Dynamic MRI image reconstruction using adaptive regularization methods

Jeffrey A. Fessler William L. Root Professor of EECS

EECS Dept., BME Dept., Dept. of Radiology University of Michigan

http://web.eecs.umich.edu/~fessler

With Sai Ravishankar, Brian Moore, & Raj Nadakuditi

Radiology Research Conference

2017-06-18

Commercial availability of iterative methods for human scanners per FDA 510(k) dates:

► PET/SPECT

Unregularized OS-EM \approx 1997

► X-ray CT

Regularized MBIR [2011-11-09 for GE Veo] (Installed at UM in Jan. 2012)

► PET/SPECT

Regularized EM variant (Q.Clear) 2014-03-21

► MRI

Compressed sensing! [2017-01-27 for Siemens Cardiac Cine] [2017-04-20 for GE HyperSense]

Ultrasound?

Ill-posed problems and regularization

Classical "hand crafted" regularizers Data-driven (adaptive / learned) regularizers Data-driven regularized MRI via dictionary learning Extension: learning low-rank atoms DIctioNary with IOw-ranK AToms (DINO-KAT)

Dynamic MR imaging DINO-KAT for dynamic MR

Summary

- $y = Ax + \varepsilon$
- y : measurements ε : noise
- x : unknown image A : system matrix (typically wide)
- ► compressed sensing (*e.g.*, MRI) (*A* "random" rows of DFT)

- deblurring (restoration)
- in-painting
- denoising (not ill posed)

(A Toeplitz)(A subset of rows of I)(A = I)

- ▶ Reduce scan time (?)
 - Patient comfort
 - Scan cost / throughput
 - Motion artifacts (Philips at ISMRM 2017)
- Improve spatial resolution (collect higher k-space lines)
- Improve scan diversity for quantitative MRI
- Improve temporal resolution trade-off in dynamic MRI

(But under-sampling leads to ill-posed inverse problems...)

If we have a prior p(x), then the MAP estimate is:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,max}_{\boldsymbol{x}} p(\boldsymbol{x} \mid \boldsymbol{y}) = \operatorname*{arg\,max}_{\boldsymbol{x}} \log p(\boldsymbol{y} \mid \boldsymbol{x}) + \log p(\boldsymbol{x}).$$

For gaussian measurement errors and a linear forward model:

$$-\log p(\boldsymbol{y} | \boldsymbol{x}) \equiv \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_{\boldsymbol{W}}^2$$

where $\|\boldsymbol{y}\|_{\boldsymbol{W}}^2 = \boldsymbol{y}' \boldsymbol{W} \boldsymbol{y}$ and $\boldsymbol{W}^{-1} = \text{Cov}\{\boldsymbol{y} \mid \boldsymbol{x}\}$ is known (**A** from physics, **W** from statistics)

▶ If all images x are "plausible" (have non-zero probability) then

$$p(\mathbf{x}) \propto e^{-R(\mathbf{x})} \Longrightarrow -\log p(\mathbf{x}) \equiv R(\mathbf{x})$$

(from fantasy / imagination / wishful thinking / data)

• MAP \equiv regularized weighted least-squares (WLS) estimation:

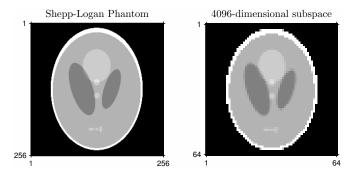
$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,max}} \log p(\boldsymbol{y} \mid \boldsymbol{x}) + \log p(\boldsymbol{x})$$
$$= \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{\boldsymbol{W}}^2 + \mathsf{R}(\boldsymbol{x})$$

- A regularizer R(x), aka log prior, is essential for high-quality solutions to ill-conditioned / ill-posed inverse problems.
- Why ill-posed? Often high ambitions...

Assuming x lies in a sufficiently low-dimensional subspace could make an inverse problem well conditioned.

 x_1 Assume $\pmb{x} = \pmb{D}\pmb{z}$ where $\pmb{D} = \left[egin{array}{c} 1 \\ 1 \end{array} \right]$ and $\pmb{z} \in \mathbb{R}^1$ (*z* has only one nonzero element so very sparse!?) Estimate coefficient(s): $\hat{z} = \arg \min_{z} ||y - ADz||_{2}^{2}$, then $\hat{x} = D\hat{z}$, where usually cond(D'A'AD) \ll cond(A'A).

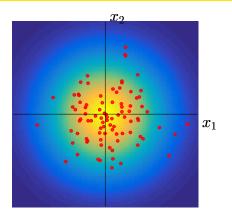
Candès and Romberg (2005) [1] used 22 (noiseless) CT projection views (*i.e.*, 22 pseudo-radial lines in MRI), each with 256 samples. $\implies 22 \cdot 256 = 5632$ measured values, vs $256^2 = 65536$ unknown pixels



Subspace representation (using pixel basis) is undesirably coarse.

