Medical image reconstruction using adaptive signal models

UNIVERSITY OF MICHIGAN

L Fessler

ML for IR

Jeffrey A. Fessler

EECS Department, BME Department, Dept. of Radiology University of Michigan

CSP Seminar 2018-12-06

Acknowledgments: Doug Noll, Sai Ravishankar, Raj Nadakuditi, Jon Nielsen, Gopal Nataraj, II Yong Chun, Xuehang Zheng, ...

Declaration: No relevant financial interests or relationships to disclose

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers Convolutional adaptive regularizers Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers Convolutional adaptive regularizers Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

Overview of medical imaging:

Most obvious place for machine learning is post-processing:

J. Fessler

Most obvious place for machine learning is post-processing:

(Many conference sessions; special issue of IEEE Trans. on Med. Imaging in May 2016 [1], ...)

L Fessler

Machine learning in medical image reconstruction

Another (initially less obvious?) place for machine learning (multiple conference sessions):

. . .

Machine learning in medical image reconstruction

J. Fessler ML for IR

Another (initially less obvious?) place for machine learning (multiple conference sessions):

$$\begin{array}{ccc} \mathsf{raw} \ \mathsf{data} & & \mathsf{ML}\text{-}\mathsf{based} \\ \boldsymbol{y} & \rightarrow & \mathsf{image \ reconstruction} \end{array} \rightarrow & \hat{\boldsymbol{x}} \end{array}$$

Possibly easier (than diagnosis) due to lower bar:

- current reconstruction methods based on simplistic image models;
- human eyes are better at detection than at solving inverse problems.

Machine learning in medical image reconstruction

J. Fessler ML for IR

Another (initially less obvious?) place for machine learning (multiple conference sessions):

$$\begin{array}{ccc} \mathsf{raw} \ \mathsf{data} & & \mathsf{ML}\text{-}\mathsf{based} \\ \boldsymbol{y} & \rightarrow & & \mathsf{image reconstruction} \end{array} \rightarrow & \hat{\boldsymbol{x}} \end{array}$$

Possibly easier (than diagnosis) due to lower bar:

EMB NPSS

• current reconstruction methods based on simplistic image models;

• human eyes are better at detection than at solving inverse problems. June 2018 special issue of IEEE Trans. on Medical Imaging [2]:

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 37, NO. 6, JUNE 2018

1289

Image Reconstruction Is a New Frontier of Machine Learning

Ge Wang[®], *Fellow, IEEE*, Jong Chu Ye[®], *Senior Member, IEEE*, Klaus Mueller[®], *Senior Member, IEEE*, and Jeffrey A. Fessler[®], *Fellow, IEEE*

A more speculative opportunity for machine learning:

. . .

J. Fessler

A more speculative opportunity for machine learning:

$$\begin{array}{ccc} \mathsf{raw} \ \mathsf{data} & \mathsf{ML}\text{-}\mathsf{based} \\ \boldsymbol{y} & \stackrel{}{\rightarrow} & \overset{}{\mathsf{magic''}} & \stackrel{}{\rightarrow} & \mathsf{interpretation} \end{array}$$

- CT sinogram to vessel diameter [3]
- k-space to ???

See Wiro Niessen's keynote...

J. Fessler

Machine learning in medical imaging: scan design

One more opportunity for ML in medical imaging:

. . .

J. Fessler

One more opportunity for ML in medical imaging:

Choose best k-space phase encoding locations based on training images:

- "Learning-based compressive MRI" [4, 5] (Volkan Cevher group, June 2018 IEEE T-MI) Single coil only so far; perhaps hard to generalize to parallel MRI?
- Yue Cao and David Levin, MRM Sep. 1993 "Feature recognizing MRI" [6-8]

L Fessler

Adaptive phase-encode selection

Sampling designed to optimize PSNR for basis pursuit (BP) reconstruction using shearlet transform, at 25% sampling rate.

Sampling design considers both the training data and the reconstruction method. No high spatial frequencies!?

(Images from Gözcü et al. [5].)

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers Convolutional adaptive regularizers Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

Forward problem (data acquisition):

SPECT, PET, X-ray CT, MRI, optical, ...

Inverse problem (image formation):

Image reconstruction topics: physics models, measurement statistical models, regularization / object priors, optimization...

Generations of medical image reconstruction methods

J. Fessler ML for IR

- 70's "Analytical" methods (integral equations) FBP for SPECT / PET / X-ray CT, IFFT for MRI, ...
- 2. 80's Algebraic methods (as in "linear algebra") Solve y = Ax
- 3. 90's Statistical methods
 - LS / ML methods
 - Bayesian methods (Markov random fields, ...)
 - regularized methods
- 4. 00's Compressed sensing methods (mathematical sparsity models)
- 5. 10's Adaptive / data-driven methods machine learning, deep learning, ...

Accelerating MR imaging using adaptive regularization

L Fessler ML for IR

(a) $4 \times$ under-sampled MR k-space (b) zero-filled reconstruction (c) "compressed sensing" reconstruction with TV regularization (d) adaptive regularization using dictionary learning

Ravishankar & Bresler, DLMRI, T-MI, May 2011,

[9, Fig. 10]

DL = dictionary learning

(not "deep learning")

Ill-posed inverse problems

- **y** : measurements ε : noise
- **x** : unknown image
- A : system matrix (typically wide)

compressed sensing (*e.g.*, MRI)

k_y

 k_{x}

deblurring (restoration)

- in-painting
- denoising (not ill posed)

(A Toeplitz)(A subset of rows of I)(A = I)

(**A** "random" rows of DFT)

If we have a prior p(x), then the MAP estimate is:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,max}_{\boldsymbol{x}} \operatorname{p}(\boldsymbol{x} \mid \boldsymbol{y}) = \operatorname*{arg\,max}_{\boldsymbol{x}} \log \operatorname{p}(\boldsymbol{y} \mid \boldsymbol{x}) + \log \operatorname{p}(\boldsymbol{x})$$
.

