Union of Learned Sparsifying Transforms Based Low-Dose 3D CT Image Reconstruction

Xuehang Zheng¹, Saiprasad Ravishankar², Yong Long¹, Jeff Fessler²

¹University of Michigan - Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China ²Department of Electrical Engineering and Computer Science, University of Michigan, MI, USA

June 21, 2017

Outline

- Problem Formulations
- Optimization Algorithm
- 4 Experimental Results
- 5 Conclusion and Future Work

(日) (周) (三) (三)

Dictionary Learning-Based LDCT Reconstruction

- Challenges in Low-Dose CT (LDCT):
 - significantly reduce patient radiation exposure
 - maintain high image quality
- Apply the Prior Information Learned from Big Datasets of Normal-Dose CT Images into LDCT Reconstruction.
 - Training Phase \implies Prior \implies Reconstruction Phase
- Dictionary Learning-Based Approaches¹:
 - have shown promising results for LDCT
 - typically use an overcomplete dictionary
 - NP-Hard sparse coding

イロト イポト イヨト イヨト

Dictionary Learning-Based LDCT Reconstruction

- Challenges in Low-Dose CT (LDCT):
 - significantly reduce patient radiation exposure
 - maintain high image quality
- Apply the Prior Information Learned from Big Datasets of Normal-Dose CT Images into LDCT Reconstruction.

• Training Phase \implies Prior \implies Reconstruction Phase

- Dictionary Learning-Based Approaches¹:
 - have shown promising results for LDCT
 - typically use an overcomplete dictionary
 - NP-Hard sparse coding

Dictionary Learning-Based LDCT Reconstruction

- Challenges in Low-Dose CT (LDCT):
 - significantly reduce patient radiation exposure
 - maintain high image quality
- Apply the Prior Information Learned from Big Datasets of Normal-Dose CT Images into LDCT Reconstruction.

• Training Phase \implies Prior \implies Reconstruction Phase

- Dictionary Learning-Based Approaches¹:
 - have shown promising results for LDCT
 - typically use an overcomplete dictionary
 - NP-Hard sparse coding

¹[Xu et al., IEEE T-MI, 2012]

Introduction

Union of Learned TRAnsforms (ULTRA)

- Sparsifying Transform Learning²: a generalized analysis operator
- Learning A Union of Transforms³: one for each class of features (group of patches)
- Closed-form solutions for sparse coding (and clustering): Computational cost: $O(l^2N)$ vs $O(l^3N)$ for Dictionary

²[Ravishankar & Bresler, IEEE T-SP, 2015]

³[Wen et al., Int J Comput Vis, 2015]

Xuehang Zheng (UM-SJTU JI)

Union of Learned TRAnsforms (ULTRA)

- Sparsifying Transform Learning²: a generalized analysis operator
- Learning A Union of Transforms³: one for each class of features (group of patches)
- Closed-form solutions for sparse coding (and clustering): Computational cost: O(l²N) vs O(l³N) for Dictionary

²[Ravishankar & Bresler, IEEE T-SP, 2015]

³[Wen et al., Int J Comput Vis, 2015]

Xuehang Zheng (UM-SJTU JI)

- 4 同 6 4 日 6 4 日 6

Introduction

Union of Learned TRAnsforms (ULTRA)

- Sparsifying Transform Learning²: a generalized analysis operator
- Learning A Union of Transforms³: one for each class of features (group of patches)
- Closed-form solutions for sparse coding (and clustering): Computational cost: O(l²N) vs O(l³N) for Dictionary

²[Ravishankar & Bresler, IEEE T-SP, 2015]

³[Wen et al., Int J Comput Vis, 2015]

Xuehang Zheng (UM-SJTU JI)

- 4 目 ト - 4 日 ト - 4 日 ト

Outline

- 2 Problem Formulations
- 3 Optimization Algorithm
- 4 Experimental Results
- 5 Conclusion and Future Work

э

(日) (周) (三) (三)

