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Introduction

Dictionary Learning-Based LDCT Reconstruction

Challenges in Low-Dose CT (LDCT):

significantly reduce patient radiation exposure
maintain high image quality

Apply the Prior Information Learned from Big Datasets of
Normal-Dose CT Images into LDCT Reconstruction.

Training Phase =⇒ Prior =⇒ Reconstruction Phase

Dictionary Learning-Based Approaches1:

have shown promising results for LDCT
typically use an overcomplete dictionary
NP-Hard sparse coding

1[Xu et al., IEEE T-MI, 2012]
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Introduction

Union of Learned TRAnsforms (ULTRA)

Sparsifying Transform Learning2:
a generalized analysis operator

Learning A Union of Transforms3:
one for each class of features (group of patches)

Closed-form solutions for sparse coding (and clustering):
Computational cost: O(l2N) vs O(l3N) for Dictionary

2[Ravishankar & Bresler, IEEE T-SP, 2015]
3[Wen et al., Int J Comput Vis, 2015]
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Problem Formulations

Learning A Union of Transforms

min
{Ωk ,Zi ,Ck}

K∑
k=1

∑
i∈Ck

{Sparsification Error︷ ︸︸ ︷
‖ΩkXi − Zi‖2

2 +

Sparsity Penalty︷ ︸︸ ︷
η2‖Zi‖0

}
+

K∑
k=1

λkQ(Ωk) (P0)

{Ωk}Kk=1: union of square transforms.

Zi : sparse code of the training signal Xi .

Q(Ωk) , ‖Ωk‖2
F − log | det Ωk |: controls the properties of Ωk

4.

Ck : the set of indices of signals matched to the kth class.

An efficient alternating algorithm is used for (P0).

4[Ravishankar & Bresler, IEEE T-SP, 2015]
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Problem Formulations

Image Reconstruction

Penalized Weighted-Least Squares (PWLS):

min
x�0

1

2
‖y − Ax‖2

W + βR(x) (P1)

y: noisy sinogram (measurement)

A: system matrix

x: unknown image (volume)

W: diagonal weighting matrix

R(x): regularizer

β: regularization parameter
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Problem Formulations

Image Reconstruction: PWLS-ULTRA

min
x�0

1

2
‖y − Ax‖2

W + βR(x) (P1)

R(x) , min
{zj ,Ck}

K∑
k=1

{∑
j∈Ck

‖ΩkPjx− zj‖2
2 + γ2‖zj‖0

}
(1)
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Optimization Algorithm

Image Update Step

min
x�0

1

2
‖y − Ax‖2

W +

R2(x)︷ ︸︸ ︷
β

K∑
k=1

∑
j∈Ck

‖ΩkPjx− zj‖2
2 (2)

We solve it using the relaxed linearized augmented Lagrangian
method with ordered-subsets (relaxed OS-LALM)5:

s(k+1) = ρ(DAx(k) − h(k)) + (1− ρ)g(k)

x(k+1) = [x(k) − (ρDA + DR2)−1(s(k+1) +∇R2(x(k)))]C

ζ(k+1) , MAT
mWm(Amx(k+1) − ym)

g(k+1) =
ρ

ρ+ 1
(αζ(k+1) + (1− α)g(k)) +

1

ρ+ 1
g(k)

h(k+1) = α(DAx(k+1) − ζ(k+1)) + (1− α)h(k)

(3)

5[Nien & Fessler, IEEE T-MI, 2016]
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Optimization Algorithm

Sparse Coding and Clustering Step

min
{zj},{Ck}

K∑
k=1

{∑
j∈Ck

‖ΩkPjx− zj‖2
2 + γ2‖zj‖0

}
(4)

Hard-thresholding operator Hγ(·): sets entries with mag. < γ to 0.

For each patch, the optimal cluster assignment:

k̂j = arg min
1≤k≤K

‖ΩkPjx− Hγ(ΩkPjx)‖2
2 + γ2‖Hγ(ΩkPjx)‖0. (5)

The optimal sparse code: ẑj = Hγ(Ωk̂j
Pjx).
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Experimental Results

3D Axial Cone-beam CT with XCAT phantom6

Training: 512× 512× 54 XCAT image volume with patch size
8× 8× 8 and patch stride 2× 2× 2 ( ≈ 1.5× 106 patches).