For gaussian measurement errors and a linear forward model:

$$-\log p(\boldsymbol{y} | \boldsymbol{x}) \equiv \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_{\boldsymbol{W}}^2$$

where $\|\boldsymbol{y}\|_{\boldsymbol{W}}^2 = \boldsymbol{y}' \boldsymbol{W} \boldsymbol{y}$

and $\boldsymbol{W}^{-1} = \text{Cov}\{\boldsymbol{y} \mid \boldsymbol{x}\}$ is known (**A** from physics, **W** from statistics)

Priors for MAP estimation

▶ If all images **x** are "plausible" (have non-zero probability) then

$$p(\mathbf{x}) \propto e^{-R(\mathbf{x})} \Longrightarrow -\log p(\mathbf{x}) \equiv R(\mathbf{x})$$

(from fantasy / imagination / wishful thinking / data)

• MAP \equiv regularized weighted least-squares (WLS) estimation:

$$\hat{\boldsymbol{x}} = \arg \max_{\boldsymbol{x}} \log p(\boldsymbol{y} | \boldsymbol{x}) + \log p(\boldsymbol{x})$$
$$= \arg \min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{\boldsymbol{W}}^2 + \mathsf{R}(\boldsymbol{x})$$

- A regularizer R(x), aka log prior, is essential for high-quality solutions to ill-conditioned / ill-posed inverse problems.
- ▶ Why ill-posed? Often high ambitions...

Non-adaptive regularizers

J. Fessler ML for IR

- Tikhonov regularization (IID gaussian prior)
- Markov random field (MRF) models
- Roughness penalty (cf MRF prior)
- Edge-preserving regularization
- Total-variation (TV) regularization
- Black-box denoiser like NLM, e.g., plug-and-play ADMM [10]
- Sparsity in ambient space
- Sparsifying transforms: wavelets, curvelets,
- Graphical models

All "hand crafted" from statistical / mathematical models ...

Simpler methods for ML in image reconstruction

Many possible ways to use ML ideas in image reconstruction.

Basic "fast" methods:

- Enhance raw data (k-space, sinogram, ...)
- Enhance poorly reconstructed image
 - patch-based
 - image-based

Computation / quality trade-offs ?

. . .

L Fessler

Simpler methods for ML in image reconstruction

Many possible ways to use ML ideas in image reconstruction.

Basic "fast" methods:

- Enhance raw data (k-space, sinogram, ...)
- Enhance poorly reconstructed image
 - patch-based
 - image-based

Computation / quality trade-offs ?

Basic "slow" methods:

- Auto-tune regularization parameter(s)
- Provide an initial image for "conventional" iterative reconstruction

May not fully exploit the potential of ML

L Fessler

ML-based "prior" image for iterative reconstruction [11]:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_2^2 + \beta \|\boldsymbol{x} - \boldsymbol{x}_{\mathrm{prior}}\|_{
ho}^{
ho}$$

Fast for p = 2, but p = 1 more robust to errors in prior image Reminiscent of U. Wisconsin's PICCS methods, *e.g.*, [12]

ML-based "prior" image for iterative reconstruction [11]:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \beta \|\boldsymbol{x} - \boldsymbol{x}_{\mathrm{prior}}\|_{p}^{p}$$

Fast for p = 2, but p = 1 more robust to errors in prior image Reminiscent of U. Wisconsin's PICCS methods, *e.g.*, [12]

▶ Unrolled loop (recurrent NN) with learned components [13–16]

Nonlinear encoder methods for ML-based IR

- ML-based nonlinear encoder, *e.g.*, autoencoder or generative adversarial network (GAN) [17, 18]: nonlinear generalizations of subspace models
- learn G: maps low-dimensional latent parameter z into high-dimensional image x
- Synthesis form [19]:

$$\hat{oldsymbol{x}} = G(\hat{oldsymbol{z}}), \qquad \hat{oldsymbol{z}} = rgmin_{oldsymbol{z}} \|oldsymbol{A}G(oldsymbol{z}) - oldsymbol{y}\|_2^2$$

Challenges: $\hat{x} \in \text{Range}(G)$, non-convex minimization

L Fessler

Nonlinear encoder methods for ML-based IR

- ML-based nonlinear encoder, *e.g.*, autoencoder or generative adversarial network (GAN) [17, 18]: nonlinear generalizations of subspace models
- learn G: maps low-dimensional latent parameter z into high-dimensional image x
- Synthesis form [19]:

$$\hat{m{x}} = G(\hat{m{z}}), \qquad \hat{m{z}} = rgmin_{m{z}} \|m{A}G(m{z}) - m{y}\|_2^2$$

Challenges: $\hat{x} \in \text{Range}(G)$, non-convex minimization

Regularizer form:

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\arg\min} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \beta R_{\text{encoder}}(\boldsymbol{x})$$
$$R_{\text{encoder}}(\boldsymbol{x}) = \underset{\boldsymbol{z}}{\min} \|\boldsymbol{x} - G(\boldsymbol{z})\|_{p}^{p}$$

Expensive non-convex double minimization, but more robust to encoder?