Learning A Union of Transforms

$$\min_{\{\boldsymbol{\Omega}_k, \boldsymbol{\mathsf{Z}}_i, \boldsymbol{C}_k\}} \sum_{k=1}^{K} \sum_{i \in C_k} \left\{ \overbrace{\|\boldsymbol{\Omega}_k \boldsymbol{\mathsf{X}}_i - \boldsymbol{\mathsf{Z}}_i\|_2^2}^{\text{Sparsification Error}} + \overbrace{\eta^2 \|\boldsymbol{\mathsf{Z}}_i\|_0}^{\text{Sparsity Penalty}} \right\} + \sum_{k=1}^{K} \lambda_k Q(\boldsymbol{\Omega}_k) \quad (P0)$$

• $\{\Omega_k\}_{k=1}^{K}$: union of square transforms.

- Z_i: sparse code of the training signal X_i.
- $Q(\Omega_k) \triangleq \|\Omega_k\|_F^2 \log |\det \Omega_k|$: controls the properties of Ω_k^4 .
- C_k: the set of indices of signals matched to the kth class.
- An efficient alternating algorithm is used for (P0).

⁴[Ravishankar & Bresler, IEEE T-SP, 2015]

Image Reconstruction

Penalized Weighted-Least Squares (PWLS):

$$\min_{\mathbf{x} \succeq \mathbf{0}} \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{W}}^2 + \beta \mathsf{R}(\mathbf{x})$$
(P1)

- y: noisy sinogram (measurement)
- A: system matrix
- x: unknown image (volume)
- W: diagonal weighting matrix
- R(x): regularizer
- β : regularization parameter

- 4 伺 ト 4 ヨ ト 4 ヨ ト

Problem Formulations

Image Reconstruction: PWLS-ULTRA

$$\min_{\mathbf{x} \succeq \mathbf{0}} \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{W}}^2 + \beta \mathsf{R}(\mathbf{x})$$
(P1)

$$\mathsf{R}(\mathbf{x}) \triangleq \min_{\{\mathbf{z}_j, C_k\}} \sum_{k=1}^{K} \left\{ \sum_{j \in C_k} \|\mathbf{\Omega}_k \mathbf{P}_j \mathbf{x} - \mathbf{z}_j\|_2^2 + \gamma^2 \|\mathbf{z}_j\|_0 \right\}$$
(1)

3

Outline

- 2 Problem Formulations
- Optimization Algorithm
 - 4 Experimental Results
 - 5 Conclusion and Future Work

(日) (周) (三) (三)

Image Update Step

$$\min_{\mathbf{x} \succeq \mathbf{0}} \frac{1}{2} \| \mathbf{y} - \mathbf{A} \mathbf{x} \|_{\mathbf{W}}^{2} + \beta \sum_{k=1}^{K} \sum_{j \in C_{k}} \| \mathbf{\Omega}_{k} \mathbf{P}_{j} \mathbf{x} - \mathbf{z}_{j} \|_{2}^{2}$$
(2)

We solve it using the **relaxed linearized augmented Lagrangian method with ordered-subsets** (relaxed OS-LALM)⁵:

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho(\mathbf{D}_{\mathbf{A}}\mathbf{x}^{(k)} - \mathbf{h}^{(k)}) + (1 - \rho)\mathbf{g}^{(k)} \\ \mathbf{x}^{(k+1)} = [\mathbf{x}^{(k)} - (\rho\mathbf{D}_{\mathbf{A}} + \mathbf{D}_{R_2})^{-1}(\mathbf{s}^{(k+1)} + \nabla R_2(\mathbf{x}^{(k)}))]_{\mathcal{C}} \\ \boldsymbol{\zeta}^{(k+1)} \triangleq M\mathbf{A}_m^T \mathbf{W}_m(\mathbf{A}_m \mathbf{x}^{(k+1)} - \mathbf{y}_m) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho + 1} (\alpha \boldsymbol{\zeta}^{(k+1)} + (1 - \alpha)\mathbf{g}^{(k)}) + \frac{1}{\rho + 1}\mathbf{g}^{(k)} \\ \mathbf{h}^{(k+1)} = \alpha (\mathbf{D}_{\mathbf{A}}\mathbf{x}^{(k+1)} - \boldsymbol{\zeta}^{(k+1)}) + (1 - \alpha)\mathbf{h}^{(k)} \end{cases}$$
(3)