- Tikhonov regularization (IID gaussian prior)
- Roughness penalty (Basic MRF prior)
- Sparsity in ambient space
- Edge-preserving regularization
- Total-variation (TV) regularization
- Black-box denoiser like NLM

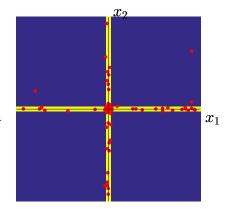
Tikhonov regularization



 $\mathsf{R}(\boldsymbol{x}) = \beta \|\boldsymbol{x}\|_2^2$

- Colors show equivalent (normalized) prior $p(x) / p(0) = e^{-R(x)}$
- Equivalent to IID gaussian prior on x
- Makes any ill-conditioned / ill-posed problem well conditioned
- Ignores correlations between pixels

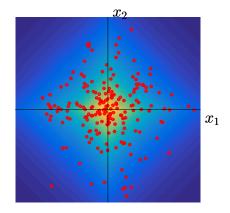
Sparsity regularization in ambient space



$$\mathsf{R}(\mathbf{x}) = \beta \|\mathbf{x}\|_0 = \beta \sum_j \mathbb{I}_{\{x_j \neq 0\}}$$

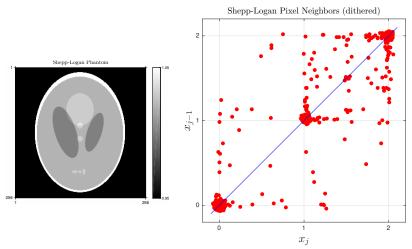
- Approximate Bayesian interpretation
- Non-convex
- IID \implies also ignores correlations

Sparsity regularization: convex relaxation



$$\mathsf{R}(\mathbf{x}) = \beta \|\mathbf{x}\|_1 = \beta \sum_j |x_j|$$

- Equivalent to IID Laplacian prior on x
- Also ignores correlations

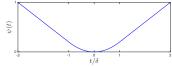


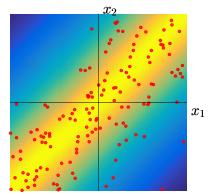
Caution: Shepp-Logan phantom [2] was designed for testing non-Bayesian methods, not for designing signal models. Q: What causes the spread??

Neighboring pixels tend to have similar values except near edges:

$$\mathsf{R}(\boldsymbol{x}) = \beta \sum_{j} \psi(x_j - x_{j-1})$$

Potential function ψ :



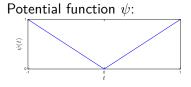


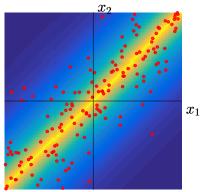
- Equivalent to improper prior (agnostic to DC value)
- Accounts for spatial correlations, but only very locally
- Used clinically now for low-dose X-ray CT image reconstruction

Total-variation (TV) regularization

Neighboring pixels tend to have similar values except near edges ("gradient sparsity"): x_2

$$\begin{aligned} \mathsf{R}(\boldsymbol{x}) &= \beta \operatorname{TV}(\boldsymbol{x}) = \beta \|\boldsymbol{C}\boldsymbol{x}\|_{1} \\ &= \beta \sum_{j} |x_{j} - x_{j-1}| \end{aligned}$$





- Equivalent to improper prior (agnostic to DC value)
- Accounts for correlations, but only very locally
- Well-suited to piece-wise constant Shepp-Logan phantom!
- Used in many academic publications...

Noisy image \rightarrow Denoiser \rightarrow Denoised image

- Example: Non-local means (NLM)
- Corresponding regularizer [3, 4, 5]:

$$\mathsf{R}(\boldsymbol{x}) = \beta \frac{1}{2} \|\boldsymbol{x} - \mathsf{NLM}(\boldsymbol{x})\|_2^2$$

- Encourages self-consistency with denoised version of image
- No evident Bayesian interpretation
- Variable splitting can facilitate minimization [6].

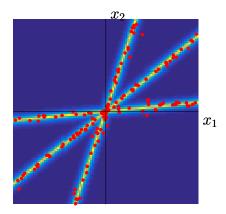
- Transforms: wavelets, curvelets,
- Markov random field models
- Graphical models
- ▶ ...

III-posed problems and regularization Classical "hand crafted" regularizers Data-driven (adaptive / learned) regularizers Data-driven regularized MRI via dictionary learning Extension: learning low-rank atoms DIctioNary with IOw-ranK AToms (DINO-KAT)

Dynamic MR imaging DINO-KAT for dynamic MR

Summary

Union of subspaces model



- Dimensionality reduction?
- ► cf. classification / clustering motivation [7]
- (Extension to union of "flats" (linear varieties) is possible [8].)

Union of subspaces regularization

Given (?) collection of K subspace bases D_1, \ldots, D_K (dictionaries with full column rank \Longrightarrow tall). Assume $\mathbf{x} \approx \mathbf{D}_k \mathbf{z}_k$ for some k and some (non-sparse) coefficients \mathbf{z}_k .

Natural regularizer for this model is:

$$\mathbf{R}(\mathbf{x}) = \underbrace{\min_{k}}_{\text{"classification"}} \underbrace{\min_{\mathbf{z}_{k}} \quad \beta \frac{1}{2} \|\mathbf{x} - \mathbf{D}_{k} \mathbf{z}_{k}\|_{2}^{2}}_{\text{regression}}$$
$$= \min_{k} \beta \frac{1}{2} \|\mathbf{x} - \mathbf{D}_{k} \mathbf{D}_{k}^{+} \mathbf{x}\|_{2}^{2}.$$

- R(x) = 0 if x lies in the span of any of the dictionaries $\{D_k\}$.
- Otherwise, distance to nearest subspace (discourage, not constrain).
- Non-convex (highly?) (cf. preceding picture) due to min
- Apply to image patches to be practical.
- Equivalent Bayesian interpretation? (Not a mixture model here.)
- Given? Learned from training data.