L Fessler

Nonlinear encoder illustration

From jupyter notebook for [20] (13 layer CNN with \approx 300K learned parameters) at

 ${\tt https://github.com/skolouri/swae/blob/master/MNIST_SlicedWassersteinAutoEncoder_Circle.ipynblocks$

 \mapsto $m{x} = m{G}(m{z}) \in \mathbb{R}^{28 imes 28}$ $z \in \mathbb{R}^2$ 1.0 100 203 404

100

200

300

Generative Adversarial Networks (GAN) example

From Google's [21]:

Much more realistic than linear interpolation (averaging). "setting a new milestone in visual quality" [21].

Generative Adversarial Networks (GAN) example

From Google's [21]:

Non-physical output!

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers Convolutional adaptive regularizers Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

Data

- Population adaptive methods (*e.g.*, X-ray CT)
- Patient adaptive methods (e.g., dynamic MRI?)
- Spatial structure
 - Patch-based models
 - Convolutional models
- Regularizer formulation
 - Synthesis (dictionary) approach
 - Analysis (sparsifying transforms) approach

Many options...

L Fessler

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers

Convolutional adaptive regularizers Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

Data

- Population adaptive methods
- Patient adaptive methods
- Spatial structure
 - Patch-based models
 - Convolutional models
- Regularizer formulation
 - Synthesis (dictionary) approach
 - Analysis (sparsifying transform) approach

Patch-wise transform sparsity model

Assumption: if \boldsymbol{x} is a plausible image, then each $\Omega \boldsymbol{P}_m \boldsymbol{x}$ is sparse.

- $P_m x$ extracts the *m*th of *M* patches from x
- $\blacktriangleright \ \Omega$ is a square sparsifying transform matrix

Sparsifying transform learning (population adaptive)

Given training images x_1, \ldots, x_L from a representative population, find transform Ω_* that best sparsifies their patches:

$$\boldsymbol{\Omega}_{*} = \operatorname*{arg\,min}_{\boldsymbol{\Omega} \text{ unitary}} \min_{\left\{\boldsymbol{z}_{l,m}\right\}} \sum_{l=1}^{L} \sum_{m=1}^{M} \left\|\boldsymbol{\Omega}\boldsymbol{P}_{m}\boldsymbol{x}_{l} - \boldsymbol{z}_{l,m}\right\|_{2}^{2} + \alpha \left\|\boldsymbol{z}_{l,m}\right\|_{0}$$

- Encourage aggregate sparsity, not patch-wise sparsity (cf K-SVD [22])
- Non-convex due to unitary constraint and $\|\cdot\|_0$
- Efficient alternating minimization algorithm [23]
 - z update is simply hard thresholding
 - Ω update is an orthogonal Procrustes problem (SVD)
 - Subsequence convergence guarantees [23]

Example of learned sparsifying transform

3D X-ray training data

Parts of learned sparsifier Ω_*

(2D slices in x-y, x-z, y-z, from 3D image volume) $8 \times 8 \times 8$ patches $\implies \Omega_*$ is $8^3 \times 8^3 = 512 \times 512$ top 8 \times 8 slice of 256 of the 512 rows of $\Omega_{*}\uparrow_{_{29/71}}$

Regularizer based on learned sparsifying transform

Regularized inverse problem [24]:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{\boldsymbol{W}}^2 + \beta \operatorname{\mathsf{R}}(\boldsymbol{x})$$

$$\mathsf{R}(\mathbf{x}) = \min_{\{\mathbf{z}_m\}} \sum_{m=1}^M \|\mathbf{\Omega}_* \mathbf{P}_m \mathbf{x} - \mathbf{z}_m\|_2^2 + \alpha \|\mathbf{z}_m\|_0.$$

 Ω_{\ast} adapted to population training data

Alternating minimization optimizer:

- *z_m* update is simple hard thresholding
- x update is a quadratic problem: many options
 Linearized augmented Lagrangian method (LALM) [25]

J. Fessler

ML for IR

Example: low-dose 3D X-ray CT simulation

X. Zheng, S. Ravishankar, Y. Long, JF:

IEEE T-MI, June 2018 [24]

3D X-ray CT simulation Error maps

J. Fessler ML for IR

- Physics / statistics provides dramatic improvement
- Data adaptive regularization further reduces RMSE

Given training images x_1, \ldots, x_L from a representative population, find a set of transforms $\{\hat{\Omega}_k\}_{k=1}^{K}$ that best sparsify image patches:

$$\begin{cases} \hat{\boldsymbol{\Omega}}_{k} \end{cases} = \underset{\{\boldsymbol{\Omega}_{k} \text{ unitary}\}}{\arg\min} \underset{\{k_{l,m} \in \{1,...,K\}\}}{\min} \underset{\{\boldsymbol{z}_{l,m}\}}{\min} \\ \sum_{l=1}^{L} \sum_{m=1}^{M} \left\| \boldsymbol{\Omega}_{k_{l,m}} \boldsymbol{P}_{m} \boldsymbol{x}_{l} - \boldsymbol{z}_{l,m} \right\|_{2}^{2} + \alpha \left\| \boldsymbol{z}_{l,m} \right\|_{0}$$

- Joint unsupervised clustering / sparsification
- Further nonconvexity due to clustering
- Efficient alternating minimization algorithm [26]