⁵[Nien & Fessler, IEEE T-MI, 2016]

▲口▶▲圖▶▲臣▶▲臣▶ 臣 のQC

Xuehang Zheng (UM-SJTU JI)

Image Update Step

$$\min_{\mathbf{x} \succeq \mathbf{0}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{\mathbf{W}}^2 + \beta \sum_{k=1}^{K} \sum_{j \in C_k} \|\mathbf{\Omega}_k \mathbf{P}_j \mathbf{x} - \mathbf{z}_j\|_2^2$$
(2)

We solve it using the **relaxed linearized augmented Lagrangian method with ordered-subsets** (relaxed OS-LALM)⁵:

$$\begin{cases} \mathbf{s}^{(k+1)} = \rho(\mathbf{D}_{\mathbf{A}}\mathbf{x}^{(k)} - \mathbf{h}^{(k)}) + (1 - \rho)\mathbf{g}^{(k)} \\ \mathbf{x}^{(k+1)} = [\mathbf{x}^{(k)} - (\rho\mathbf{D}_{\mathbf{A}} + \mathbf{D}_{R_2})^{-1}(\mathbf{s}^{(k+1)} + \nabla R_2(\mathbf{x}^{(k)}))]_{\mathcal{C}} \\ \zeta^{(k+1)} \triangleq M\mathbf{A}_m^T \mathbf{W}_m(\mathbf{A}_m \mathbf{x}^{(k+1)} - \mathbf{y}_m) \\ \mathbf{g}^{(k+1)} = \frac{\rho}{\rho + 1} (\alpha \zeta^{(k+1)} + (1 - \alpha)\mathbf{g}^{(k)}) + \frac{1}{\rho + 1}\mathbf{g}^{(k)} \\ \mathbf{h}^{(k+1)} = \alpha (\mathbf{D}_{\mathbf{A}}\mathbf{x}^{(k+1)} - \zeta^{(k+1)}) + (1 - \alpha)\mathbf{h}^{(k)} \end{cases}$$
(3)

⁵[Nien & Fessler, IEEE T-MI, 2016]

<ロト </p>

Xuehang Zheng (UM-SJTU JI)

Sparse Coding and Clustering Step

$$\min_{\{\mathbf{z}_j\},\{C_k\}} \sum_{k=1}^{K} \left\{ \sum_{j \in C_k} \|\mathbf{\Omega}_k \mathbf{P}_j \mathbf{x} - \mathbf{z}_j\|_2^2 + \gamma^2 \|\mathbf{z}_j\|_0 \right\}$$
(4)

- Hard-thresholding operator $H_{\gamma}(\cdot)$: sets entries with mag. $< \gamma$ to 0.
- For each patch, the optimal cluster assignment:

$$\hat{k}_j = \underset{1 \le k \le K}{\arg\min} \| \boldsymbol{\Omega}_k \mathbf{P}_j \mathbf{x} - \boldsymbol{H}_{\gamma} (\boldsymbol{\Omega}_k \mathbf{P}_j \mathbf{x}) \|_2^2 + \gamma^2 \| \boldsymbol{H}_{\gamma} (\boldsymbol{\Omega}_k \mathbf{P}_j \mathbf{x}) \|_0.$$
(5)

• The optimal sparse code: $\hat{z}_j = H_{\gamma}(\Omega_{\hat{k}_i} P_j x)$.

