caveat: local minimizers J. Fessler
Caveats...

NN training highly nonconvex
=⇒ many local minimizers

“Adding One Neuron Can Eliminate All Bad
Local Minima”
exponential activation function [19]

Caveat: binary classification only
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Caveat: NN methods can be fooled J. Fessler
Caveats...

Daniel Geng and Rishi Veerapaneni https://ml.berkeley.edu/blog/2018/01/10/adversarial-examples/

MNIST NN trained with 50000 images

Caveat: adversarial concoctions
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More fooling around J. Fessler
Caveats...

https://gizmodo.com/this-simple-sticker-can-trick-neural-networks-into-thin-1821735479
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Obligatory cat picture J. Fessler
Caveats...

https://www.theregister.co.uk/2017/11/06/mit_fooling_ai/

Or panda/gibbon example [20]...
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TensorFlow playground I J. Fessler
Caveats...

http://playground.tensorflow.org
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TensorFlow playground II J. Fessler
Caveats...
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Caveat: myriads of choices J. Fessler
Caveats...

I Architecture choices
• Input properties (just data, or functions of data, e.g., powers?)
• # of layers
• # of neurons per layer
• Activation function: ReLU / Tanh / Sigmoid / Linear

I Cost function (loss function) choices
• Regularization (None or L1 or L2)
• Regularization parameter
• Regression / classification

I Algorithm choices
• Learning rate (or schedule)
• Batch size
• # of epochs
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Caveat: even more choices J. Fessler
Caveats...

I Other NN design choices
• Data scaling
• Batch normalization
• Dropout
• Other training loss functions
• MSE, MAE, VGG (perceptual), VGG+MSE, VGG+MAE, ...
• MSE-based training can over-smooth details [21–23]
• Training loss may matter more than network structure [24]
• Task-based training of NNs (Kyle Myers et al., 1995 [25])

• Evaluation metrics: NRMSE, SSIM, NPWE, CHO, ...
• . . .

(Hand crafting...)
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Caveat: local minimizers J. Fessler
Caveats...

Two realizations of stochastic gradient descent reach drastically different answers
for a binary classification problem
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Caveat: others J. Fessler
Caveats...

I Math skills may atrophy
IEEE SP Magazine paper on GAN methods [26]: 1 equation!

I complex data in MRI
I Generalizability
• Different noise levels
• Different receive coil sensitivities
• Different k-space sampling patterns

[27] trained with various sampling patterns
I Fair comparisons
• spend day(s) training a CNN
• use default parameters for comparison methods!?

I Poor reproducibility due to unclear descriptions (Survey: [28])
I Problem size: 2D vs 3D vs 3D+time (dynamic), GPU memory constraints
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Caveat: generalizability (lack thereof) J. Fessler
Caveats...

Generalize CNN to different
sampling patterns?
(CT views, cf radial MRI)
(Jin et al., IEEE T-IP, Sep. 2017 [29])
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Caveat: deep not necessarily better I J. Fessler
Caveats...

DL trained using 500 ellipse images (Jin et al., IEEE T-IP, Sep. 2017 [29])
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Caveat: deep not necessarily better II J. Fessler
Caveats...

Sparse-view CT with 50 views: TV beats deep CNN [29]
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Non-deep ML-based IR methods J. Fessler
Caveats...

Use training data to learn:
• dictionary D (for patches)
• sparsifying transform(s) Ω (for patches)
• or convolutional versions thereof [30, 31]

ML-based regularized optimization problem using M image patches:

x̂ = arg min
x
‖Ax − y‖2

2 + βRML(x)

RML−DL(x) = min
{zm}

M∑
m=1
‖Pmx −Dzm‖2

2 + α ‖zm‖0

RML−ST(x) = min
{zm}

M∑
m=1
‖ΩPmx − zm‖2

2 + α ‖zm‖0

Alternative: blind adaptive learned dictionary [32] or learned sparsifying transform [33].
Caveat: double minimization, not “deep,” but more interpretable
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Caveat: careful comparisons needed I J. Fessler
Caveats...

Unrolled loop method with 20 layers trained with 1.3 · 106 MR image 8× 8 patches [9]
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Tested with 5 different images:
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Caveat: careful comparisons needed II J. Fessler
Caveats...

Results:

UF Image Zero-filled Sparse MRI UTMRI Proposed
3.3× 1 25.6 26.7 28.3 28.2

2 25.2 26.6 27.9 27.8
3 26.0 27.3 29.3 28.9
4 25.4 26.7 28.2 28.1
5 27.2 28.9 30.6 30.3

Avg. PSNR change - - 1.36 2.98 2.78
5× 1 24.7 25.9 27.6 27.5

2 24.2 25.5 27.2 27.0
3 24.9 26.3 28.5 28.0
4 24.4 25.7 27.6 27.4
5 26.2 27.9 29.8 29.5

Avg. PSNR change - - 1.38 3.26 3.0
Approx recon time - - 100s 240s 50s

Sparse MRI [34] total variation and wavelets
UTMRI [35] (union of learned sparsifying transforms): adaptive, not “deep”
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Caveat: DL is not always needed J. Fessler
Caveats...

Quantitative MRI: images→ estimation → parameters (T1,T2,. . . )

I Traditional nonlinear estimation methods:
• nonlinear least squares
• dictionary matching (quantized maximum likelihood via variable projection

I Machine-learning methods
• deep neural network regression [36–39]

Caveat: long training times
• parameter estimation via kernel regression (PERK)

Gopal Nataraj et al., ISBI 2017, IEEE T-MI 2018 [40, 41]
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Parameter estimation via kernel regression (PERK) example J. Fessler
Caveats...
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Summary J. Fessler
Caveats...

I Much excitement but many challenges
I Artificial intelligence vs artificial features

I 2017 Med. Phys. point/counter-point on ML in radiology [42]:
“AI fares pretty well on “low hanging” targets of sharply defined skin cancers in colorful 2D photographs [16]
but will face challenges from 3D gray scale, fuzzy radiology images where lesions are often subtle or diffuse,
differentials are wider, and artifacts masquerade.”

I Ali Rahimi of Google likens some ML methods to alchemy (trial and error)
http://www.sciencemag.org/news/2018/05/ai-researchers-allege-machine-learning-alchemy
https://openreview.net/pdf?id=rJWF0Fywf

“Researchers, he said, do not know why some algorithms work and others don’t, nor do they have rigorous
criteria for choosing one AI architecture over another.”

I DL is just one tool in the ML toolbox

37 / 45
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Recommended reading (incomplete lists) J. Fessler
Caveats...

I Overviews: [28, 42, 43]
I Generative models: [14, 44]:
I Deep learning myths [45]
I NN complexity analysis / function approximation [46–48] [49]
I Application to MR fingerprinting [36, 39]
I MR reconstruction / enhancement using CNN [10, 50–57]
I Dynamic MR reconstruction using CNN [58]
I . . .
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Resources J. Fessler
Caveats...

Talk and code available online at
http://web.eecs.umich.edu/˜fessler
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