Example: 3D X-ray CT learned set of transforms

Example: 3D X-ray CT ULTRA for chest scan

Zheng et al., IEEE T-MI, June 2018 [24]

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers Convolutional adaptive regularizers Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

Data

- Population adaptive methods
- Patient adaptive methods
- Spatial structure
 - Patch-based models
 - Convolutional models
- Regularizer formulation
 - Synthesis (dictionary) approach
 - Analysis (sparsifying transform) approach

Drawback of basic patch-based methods: $512 \times 512 \times 512$ 3D X-ray CT image volume $8 \times 8 \times 8$ patches $\implies 512^3 \cdot 8^3 \cdot 4 = 256$ Gbyte of patch data for stride=1

Convolutional sparsity model

J. Fessler ML for IR

38 / 71

Assumption: There is a set of filters $\{\boldsymbol{h}_k\}_{k=1}^K$ such that the images $\{\boldsymbol{h}_k * \boldsymbol{x}\}$ are sparse for a plausible image \boldsymbol{x} .

- For more plausible images, $\{h_k * x\}$ is more sparse.
- * denotes convolution
- Inherently shift invariant and no patches

Sparsifying filter learning (population adaptive)

L Fessler

ML for IR

Given training images $\mathbf{x}_1, \ldots, \mathbf{x}_L$ from a representative population, find filters $\{\hat{\mathbf{h}}_k\}_{k=1}^K$ that best sparsify them:

$$\left\{ \hat{\boldsymbol{h}}_{k} \right\} = \underset{\{\boldsymbol{h}_{k}\} \in \mathcal{H}}{\arg\min} \min_{\{\boldsymbol{z}_{l,k}\}} \sum_{l=1}^{L} \sum_{k=1}^{K} \|\boldsymbol{h}_{k} \ast \boldsymbol{x}_{l} - \boldsymbol{z}_{l,k}\|_{2}^{2} + \alpha \|\boldsymbol{z}_{l,k}\|_{0}$$

► To encourage filter diversity:

•
$$\mathcal{H} = \{ \boldsymbol{H} : \boldsymbol{H}\boldsymbol{H}' = \boldsymbol{I} \}, \ \boldsymbol{H} = [\boldsymbol{h}_1 \ \dots \ \boldsymbol{h}_K]$$

- *cf.* tight-frame condition $\sum_{k=1}^{K} \| \boldsymbol{h}_k * \boldsymbol{x} \|_2^2 \propto \| \boldsymbol{x} \|_2^2$
- Encourage aggregate sparsity, period
- ▶ Non-convex due to constraint \mathcal{H} and $\|\cdot\|_0$
- Efficient alternating minimization algorithm [27]
 - z update is simply hard thresholding
 - Filter update uses diagonal majorizer, proximal map (SVD)
 - Subsequence convergence guarantees [27]

Examples of learned sparsifying filters

Regularizer based on learned sparsifying filters

J. Fessler ML for IR

Regularized inverse problem [27]:

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x} \succeq \boldsymbol{0}}{\arg\min} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{\boldsymbol{W}}^2 + \beta \operatorname{\mathsf{R}}(\boldsymbol{x})$$
$$\operatorname{\mathsf{R}}(\boldsymbol{x}) = \underset{\{\boldsymbol{z}_k\}}{\arg\min} \sum_{k=1}^{K} \left\| \hat{\boldsymbol{h}}_k * \boldsymbol{x} - \boldsymbol{z}_k \right\|_2^2 + \alpha \|\boldsymbol{z}_k\|_0.$$

 $\left\{ \hat{m{h}}_k
ight\}$ adapted to population training data

Block proximal gradient with majorizer (BPG-M) optimizer:

- z_k update is simple hard thresholding
- x update is a quadratic problem: diagonal majorizer

I. Y. Chun, JF, 2018, arXiv 1802.05584 [27]

Example: sparse-view 2D X-ray CT simulation

EР

Adaptive CAOL

FBP

123 views (out of usual 984) \implies 8× dose reduction

RMSE (in HU):			
FBP	82.8		
EP	40.8		
Adaptive filters	35.2		

- Physics / statistics provides dramatic improvement
- Data-adaptive regularization further reduces RMSE

Extension to multiple layers (cf CNN) I

Convolutional sparsity model: $h_k * x$ is sparse for $k = 1, ..., K_1$ Learning 1 "layer" of filters:

$$\{\hat{\boldsymbol{h}}_{k}^{[1]}\} = \underset{\{\boldsymbol{h}_{k}^{[1]}\} \in \mathcal{H}}{\arg\min} \min_{\{\boldsymbol{z}_{l,k}^{[1]}\}} \sum_{l=1}^{L} \sum_{k=1}^{K_{1}} \left\|\boldsymbol{h}_{k}^{[1]} * \boldsymbol{x}_{l} - \boldsymbol{z}_{l,k}^{[1]}\right\|_{2}^{2} + \alpha \left\|\boldsymbol{z}_{l,k}^{[1]}\right\|_{0}^{2}$$