Assume $\boldsymbol{x} \approx \boldsymbol{D} \boldsymbol{z}$ where

► **D** is a dictionary (often over-complete ⇒ wide)

► *z* is a *sparse* coefficient vector (subset of columns of *D*). Corresponding regularizers:

$$\mathsf{R}(\mathbf{x}) = \min_{\mathbf{z}: \|\mathbf{z}\|_{p} \leq s} \beta \frac{1}{2} \|\mathbf{x} - \mathbf{D}\mathbf{z}\|_{2}^{2}, \qquad \text{or:}$$

$$\mathsf{R}(\boldsymbol{x}) = \min_{\boldsymbol{z}} \left(\beta_1 \frac{1}{2} \| \boldsymbol{x} - \boldsymbol{D} \boldsymbol{z} \|_2^2 + \beta_2 \| \boldsymbol{z} \|_p \right).$$

- Convex in \boldsymbol{z} (for given \boldsymbol{x}) if $p \ge 1$ and \boldsymbol{D} given.
- ▶ $\mathsf{R}(\mathbf{x})$ typically non-convex in \mathbf{x} , due to $\|\cdot\|_p$.
- ► Could be equivalent to a union-of-subspaces regularizer if D = [D₁ ... D_K] and if we constrain coefficient vector z in a non-standard way.

Union-of-subspaces vs sparse-coding-with-dictionary

Consider union-of-subspaces model with $D_1 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}$, $D_2 = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$. So D_1 spans x-y plane and D_2 spans z-axis. A dictionary model with $\boldsymbol{D} = \begin{bmatrix} \boldsymbol{D}_1 & \boldsymbol{D}_2 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$ and sparsity s = 2, happily represents all three cardinal planes. x_2

Thus dictionary model seems "less constrained" than union-of-subspaces model. (Still, focus on sparse dictionary representation hereafter.)

Joint work with Sai Ravishankar and Raj Nadakuditi [9, 10, 11]

- In practice, must learn *D* from data, say *X*
- Write sparse representation as Sum of OUter Products (SOUP):

$$oldsymbol{X} pprox oldsymbol{D}oldsymbol{Z} = oldsymbol{D}oldsymbol{C}' = \sum_{j=1}^J oldsymbol{d}_joldsymbol{c}_j'$$

where $\mathbf{Z}' = \mathbf{C} = [\mathbf{c}_1 \dots \mathbf{c}_J] \in \mathbb{R}^{N \times J}$ (coefficients for each atom)

- Replace individual atom sparsity constraint $||\boldsymbol{z}_n||_0 \leq s$ of K-SVD with aggregate sparsity regularizer: $|||\boldsymbol{Z}|||_0 = |||\boldsymbol{C}||_0$.
 - Natural for Dictionary Learning (DIL) from training data.
 - Unnatural for image compression using sparse coding.

SOUP-DIL ℓ_0 formulation:

$$\boldsymbol{D}^* = \underset{\boldsymbol{D} \in \mathbb{R}^{d \times J}}{\operatorname{arg min}} \min_{\boldsymbol{C} \in \mathbb{R}^{N \times J}} \| \boldsymbol{X} - \boldsymbol{D} \boldsymbol{C}' \|_F^2 + \lambda^2 \| \boldsymbol{C} \|_0 \quad \text{s.t.} \quad \frac{\|\boldsymbol{d}_j\|_2 = 1 \,\,\forall j}{\|\boldsymbol{c}_j\|_{\infty} \leq L \,\,\forall j}$$

SOUP-DIL algorithm

SOUP-DIL formulation [9, 10, 11]:

$$\boldsymbol{D}^{*} = \operatorname*{arg\,min}_{\boldsymbol{D} \in \mathbb{R}^{d \times J}} \min_{\boldsymbol{C} \in \mathbb{R}^{N \times J}} \| \boldsymbol{X} - \boldsymbol{D}\boldsymbol{C}' \| _{F}^{2} + \lambda^{2} \| \boldsymbol{C} \| _{0} \quad \text{s.t.} \quad \frac{\|\boldsymbol{d}_{j}\|_{2} = 1 \ \forall j}{\|\boldsymbol{c}_{j}\|_{\infty}} \leq L \ \forall j$$

- Block coordinate descent (BCD) algorithm
 - Sparse coding step for *C*
 - Dictionary update step for *D*
- Very simple update rules (low compute cost)
- Monotone descent of cost function $\Psi(\boldsymbol{D}, \boldsymbol{C})$
- ► Convergence theorem: for any given initialization (**D**⁰, **C**⁰), all accumulation points of sequence (**D**, **C**)
 - \bullet are critical points of cost Ψ and
 - are equivalent (reach same cost function value Ψ^*).
 - Furthermore: $\left\{ \left\| \boldsymbol{D}^{(k)} \boldsymbol{D}^{(k-1)} \right\| \right\} \rightarrow 0$. Same for $\left\{ \boldsymbol{C}^{(k)} \right\}$.