6[Segars et al., MP, 2008]
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Experimental Results

3D Axial Cone-beam CT with XCAT phantom7

Testing:

Sinogram size 888× 64× 984;
Volume size 420× 420× 96 (air cropped);
∆x = ∆y = 0.977 and ∆z = 0.625 mm;
Patch size 8× 8× 8 with stride 2× 2× 2 (≈ 2× 106 patches).

Reconstruction Methods:

FDK with a Hanning window.
PWLS-EP with “Lange3” Edge-Preserving regularizer.
PWLS-ST based on a learned single Square Transform (K = 1).
PWLS-ULTRA based on a Union of Learned TRAnsforms.

7[Segars et al., MP, 2008]
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Experimental Results

RMSE & SSIM Comparison

Table: RMSE (HU) & SSIM of reconstructions for two incident photon intensities.

Intensity FDK EP ST (K = 1) ULTRA (K = 15)

1× 104 67.8 33.7 31.9 31.5

0.536 0.917 0.976 0.979

5× 103 89.0 39.9 37.4 37.2

0.463 0.894 0.967 0.969

ULTRA scheme further improves the reconstruction than ST.
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Experimental Results

Performance Across Slices
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Figure: RMSE of axial slices for 1× 104 (left) and 5× 103 (right).

ULTRA provides improvement for most of axial slices.
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Experimental Results

FDK PWLS-EP PWLS-ULTRA

FDK PWLS-EP PWLS-ULTRA

Figure: Photon intensity: 1× 104 (top row) and 5× 103 (bottom row).
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Experimental Results

PWLS-EP PWLS-ULTRA

Figure: Photon intensity: 1× 104.
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Experimental Results

An Example of Clustering Result

Class 1 Class 2 Class 3 Class 4 Class 5

Figure: Pixel clustering results (top) for the central axial slice of PWLS-ULTRA
(K = 5) for 1× 104, and a slice of the corresponding 3D transforms (bottom).
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Experimental Results

3D Reconstructions of a Helical Chest Scan

Sinogram size 888× 64× 3611;

Pitch 1.0 (about 3.7 rotations with rotation time 0.4s);

Volume size 420× 420× 222, ∆x = ∆y = 1.167 and ∆z = 0.625 mm;

Patch size 8× 8× 8 with stride 3× 3× 3 (≈ 1.5× 106 patches);
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Experimental Results

3D Reconstructions of a Helical Chest Scan

FDK

FDK

FDK

PWLS-EP

PWLS-EP

PWLS-EP

PWLS-ULTRA

PWLS-ULTRA

PWLS-ULTRA

Use the transforms learned from XCAT phantom! (K = 5)

Might not need closely matched dataset for training.
7FDK Reconstruction is provided by GE Healthcare.
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Conclusion and Future Work

Conclusion

We proposed PWLS-ST and PWLS-ULTRA for 3D LDCT imaging,
which combine PWLS reconstruction with regularization based on
learned sparsifying transforms.
Both PWLS-ST and PWLS-ULTRA significantly improve the
reconstruction quality compared to PWLS-EP.
The ULTRA scheme with a richer union of transforms model provides
better reconstruction of various features such as bones, specific soft
tissues, and edges, compared to a single transform model.

Future Work

Convergence guarantees and automating the parameter selection.
New transform learning-based LDCT reconstruction methods, such as
involving rotationally invariant transforms, or online transform
learning8, etc.

8[Ravishankar et al., IEEE J-STSP, 2015]
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Thanks for your attention!

Xuehang Zheng (UM-SJTU JI) PWLS-ULTRA 24 / 25



While the total runtime for the 200 iterations (using a machine with two
2.80 GHz 10-core Intel Xeon E5-2680 processors) was 110 minutes for
PWLS-DL, it was only 56 minutes for PWLS-ST and 60 minutes for
PWLS-ULTRA(K = 15).
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