J. Fessler ML for IR

Learning 2 layers of filters [27]:

$$\left(\{ \hat{\boldsymbol{h}}_{k}^{[1]} \}, \{ \hat{\boldsymbol{h}}_{k}^{[2]} \} \right) = \arg\min_{\{\boldsymbol{h}_{k}^{[1]} \}, \{ \boldsymbol{h}_{k}^{[2]} \} \in \mathcal{H}} \min_{\{\boldsymbol{z}_{l,k}^{[1]} \}, \{ \boldsymbol{z}_{l,k}^{[2]} \}} \sum_{\substack{l=1 \ k=1}}^{L} \sum_{k=1}^{K_{1}} \left\| \boldsymbol{h}_{k}^{[1]} * \boldsymbol{x}_{l} - \boldsymbol{z}_{l,k}^{[1]} \right\|_{2}^{2} + \alpha \left\| \boldsymbol{z}_{l,k}^{[1]} \right\|_{0}^{2} + \sum_{l=1}^{L} \sum_{k=1}^{K_{2}} \left\| \boldsymbol{h}_{k}^{[2]} * \left(\boldsymbol{P}_{k} \boldsymbol{z}_{l}^{[1]} \right) - \boldsymbol{z}_{l,k}^{[2]} \right\|_{2}^{2} + \alpha \left\| \boldsymbol{z}_{l,k}^{[2]} \right\|_{0}^{2}$$

Here P_k is a pooling operator for the output of first layer Block proximal gradient with majorizer (BPG-M) optimizer

I. Y. Chun, JF, 2018, arXiv 1802.05584 $\left[27 \right]$

Use multi-level learned filters as (interpretable?) regularizer for CT.

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers Convolutional adaptive regularizers Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

Data

- Population adaptive methods
- Patient adaptive methods
- Spatial structure
 - Patch-based models
 - Convolutional models
- Regularizer formulation
 - Synthesis (dictionary) approach
 - Analysis (sparsifying transform) approach

Patch-wise dictionary sparsity model

Assumption: if \boldsymbol{x} is a plausible image, then each patch has

 $P_m x \approx D z_m$

for a sparse coefficient vector \boldsymbol{z}_m . (Synthesis approach.)

- $P_m x$ extracts the *m*th of *M* patches from x
- **D** is a (typically overcomplete) dictionary for patches

MR reconstruction using adaptive dictionary regularizer

Dictionary-blind MR image reconstruction:

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} + \beta R(\boldsymbol{x})$$

$$R(\boldsymbol{x}) = \min_{\boldsymbol{D} \in \mathcal{D}} \min_{\boldsymbol{z}' \in \mathcal{C}} \sum_{m=1}^{M} \left(\|\boldsymbol{P}_{m}\boldsymbol{x} - \boldsymbol{D}\boldsymbol{z}_{m}\|_{2}^{2} + \lambda^{2} \|\boldsymbol{z}_{m}\|_{0} \right)$$

where P_m extracts *m*th of *M* image patches.

In words: of the many images...

Alternating (nested) minimization:

- Fixing \boldsymbol{x} and \boldsymbol{D} , update each row of $\boldsymbol{Z} = [\boldsymbol{z}_1 \dots \boldsymbol{z}_M]$ sequentially via hard-thresholding.
- Fixing x and Z, update D using SOUP-DIL [28].
- Fixing **Z** and **D**, updating **x** is a quadratic problem.
 - Efficient FFT solution for single-coil Cartesian MRI.
 - Use CG for non-Cartesian and/or parallel MRI.
- Non-convex, but monotone decreasing and some convergence theory [28].

J Fessler

ML for IR

2D CS MRI results I

J. Fessler ML for IR

2D CS MRI results II

(SNR compared to fully sampled image.) Using $\|\boldsymbol{z}_m\|_0$ leads to higher SNR than $\|\boldsymbol{z}_m\|_1$. Adaptive case is non-convex anyway...

J. Fessler ML for IR

lm.	Samp.	Acc.	0-fill	Sparse MRI	PANO	DLMRI	SOUP- DILLI	SOUP- DILLO
а	Cart.	7×	27.9	28.6	31.1	31.1	30.8	31.1
b	Cart.	2.5×	27.7	31.6	41.3	40.2	38.5	42.3
с	Cart.	2.5×	24.9	29.9	34.8	36.7	36.6	37.3
с	Cart.	4×	25.9	28.8	32.3	32.1	32.2	32.3
d	Cart.	2.5×	29.5	32.1	36.9	38.1	36.7	38.4
е	Cart.	2.5×	28.1	31.7	40.0	38.0	37.9	41.5
f	2D rand.	5×	26.3	27.4	30.4	30.5	30.3	30.6
g	Cart.	2.5x	32.8	39.1	41.6	41.7	42.2	43.2
Ref.				[29]	[30]	[9]	[28]	[28]

2D CS MRI results IV

J. Fessler ML for IR

Summary: 2D static MR reconstruction from under-sampled data with adaptive dictionary learning and convergent algorithm, faster than K-SVD approach of DLMRI.

Summary of patch-based, data-driven adaptive regularizers

Use training data to learn:

- dictionary **D** (for patches)
- sparsifying transform(s) Ω (for patches)

• or convolutional versions thereof [32, 33]

ML-based regularized optimization problem using M image patches:

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\arg\min} \|\boldsymbol{A}\boldsymbol{x} - \boldsymbol{y}\|_{2}^{2} + \beta R_{\mathrm{ML}}(\boldsymbol{x})$$

$$R_{\mathrm{ML-DL}}(\boldsymbol{x}) = \underset{\{\boldsymbol{z}_{m}\}}{\min} \sum_{m=1}^{M} \|\boldsymbol{P}_{m}\boldsymbol{x} - \boldsymbol{D}\boldsymbol{z}_{m}\|_{2}^{2} + \alpha \|\boldsymbol{z}_{m}\|_{0}$$

$$R_{\mathrm{ML-ST}}(\boldsymbol{x}) = \underset{\{\boldsymbol{z}_{m}\}}{\min} \sum_{m=1}^{M} \|\boldsymbol{\Omega}\boldsymbol{P}_{m}\boldsymbol{x} - \boldsymbol{z}_{m}\|_{2}^{2} + \alpha \|\boldsymbol{z}_{m}\|_{0}$$

Alternative: blind adaptive learned dictionary [9] or learned sparsifying transform [34]. Double minimization (so very "deep?") More interpretable than CNNs?