$$\boldsymbol{D}^{*} = \underset{\boldsymbol{D} \in \mathbb{R}^{d \times J}}{\operatorname{arg\,min}} \min_{\boldsymbol{C} \in \mathbb{R}^{N \times J}} \| \boldsymbol{X} - \boldsymbol{D} \boldsymbol{C}' \|_{F}^{2} + \lambda^{2} \| \boldsymbol{C} \|_{0} \quad \text{s.t.} \quad \frac{\|\boldsymbol{d}_{j}\|_{2}}{\|\boldsymbol{c}_{j}\|_{\infty}} \leq L \ \forall j$$

Alternate: update one column c_j of C then one column d_j of D.

• Sparse coding step: update c_j with residual $E_j \triangleq X - \sum_{k \neq j} d_k c'_k$:

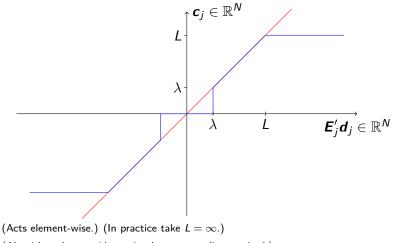
$$\min_{\boldsymbol{c}_j} \|\boldsymbol{E}_j - \boldsymbol{d}_j \boldsymbol{c}_j'\|_F^2 + \lambda^2 \|\boldsymbol{c}_j\|_0 \quad \text{s.t.} \quad \|\boldsymbol{c}_j\|_{\infty} \leq L.$$

Truncated (via L) hard thresholding of $E'_j d_j$ with threshold λ . • Dictionary atom step: update d_j

$$\min_{\boldsymbol{d}_{j}} \| \boldsymbol{E}_{j} - \boldsymbol{d}_{j} \boldsymbol{c}_{j}' \|_{F}^{2} \quad \text{s.t.} \quad \| \boldsymbol{d}_{j} \|_{2} = 1.$$

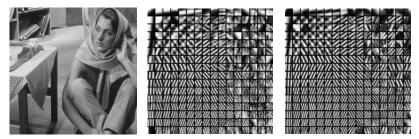
Constrained least-squares solution: $\boldsymbol{d}_j = (\boldsymbol{E}_j \boldsymbol{c}_j) / \| \boldsymbol{E}_j \boldsymbol{c}_j \|_2$.

Truncated hard thresholding for SOUP-DIL



(Algorithm also provides a simple sparse coding method.)

Example: dictionary learning for Barbara



Barbara

K-SVD D

SOUP-DIL **D**

Denoising PSNR (dB) from [9]								
σ	Noisy	0-DCT	K-SVD	SOUP-DIL				
20	22.13	29.95	30.83	30.79				
25	20.17	28.68	29.63	29.64				
30	18.59	27.62	28.54	28.63				
100	8.11	21.87	21.87	21.97				

SOUP-DIL faster than K-SVD

Regularization using SOUP-DIL

- Large image $\mathbf{x} \implies$ extract M patches $\mathbf{X} = [\mathbf{P}_1 \mathbf{x} \dots \mathbf{P}_M \mathbf{x}]$.
- Assume patch x_m = P_mx ≈ Dz_m has (aggregate) sparse representation in dictionary D ∈ ℝ^{d×J} where d is patch size.
- Two variations:
 - Use dictionary **D** from training data:

$$\mathsf{R}(\boldsymbol{x}) = \mathsf{R}(\boldsymbol{X}) = \min_{\boldsymbol{C} \in \mathcal{C}} \| \boldsymbol{X} - \boldsymbol{D}\boldsymbol{C}' \|_{F}^{2} + \lambda^{2} \| \boldsymbol{C} \|_{0}$$

• Learn **D** while reconstructing (blind / adaptive)

$$\mathsf{R}(\boldsymbol{x}) = \min_{\boldsymbol{D}\in\mathcal{D}} \min_{\boldsymbol{C}\in\mathcal{C}} \|\boldsymbol{X} - \boldsymbol{D}\boldsymbol{C}'\|_{F}^{2} + \lambda^{2} \|\boldsymbol{C}\|_{0}$$

 $\mathcal{D} = \left\{ \boldsymbol{D} \in \mathbb{R}^{d \times J} \ \vdots \ \left\| \boldsymbol{d}_{j} \right\|_{2} = 1 \ \forall j \right\}, \ \mathcal{C} = \left\{ \boldsymbol{C} \in \mathbb{R}^{M \times J} \ \vdots \ \left\| \boldsymbol{c}_{j} \right\|_{\infty} \leq L \ \forall j \right\}$

- ▶ $\mathbf{R}(\mathbf{x}) \approx 0$ if patches can be represented closely with "sufficiently few" non-zero coefficients (depends on λ).
- Ignore constraint $\|\boldsymbol{c}_j\|_{\infty} \leq L$ in practice.
- Bayesian interpretation?