イロト イポト イヨト イヨト

Sparse Coding and Clustering Step

$$\min_{\{\mathbf{z}_j\},\{C_k\}} \sum_{k=1}^{K} \left\{ \sum_{j \in C_k} \|\mathbf{\Omega}_k \mathbf{P}_j \mathbf{x} - \mathbf{z}_j\|_2^2 + \gamma^2 \|\mathbf{z}_j\|_0 \right\}$$
(4)

- Hard-thresholding operator $H_{\gamma}(\cdot)$: sets entries with mag. $< \gamma$ to 0.
- For each patch, the optimal cluster assignment:

$$\hat{k}_j = \underset{1 \le k \le K}{\arg\min} \|\boldsymbol{\Omega}_k \mathbf{P}_j \mathbf{x} - \boldsymbol{H}_{\gamma}(\boldsymbol{\Omega}_k \mathbf{P}_j \mathbf{x})\|_2^2 + \gamma^2 \|\boldsymbol{H}_{\gamma}(\boldsymbol{\Omega}_k \mathbf{P}_j \mathbf{x})\|_0.$$
(5)

• The optimal sparse code: $\hat{z}_j = H_{\gamma}(\Omega_{\hat{k}_i} P_j x)$.

イロト イポト イヨト イヨト 二日

Sparse Coding and Clustering Step

$$\min_{\{\mathbf{z}_j\},\{C_k\}} \sum_{k=1}^{K} \left\{ \sum_{j \in C_k} \|\mathbf{\Omega}_k \mathbf{P}_j \mathbf{x} - \mathbf{z}_j\|_2^2 + \gamma^2 \|\mathbf{z}_j\|_0 \right\}$$
(4)

- Hard-thresholding operator $H_{\gamma}(\cdot)$: sets entries with mag. $< \gamma$ to 0.
- For each patch, the optimal cluster assignment:

$$\hat{k}_{j} = \underset{1 \le k \le K}{\arg\min} \|\boldsymbol{\Omega}_{k} \mathbf{P}_{j} \mathbf{x} - \boldsymbol{H}_{\gamma} (\boldsymbol{\Omega}_{k} \mathbf{P}_{j} \mathbf{x})\|_{2}^{2} + \gamma^{2} \|\boldsymbol{H}_{\gamma} (\boldsymbol{\Omega}_{k} \mathbf{P}_{j} \mathbf{x})\|_{0}.$$
 (5)

• The optimal sparse code: $\hat{z}_j = H_{\gamma}(\Omega_{\hat{k}_i} P_j x)$.

Outline

- 2 Problem Formulations
- 3 Optimization Algorithm
- 4 Experimental Results

3

(日) (周) (三) (三)

3D Axial Cone-beam CT with XCAT phantom⁶

• Training: $512 \times 512 \times 54$ XCAT image volume with patch size $8 \times 8 \times 8$ and patch stride $2 \times 2 \times 2$ ($\approx 1.5 \times 10^6$ patches).

⁶[Segars et al., MP, 2008]

- イロト イ理ト イヨト イヨト ニヨー わんの

Xuehang Zheng (UM-SJTU JI)

PWLS-ULTRA

3D Axial Cone-beam CT with XCAT phantom⁷

• Testing:

- Sinogram size $888 \times 64 \times 984$;
- Volume size 420 × 420 × 96 (air cropped);
- $\Delta_x = \Delta_y = 0.977$ and $\Delta_z = 0.625$ mm;
- Patch size $8 \times 8 \times 8$ with stride $2 \times 2 \times 2$ ($\approx 2 \times 10^6$ patches).

• Reconstruction Methods:

- FDK with a Hanning window.
- PWLS-EP with "Lange3" Edge-Preserving regularizer.
- **PWLS-ST** based on a learned single **S**quare **T**ransform (K = 1).
- PWLS-ULTRA based on a Union of Learned TRAnsforms.

⁷[Segars et al., MP, 2008]

RMSE & SSIM Comparison

Table: RMSE (HU) & SSIM of reconstructions for two incident photon intensities.