L Fessler

ML for IR

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers Convolutional adaptive regularizers Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

Training an unrolled loop I

J. Fessler ML for IR

Unrolled loop method with 20 layers trained with $1.3\cdot10^6$ MR image 8 \times 8 patches <code>Ravishankar</code> et al., ISBI 2018 [15]

Tested with 5 different MR images:

Training an unrolled loop II

J. Fessler ML for IR

	M
	UNIVERSITY OF
I	MICHIGAN

Undersampling	Image	Zero-filled	Sparse MRI	UTMRI	Unrolled
3.3×	1	25.6	26.7	28.3	28.2
	2	25.2	26.6	27.9	27.8
	3	26.0	27.3	29.3	28.9
	4	25.4	26.7	28.2	28.1
	5	27.2	28.9	30.6	30.3
Avg. PSNR change	-	-	1.36	2.98	2.78
5×	1	24.7	25.9	27.6	27.5
	2	24.2	25.5	27.2	27.0
	3	24.9	26.3	28.5	28.0
	4	24.4	25.7	27.6	27.4
	5	26.2	27.9	29.8	29.5
Avg. PSNR change	-	-	1.38	3.26	3.0
Approx recon time	-	-	100s	240s	50s

Results:

Sparse MRI [35] total variation (TV) and wavelets UTMRI [26] (union of learned sparsifying transforms): adaptive, not "deep"

Quantitative MRI:images \rightarrow estimation \rightarrow parameters (T1, T2, ...)

- Traditional nonlinear estimation methods:
 - nonlinear least squares
 - dictionary matching (quantized maximum likelihood via variable projection)
- Machine-learning methods
 - deep neural network regression [36–39] Requires long training times
 - parameter estimation via kernel regression (PERK) Gopal Nataraj et al., ISBI 2017, IEEE T-MI 2018 [40, 41]

Parameter estimation via kernel regression (PERK) example J. Fessler ML for IR

PERK applied to myelin water imaging

6 parameters (T1 slow/fast, T2 slow/fast, M_0 , fast fraction) Estimated from 3 optimized dual-echo steady state (DESS) scans [42]

PERK training: 33.8s, testing 0.99s / slice

MESE scan took 32m (16m \times 2) DESS scan took 3m15s Take away: "traditional" machine learning is still useful...

Introduction

ML-based image reconstruction approaches

Adaptive regularization

Patch-based adaptive regularizers Convolutional adaptive regularizers Blind dictionary learning

Other ML4MI topics

Summary

Bibliography

- Machine learning has great potential for medical imaging
- Much excitement but many challenges
- Image reconstruction seems especially suitable for ML ideas
- Data-driven, adaptive regularizers beneficial for low-dose CT and under-sampled MRI
- More comparisons between model-based methods with adaptive regularizers and CNN-based methods needed
- Machine learning tools like kernel regression remain useful

Overviews: [43–45]

▶ ...

- Generative models: [20, 46]:
- Deep learning myths [47]
- ▶ NN complexity analysis / function approximation [48–50] [51]
- Application to MR fingerprinting [36, 39]
- ▶ MR reconstruction / enhancement using CNN [16, 52–59]
- Dynamic MR reconstruction using CNN [60]

Resources

Talk and code available online at http://web.eecs.umich.edu/~fessler

Bibliography I

- H. Greenspan, B. van Ginneken, and R. M. Summers. "Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique." In: IEEE Trans. Med. Imag. 35.5 (May 2016), 1153–9.
- [2] G. Wang, J. C. Ye, K. Mueller, and J. A. Fessler. "Image reconstruction is a new frontier of machine learning." In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1289–96.
- [3] E. Haneda, B. Claus, P. FitzGerald, G. Wang, and B. De Man. "CT sinogram analysis using deep learning." In: Proc. 5th Intl. Mtg. on Image Formation in X-ray CT. 2018, 419–22.
- [4] L. Baldassarre, Y-H. Li, J. Scarlett, B. Gozcu, I. Bogunovic, and V. Cevher. "Learning-based compressive subsampling." In: IEEE J. Sel. Top. Sig. Proc. 10.4 (June 2016), 809–22.
- [5] B. Gozcu, R. K. Mahabadi, Y-H. Li, E. Ilicak, T. Cukur, J. Scarlett, and V. Cevher. "Learning-based compressive MRI." In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1394–406.
- [6] Y. Cao and D. N. Levin. "Feature-recognizing MRI." In: Mag. Res. Med. 30.3 (Sept. 1993), 305–17.
- [7] Y. Cao, D. N. Levin, and L. Yao. "Locally focused MRI." In: Mag. Res. Med. 34.6 (Dec. 1995), 858-67.
- [8] Y. Cao and D. N. Levin. "Using an image database to constrain the acquisition and reconstruction of MR images of the human head." In: IEEE Trans. Med. Imag. 14.2 (June 1995), 350–61.
- S. Ravishankar and Y. Bresler. "MR image reconstruction from highly undersampled k-space data by dictionary learning." In: IEEE Trans. Med. Imag. 30.5 (May 2011), 1028–41.
- [10] S. H. Chan, X. Wang, and O. A. Elgendy. "Plug-and-play ADMM for image restoration: fixed-point convergence and applications." In: IEEE Trans. Computational Imaging 3.1 (Mar. 2017), 84–98.
- [11] G. Yang, S. Yu, H. Dong, G. Slabaugh, P. L. Dragotti, X. Ye, F. Liu, S. Arridge, J. Keegan, Y. Guo, and D. Firmin. "DAGAN: Deep de-aliasing generative adversarial networks for fast compressed sensing MRI reconstruction." In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1310–21.