Ill-posed problems and regularization

Classical "hand crafted" regularizers Data-driven (adaptive / learned) regularizers Data-driven regularized MRI via dictionary learning Extension: learning low-rank atoms DIctioNary with IOw-rank AToms (DINO-KAT)

Dynamic MR imaging DINO-KAT for dynamic MR

Summary

MR reconstruction using adaptive dictionary regularizer

Dictionary-blind MR image reconstruction:

$$\hat{\boldsymbol{x}} = \arg\min_{\boldsymbol{x}} \frac{1}{2} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|_{2}^{2} + \beta \mathsf{R}(\boldsymbol{x})$$
$$\mathsf{R}(\boldsymbol{x}) = \min_{\boldsymbol{D} \in \mathcal{D}} \min_{\boldsymbol{z}' \in \mathcal{C}} \sum_{m=1}^{M} \left(\|\boldsymbol{P}_{m}\boldsymbol{x} - \boldsymbol{D}\boldsymbol{z}_{m}\|_{2}^{2} + \lambda^{2} \|\boldsymbol{z}_{m}\|_{0} \right)$$

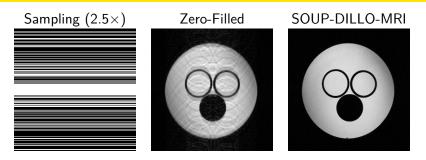
where P_m extracts *m*th of *M* image patches. In words: of the many images...

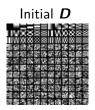
Alternating (nested) minimization:

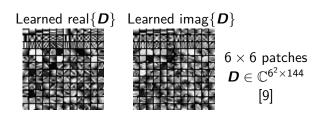
- Fixing x and D, update each z_j via hard-thresholding
- Fixing x and Z, update D using SOUP-DIL
- Fixing Z and D, updating x is a quadratic problem.
 Efficient FFT solution for single-coil Cartesian MRI.
 - Use CG for non-Cartesian and/or parallel MRI.

Non-convex, but monotone decreasing and some convergence theory [9].

2D CS MRI results I

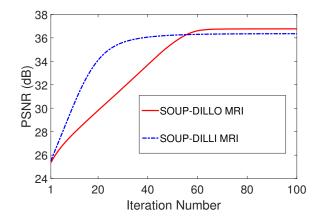






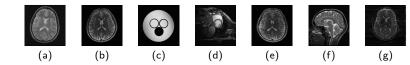
< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

2D CS MRI results II



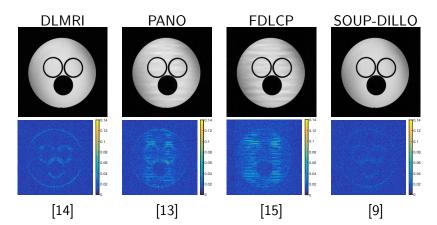
(SNR compared to fully sampled image.) Using $\|\boldsymbol{z}_m\|_0$ leads to higher SNR then $\|\boldsymbol{z}_m\|_1$. Adaptive case is non-convex anyway...

> 4 ロ ト 4 回 ト 4 豆 ト 4 豆 ト ラ ラ へ (や 33 / 65



lm.	Samp.	Acc.	0-fill	Sparse MRI	PANO	DLMRI	SOUP- DILLI	SOUP- DILLO
а	Cart.	7x	27.9	28.6	31.1	31.1	30.8	31.1
b	Cart.	2.5x	27.7	31.6	41.3	40.2	38.5	42.3
с	Cart.	2.5×	24.9	29.9	34.8	36.7	36.6	37.3
с	Cart.	4x	25.9	28.8	32.3	32.1	32.2	32.3
d	Cart.	2.5x	29.5	32.1	36.9	38.1	36.7	38.4
e	Cart.	2.5x	28.1	31.7	40.0	38.0	37.9	41.5
f	2D rand.	5×	26.3	27.4	30.4	30.5	30.3	30.6
g	Cart.	2.5x	32.8	39.1	41.6	41.7	42.2	43.2
Ref.				[12]	[13]	[14]	[9]	[9]

2D CS MRI results IV



Summary: 2D static MR reconstruction from under-sampled data with adaptive dictionary learning and convergent algorithm, faster than K-SVD approach of DLMRI.

Ill-posed problems and regularization

Classical "hand crafted" regularizers Data-driven (adaptive / learned) regularizers Data-driven regularized MRI via dictionary learning Extension: learning low-rank atoms DIctioNary with IOw-ranK AToms (DINO-KAT)

Dynamic MR imaging DINO-KAT for dynamic MR

Summary

Recall SOUP-DIL ℓ_0 formulation for dictionary learning from data **X**:

$$\boldsymbol{D}^{*} = \underset{\boldsymbol{D} \in \mathbb{R}^{d \times J}}{\operatorname{arg\,min}} \min_{\boldsymbol{C} \in \mathbb{R}^{N \times J}} \| \boldsymbol{X} - \boldsymbol{D}\boldsymbol{C}' \|_{F}^{2} + \lambda^{2} \| \boldsymbol{C} \|_{0} \quad \text{s.t.} \quad \left\| \boldsymbol{d}_{j} \right\|_{2} = 1 \ \forall j \\ \| \boldsymbol{c}_{j} \|_{\infty} \leq L \ \forall j.$$

Recent extension [10] DIctioNary with IOw-ranK AToms (DINO-KAT) model:

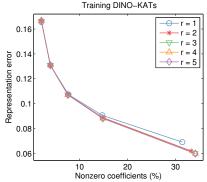
$$\begin{split} \boldsymbol{D}^* &= \mathop{\arg\min}_{\boldsymbol{D} \in \mathbb{R}^{d \times J}} \min_{\boldsymbol{C} \in \mathbb{R}^{N \times J}} \| \boldsymbol{X} - \boldsymbol{D} \boldsymbol{C}' \|_F^2 + \lambda^2 \| \boldsymbol{C} \|_0 \quad \text{s.t.} \quad \| \boldsymbol{c}_j \|_{\infty} \leq L \; \forall j \\ & \operatorname{rank} \{ \text{reshape}(\boldsymbol{d}_j) \} \leq r, \end{split}$$

where reshape(d_j) reshapes dictionary atom d_j into a 2D array.

DINO-KAT: why low-rank atoms?

UNIVERSITY OF MICHIGAN

- Low-rank atoms are less prone to over-fitting.
- ▶ Model structure (*e.g.*, temporal correlation) of dynamic data.
- Learned dictionary atoms on patch data often have only a few dominant singular values.



Representation error $\|\boldsymbol{X} - \boldsymbol{D}\boldsymbol{C}'\|_F / \|\boldsymbol{X}\|_F$ versus sparsity λ for several atom ranks r for $8 \times 8 \times 5$ space-time patches from (fully sampled) cardiac perfusion images.

38 / 65

DIctioNary with IOw-ranK AToms (DINO-KAT) model:

$$\begin{aligned} \|\boldsymbol{d}_j\|_2 &= 1 \ \forall j \\ \boldsymbol{D}^* = \mathop{\arg\min}_{\boldsymbol{D} \in \mathbb{R}^{d \times J}} \min_{\boldsymbol{C} \in \mathbb{R}^{N \times J}} \|\boldsymbol{X} - \boldsymbol{D}\boldsymbol{C}'\|_F^2 + \lambda^2 \|\boldsymbol{C}\|_0 \quad \text{s.t.} \quad \|\boldsymbol{c}_j\|_{\infty} &\leq L \ \forall j \\ & \operatorname{rank}\{\operatorname{reshape}(\boldsymbol{d}_j)\} \leq r, \end{aligned}$$

Block coordinate descent (BCD) algorithm (monotone descent) with simple update rules (low compute cost)

- Sparse coding step for $\boldsymbol{\mathcal{C}}$ uses same truncated hard thresholding
- Dictionary atom update step for **d**_j:

$$\underset{\boldsymbol{d}_{j}}{\arg\min\left\|\left\|\boldsymbol{E}_{j}-\boldsymbol{d}_{j}\boldsymbol{c}_{j}'\right\|\right\|_{F}^{2}} \quad \text{s.t.} \quad \left\|\boldsymbol{d}_{j}\right\|_{2}=1, \ \operatorname{rank}\{\operatorname{reshape}(\boldsymbol{d}_{j})\} \leq r$$

Simple solution: reshape $(\boldsymbol{d}_j) = \frac{\boldsymbol{U}_r \boldsymbol{\Sigma}_r \boldsymbol{V}'_r}{\|\boldsymbol{\Sigma}_r\|_F}$ $\boldsymbol{U}_r \boldsymbol{\Sigma}_r \boldsymbol{V}'_r$ is the rank-*r* truncated SVD of reshape $(\boldsymbol{E}_j \boldsymbol{c}_j)$.

Ill-posed problems and regularization

Classical "hand crafted" regularizers Data-driven (adaptive / learned) regularizers Data-driven regularized MRI via dictionary learning Extension: learning low-rank atoms DIctioNary with IOw-ranK AToms (DINO-KAT)

Dynamic MR imaging

DINO-KAT for dynamic MR

Summary

"dynamic" = changing over time = motion [16, 17, 18, 19]

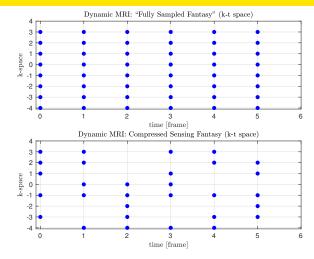
- Nuisance motions:
 - Breathing
 - Cardiac
 - Peristalsis
 - Tremors
 - Kids ...

 \implies Faster scans (shorter time) can help reduce motion blur

- Motions of interest (true "dynamic" scans):
 - Vocalization (for speech studies)
 - Cardiac (for function)
 - Joint articulation (musculoskeletal scans)
 - Contrast agent (blood flow / perfusion)
 - Diffusion

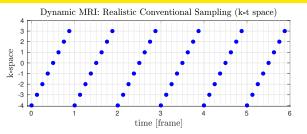
 \implies Trade-offs between temporal resolution and spatial resolution

Dynamic MRI sampling: Fantasy edition

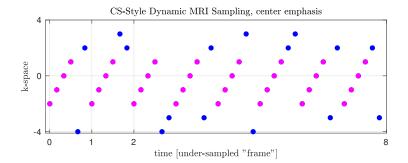


- Scan "twice as fast" !?
- ► Matrix completion problem!? ⇒... robust PCA (L+S) ... [20, 21]

Dynamic MRI sampling: Reality I



- All 3D dynamic MRI data is inherently under-sampled
- No real "fully sampled" data exists, now or ever
- Unlikely to satisfy any "matrix completion" sufficient conditions (N measurements but N² unknowns per frame)
- Retrospective "under sampling" of "fully sampled" dynamic data is dubious
- Opportunity: powerful signal models needed for reconstruction from such data
- Challenge: validation of signal models given such highly incomplete data (low-rank / locally low rank / tensors / wavelets / non-local patches / ...)