Intensity	FDK	EP	ST ($K = 1$)	ULTRA ($K = 15$)
$1 imes 10^4$	67.8	33.7	31.9	31.5
	0.536	0.917	0.976	0.979
$5 imes 10^3$	89.0	39.9	37.4	37.2
	0.463	0.894	0.967	0.969

• ULTRA scheme further improves the reconstruction than ST.

Performance Across Slices

Figure: RMSE of axial slices for 1×10^4 (left) and 5×10^3 (right).

ULTRA provides improvement for most of axial slices.

PWLS-ULTRA

- ∢ ∃ →

Experimental Results

Figure: Photon intensity: 1×10^4 (top row) and 5×10^3 (bottom row).

PWLS-ULTRA

3

ヘロト 人間 とくほ とくほ とう

Figure: Photon intensity: 1×10^4 .

PWLS-ULTRA

An Example of Clustering Result

Figure: Pixel clustering results (top) for the central axial slice of PWLS-ULTRA (K = 5) for 1×10^4 , and a slice of the corresponding 3D transforms (bottom).

3D Reconstructions of a Helical Chest Scan

- Sinogram size $888 \times 64 \times 3611$;
- Pitch 1.0 (about 3.7 rotations with rotation time 0.4s);
- Volume size 420 \times 420 \times 222, $\Delta_x = \Delta_y = 1.167$ and $\Delta_z = 0.625$ mm;
- Patch size $8 \times 8 \times 8$ with stride $3 \times 3 \times 3$ ($\approx 1.5 \times 10^6$ patches);

Experimental Results

3D Reconstructions of a Helical Chest Scan

- Use the transforms learned from XCAT phantom! (K = 5)
- Might not need closely matched dataset for training.

⁷FDK Reconstruction is provided by GE Healthcare.

Xuehang Zheng (UM-SJTU JI)

PWLS-ULTRA

Outline

- 2 Problem Formulations
- Optimization Algorithm
- 4 Experimental Results

3

(日) (周) (三) (三)

Conclusion

- We proposed **PWLS-ST** and **PWLS-ULTRA** for 3D LDCT imaging, which combine PWLS reconstruction with **regularization based on learned sparsifying transforms**.
- Both PWLS-ST and PWLS-ULTRA significantly improve the reconstruction quality compared to PWLS-EP.
- The ULTRA scheme with a richer union of transforms model provides better reconstruction of various features such as bones, specific soft tissues, and edges, compared to a single transform model.

• Future Work

- Convergence guarantees and automating the parameter selection.
- New transform learning-based LDCT reconstruction methods, such as involving rotationally invariant transforms, or online transform learning⁸, etc.

23 / 25

⁸[Ravishankar et al., IEEE J-STSP, 2015]

Conclusion

- We proposed **PWLS-ST** and **PWLS-ULTRA** for 3D LDCT imaging, which combine PWLS reconstruction with **regularization based on learned sparsifying transforms**.
- Both PWLS-ST and PWLS-ULTRA significantly improve the reconstruction quality compared to PWLS-EP.
- The ULTRA scheme with a richer union of transforms model provides better reconstruction of various features such as bones, specific soft tissues, and edges, compared to a single transform model.

• Future Work

- Convergence guarantees and automating the parameter selection.
- New transform learning-based LDCT reconstruction methods, such as involving rotationally invariant transforms, or online transform learning⁸, etc.

イロト イポト イヨト イヨト

⁸[Ravishankar et al., IEEE J-STSP, 2015]

Thanks for your attention!

・ロト ・聞ト ・ヨト ・ヨト

PWLS-ULTRA

While the total runtime for the 200 iterations (using a machine with two 2.80 GHz 10-core Intel Xeon E5-2680 processors) was 110 minutes for PWLS-DL, it was only 56 minutes for PWLS-ST and 60 minutes for PWLS-ULTRA(K = 15).