Bibliography II

- [12] G-H. Chen, J. Tang, and S. Leng. "Prior image constrained compressed sensing (PICCS): A method to accurately reconstruct dynamic CT images from highly undersampled projection data sets." In: Med. Phys. 35.2 (Feb. 2008), 660–3.
- [13] K. Gregor and Y. LeCun. "Learning fast approximations of sparse coding." In: Proc. Intl. Conf. Mach. Learn. 2010.
- [14] Y. Chen and T. Pock. "Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration." In: IEEE Trans. Patt. Anal. Mach. Int. 39.6 (June 2017), 1256–72.
- [15] S. Ravishankar, A. Lahiri, C. Blocker, and J. A. Fessler. "Deep dictionary-transform learning for image reconstruction." In: Proc. IEEE Intl. Symp. Biomed. Imag. 2018, 1208–12.
- [16] K. Hammernik, T. Klatzer, E. Kobler, M. P. Recht, D. K. Sodickson, T. Pock, and F. Knoll. "Learning a variational network for reconstruction of accelerated MRI data." In: Mag. Res. Med. 79.6 (June 2018), 3055–71.
- [17] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Generative adversarial networks. 2014.
- [18] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and P. Abbeel. "InfoGAN: interpretable representation learning by information maximizing generative adversarial nets." In: Neural Info. Proc. Sys. 2016, 2172–80.
- [19] A. Bora, A. Jalal, E. Price, and A. G. Dimakis. "Compressed sensing using generative models." In: Proc. Intl. Conf. Mach. Learn. Vol. 70. 2017, 537–46.
- [20] S. Kolouri, P. E. Pope, C. E. Martin, and G. K. Rohde. Sliced-Wasserstein autoencoder: an embarrassingly simple generative model. 2018.
- [21] D. Berthelot, T. Schumm, and L. Metz. BEGAN: boundary equilibrium generative adversarial networks. 2017.
- [22] M. Aharon, M. Elad, and A. Bruckstein. "K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation." In: IEEE Trans. Sig. Proc. 54.11 (Nov. 2006), 4311–22.
- [23] S. Ravishankar and Y. Bresler. "I₀ sparsifying transform learning with efficient optimal updates and convergence guarantees." In: IEEE Trans. Sig. Proc. 63.9 (May 2015), 2389–404.

Bibliography III

- [24] X. Zheng, S. Ravishankar, Y. Long, and J. A. Fessler. "PWLS-ULTRA: An efficient clustering and learning-based approach for low-dose 3D CT image reconstruction." In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1498–510.
- [25] H. Nien and J. A. Fessler. "Relaxed linearized algorithms for faster X-ray CT image reconstruction." In: IEEE Trans. Med. Imag. 35.4 (Apr. 2016), 1090–8.
- [26] S. Ravishankar and Y. Bresler. "Data-driven learning of a union of sparsifying transforms model for blind compressed sensing." In: IEEE Trans. Computational Imaging 2.3 (Sept. 2016), 294–309.
- [27] I. Y. Chun and J. A. Fessler. "Convolutional analysis operator learning: acceleration, convergence, application, and neural networks." In: IEEE Trans. Im. Proc. (2018). Submitted.
- [28] S. Ravishankar, R. R. Nadakuditi, and J. A. Fessler. "Efficient sum of outer products dictionary learning (SOUP-DIL) and its application to inverse problems." In: IEEE Trans. Computational Imaging 3.4 (Dec. 2017), 694–709.
- [29] M. Lustig and J. M. Pauly. "SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space." In: Mag. Res. Med. 64.2 (Aug. 2010), 457–71.
- [30] X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen. "Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator." In: *Med. Im. Anal.* 18.6 (Aug. 2014), 843–56.
- [31] Z. Zhan, J-F. Cai, D. Guo, Y. Liu, Z. Chen, and X. Qu. "Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction." In: IEEE Trans. Biomed. Engin. 63.9 (Sept. 2016), 1850–61.
- [32] I. Y. Chun and J. A. Fessler. "Convolutional dictionary learning: acceleration and convergence." In: IEEE Trans. Im. Proc. 27.4 (Apr. 2018), 1697–712.
- [33] I. Y. Chun and J. A. Fessler. Convolutional analysis operator learning: acceleration, convergence, application, and neural networks. 2018.
- [34] S. Ravishankar and Y. Bresler. "Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to MRI." In: SIAM J. Imaging Sci. 8.4 (2015), 2519–57.