Ill-posed problems and regularization

Classical "hand crafted" regularizers Data-driven (adaptive / learned) regularizers Data-driven regularized MRI via dictionary learning Extension: learning low-rank atoms DIctioNary with IOw-ranK AToms (DINO-KAT)

Dynamic MR imaging DINO-KAT for dynamic MR

Summary

DINO-KAT as an adaptive (data-driven) regularizer:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \frac{1}{2} \| \boldsymbol{y} - \boldsymbol{A} \boldsymbol{x} \|_{2}^{2} + \beta \operatorname{\mathsf{R}}(\boldsymbol{x})$$

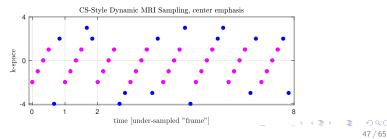
$$\begin{split} & \mathsf{R}(\mathbf{x}) = \min_{\mathbf{D} \in \mathbb{C}^{d \times J}} \min_{\mathbf{Z} \in \mathbb{C}^{J \times M}} \sum_{m=1}^{M} \|\mathbf{P}_{m}\mathbf{x} - \mathbf{D}\mathbf{z}_{m}\|_{2}^{2} + \lambda^{2} \|\|\mathbf{z}_{m}\|_{0} \\ & \text{s.t.} \|\mathbf{d}_{j}\|_{2} = 1 \ \forall j, \ \|\mathbf{z}_{m}\|_{\infty} \leq L \ \forall m, \ \operatorname{rank}\{\operatorname{reshape}(\mathbf{d}_{j})\} \leq r \end{split}$$

Block coordinate descent (BCD) algorithm (monotone descent)

- Update coefficients Z: sparse coding via hard thresholding
- Dictionary atom update of d_j: uses residual, SVD
- Image update uses FFT (single coil Cartesian) or CG

Application: Dynamic MRI

- ► Latent signal vector $\mathbf{x} \in \mathbb{C}^{n_y n_x n_t}$ modeled as n_t frames, each of dimension $N = n_x \times n_y$ or $N = n_x \times n_y \times n_z$.
- ▶ *k*-space data $\mathbf{y} \in \mathbb{C}^{n_{\text{sample}}n_c}$ acquired using n_c coils.
- Sensing matrix A includes:
 - coil sensitivity maps,
 - 2D or 3D spatial Fourier transform,
 - k-space sampling pattern.
- ▶ y is undersampled, so regularization is required to estimate dynamic image sequence x.

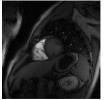


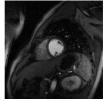
Dynamic MRI models

- Low-rank and sparse (k-t SLR) [22]:
 - Model: \mathbf{x} reshaped into an $N \times n_t$ space-time matrix, is both low-rank and (transform) sparse
- Low-rank plus sparse (L + S) [20, 21]
 - model: $\mathbf{x} = \mathbf{x}_{\mathrm{L}} + \mathbf{x}_{\mathrm{S}}$,
 - $\boldsymbol{x}_{\mathrm{L}}$ reshaped into a $N imes n_t$ space-time matrix is low-rank,
 - $x_{\rm S}$ is (transform) sparse.
- **DINO-KAT for dynamic MRI** [10, 23]:
 - Extract $p \times p \times q$ patches of $\boldsymbol{x}_{\mathrm{S}}$.
 - Model patches as sparse
 w.r.t. an adaptive (learned) dictionary *D*.
 - Model dictionary atoms {*d_j*} as low-rank when reshaped into *p*² × *q* space-time matrices.
 - Blind compressed sensing model [14].

Dynamic MRI data

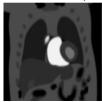
Cardiac perfusion data (ref. frames 7, 13)





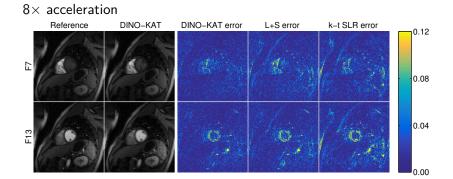
 $\begin{array}{l} 128^2\times 40 \mbox{ fr.}\\ 3.2^2\times 8 \mbox{ mm}^3\\ 12 \mbox{ coil}\\ \Delta T=307 \mbox{ ms}\\ \mbox{Otazo et al. [21] (L+S)} \end{array}$

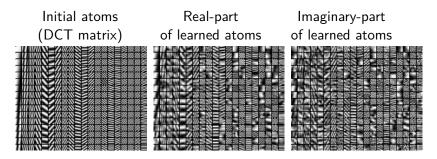
PINCAT data (reference frames 16, 25)