Bibliography IV

- [35] M. Lustig, D. Donoho, and J. M. Pauly. "Sparse MRI: The application of compressed sensing for rapid MR imaging." In: Mag. Res. Med. 58.6 (Dec. 2007), 1182–95.
- [36] P. Virtue, S. X. Yu, and M. Lustig. "Better than real: Complex-valued neural nets for MRI fingerprinting." In: Proc. IEEE Intl. Conf. on Image Processing. 2017, 3953–7.
- [37] A. Lahiri, J. A. Fessler, and L. Hernandez-Garcia. "Optimized design of MRF scan parameters for ASL signal acquisition." In: ISMRM Workshop on MR Fingerprinting. 2017.
- [38] A. Lahiri, J. A. Fessler, and L. Hernandez-Garcia. "Optimized scan design for ASL fingerprinting and multiparametric estimation using neural network regression." In: Proc. Intl. Soc. Mag. Res. Med. 2018, p. 309.
- [39] O. Cohen, B. Zhu, and M. S. Rosen. "MR fingerprinting Deep RecOnstruction NEtwork (DRONE)." In: Mag. Res. Med. 80.3 (Sept. 2018), 885–94.
- [40] G. Nataraj, J-F. Nielsen, and J. A. Fessler. "Dictionary-free MRI parameter estimation via kernel ridge regression." In: Proc. IEEE Intl. Symp. Biomed. Imag. 2017, 5–9.
- [41] G. Nataraj, J-F. Nielsen, C. D. Scott, and J. A. Fessler. "Dictionary-free MRI PERK: Parameter estimation via regression with kernels." In: IEEE Trans. Med. Imag. 37.9 (Sept. 2018), 2103–14.
- [42] G. Nataraj, J-F. Nielsen, M. Gao, and J. A. Fessler. Fast, precise myelin water quantification using DESS MRI and kernel learning. Submitted. 2018.
- [43] G. Wang. "A perspective on deep imaging." In: IEEE Access 4 (Nov. 2016), 8914–24.
- [44] G. Wang, M. Kalra, and C. G. Orton. "Machine learning will transform radiology significantly within the next five years." In: Med. Phys. 44.6 (June 2017), 2041–4.
- [45] M. T. McCann, K. H. Jin, and M. Unser. "Convolutional neural networks for inverse problems in imaging: A review." In: IEEE Sig. Proc. Mag. 34.6 (Nov. 2017), 85–95.

Bibliography V

- [46] I. Deshpande, Z. Zhang, and A. Schwing. "Generative modeling using the sliced Wasserstein distance." In: Proc. IEEE Conf. on Comp. Vision and Pattern Recognition. 2018.
- [47] S. Rakhlin. MythBusters: A Deep Learning Edition. Slides dated Jan 18-19, 2018. 2018.
- [48] N. Golowich, A. Rakhlin, and O. Shamir. Size-independent sample complexity of neural networks. 2017.
- [49] T. Liang, T. Poggio, A. Rakhlin, and J. Stokes. Fisher-Rao metric, geometry, and complexity of neural networks. 2017.
- [50] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, and J. Sohl-Dickstein. "On the expressive power of deep neural networks." In: Proc. Intl. Conf. Mach. Learn. Vol. 70, 2017, 2847–54.
- [51] S. Liang and R. Srikant. "Why deep neural networks for function approximation?" In: Proc. Intl. Conf. on Learning Representations. 2017.
- [52] S. Ravishankar, I. Y. Chun, and J. A. Fessler. "Physics-driven deep training of dictionary-based algorithms for MR image reconstruction." In: Proc., IEEE Asilomar Conf. on Signals, Systems, and Comp. Invited. 2017, 1859–63.
- [53] M. Mardani, E. Gong, J. Y. Cheng, S. Vasanawala, G. Zaharchuk, M. Alley, N. Thakur, S. Han, W. Dally, J. M. Pauly, and L. Xing. Deep generative adversarial networks for compressed sensing automates MRI. 2017.
- [54] B. Zhu, J. Z. Liu, S. F. Cauley, B. R. Rosen, and M. S. Rosen. "Image reconstruction by domain-transform manifold learning." In: Nature 555 (Mar. 2018), 487–92.
- [55] Y. Han, J. Yoo, H. H. Kim, H. J. Shin, K. Sung, and J. C. Ye. "Deep learning with domain adaptation for accelerated projection-reconstruction MR." In: Mag. Res. Med. 80.3 (Sept. 2018), 1189–205.
- [56] K. H. Jin and M. Unser. "3D BPConvNet to reconstruct parallel MRI." In: Proc. IEEE Intl. Symp. Biomed. Imag. 2018, 361-4.
- [57] H. Jeelani, J. Martin, F. Vasquez, M. Salerno, and D. S. Weller. "Image quality affects deep learning reconstruction of MRI." In: Proc. IEEE Intl. Symp. Biomed. Imag. 2018, 357–60.

- [58] T. M. Quan, T. Nguyen-Duc, and W-K. Jeong. "Compressed sensing MRI reconstruction using a generative adversarial network with a cyclic loss." In: IEEE Trans. Med. Imag. 37.6 (June 2018), 1488–97.
- [59] T. Eo, Y. Jun, T. Kim, J. Jang, H-J. Lee, and D. Hwang. "KIKI-net: cross-domain convolutional neural networks for reconstructing undersampled magnetic resonance images." In: Mag. Res. Med. (2018).
- [60] J. Schlemper, J. Caballero, J. V. Hajnal, A. N. Price, and D. Rueckert. "A deep cascade of convolutional neural networks for dynamic MR image reconstruction." In: IEEE Trans. Med. Imag. 37.2 (Feb. 2018), 491–503.