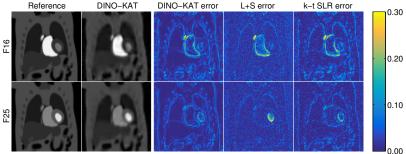
 $128^2 \times 50$ fr. 1.5 mm^2 1 coil? $9 \times \text{ acc.}$ Lingala et al. [22] (k-t SLR)





- First temporal slices of $8 \times 8 \times 5$ atoms
- Learned atoms adapt to structure of data

9× acceleration Reference DINO-KAT



- Two representative frames of each reconstruction
- DINO-KAT method shows less error than the L+S and k-t SLR (L&S) methods

 $8\times$ acceleration

 $9\times$ acceleration

Acceleration	4x	8x	12x	16x	20x	24x
NRMSE (L+S) %	10.93	14.00	15.80	18.87	21.33	23.36
NRMSE (Fixed D) %	11.29	13.76	15.33	18.31	20.77	22.82
NRMSE (r = 5) %	10.85	13.08	14.37	17.01	19.19	21.35
NRMSE (r = 1) %	10.57	12.90	14.20	16.77	18.74	20.91
Gain over $L + S$ (dB)	0.29	0.71	0.92	1.03	1.13	0.96
Gain over $r = 5 (dB)$	0.23	0.12	0.10	0.13	0.21	0.18

Data-driven / adaptive regularization

- Beneficial for under-sampled MRI reconstruction
- Dictionary atom structure (e.g., low rank) further helpful
- SOUP provides reasonably computationally efficient methods (vs KSVD)
- Convergence theory (unlike KSVD)

Future work:

- Synthesis (e.g., dictionary) vs analysis (e.g., transform learning) formulations
- Online methods for reduced memory, better adaptation [24, 25, 26, 27]
- Other machine-learning methods (deep...) ?
- Prospective use!
- T-MI special issue on Machine-Learning for Image Reconstruction

Bibliography I

- E. Candès and J. K. Romberg. Signal recovery from random projections. In *Proc. SPIE 5674 Computational Imaging III*, pages 76–86, 2005.
- [2] L. A. Shepp and B. F. Logan. The Fourier reconstruction of a head section. *IEEE Trans. Nuc. Sci.*, 21(3):21–43, June 1974.

[3] M. Mignotte.

A non-local regularization strategy for image deconvolution. *Pattern Recognition Letters*, 29(16):2206–12, December 2008.

[4] Z. Yang and M. Jacob.

Nonlocal regularization of inverse problems: A unified variational framework.

IEEE Trans. Im. Proc., 22(8):3192–203, August 2013.

- [5] H. Zhang, J. Ma, J. Wang, Y. Liu, H. Lu, and Z. Liang. Statistical image reconstruction for low-dose CT using nonlocal means-based regularization. *Computerized Medical Imaging and Graphics*, 38(6):423–35, September 2014.
- [6] S. Y. Chun, Y. K. Dewaraja, and J. A. Fessler. Alternating direction method of multiplier for tomography with non-local regularizers. *IEEE Trans. Med. Imag.*, 33(10):1960–8, October 2014.
- [7] R. Vidal.
 - Subspace clustering.

IEEE Sig. Proc. Mag., 28(2):52-68, March 2011.

- T. Zhang, A. Szlam, and G. Lerman.
 Median K-Flats for hybrid linear modeling with many outliers. In *Proc. Intl. Conf. Comp. Vision*, pages 234–41, 2009.
- [9] S. Ravishankar, R. R. Nadakuditi, and J. A. Fessler. Efficient sum of outer products dictionary learning (SOUP-DIL) and its application to inverse problems. *IEEE Trans. Computational Imaging*, 2017. To appear.

 S. Ravishankar, B. Moore, R. R. Nadakuditi, and J. A. Fessler.
 Efficient learning of dictionaries with low-rank atoms. In *IEEE GlobalSIP*, pages 222–6, 2016.

[11] S. Ravishankar, R. R. Nadakuditi, and J. A. Fessler. Efficient sum of outer products dictionary learning (SOUP-DIL) - The ℓ_0 method, 2015. arxiv 1511.08842.

 M. Lustig and J. M. Pauly.
 SPIRiT: Iterative self-consistent parallel imaging reconstruction from arbitrary k-space.
 Mag. Res. Med., 64(2):457–71, August 2010.

[13] X. Qu, Y. Hou, F. Lam, D. Guo, J. Zhong, and Z. Chen. Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator. *Med. Im. Anal.*, 18(6):843–56, August 2014.

[14] S. Ravishankar and Y. Bresler.

MR image reconstruction from highly undersampled k-space data by dictionary learning. *IEEE Trans. Med. Imag.*, 30(5):1028–41, May 2011.

[15] Z. Zhan, J-F. Cai, D. Guo, Y. Liu, Z. Chen, and X. Qu. Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction. *IEEE Trans. Biomed. Engin.*, 63(9):1850–61, September 2016.

[16] R. S. Lawson.

Application of mathematical methods in dynamic nuclear medicine studies.

Phys. Med. Biol., 44(4):R57-98, April 1999.

[17] A. R. Padhani.

Dynamic contrast-enhanced MRI in clinical oncology: Current status and future directions.

J. Mag. Res. Im., 16(4):407-22, October 2002.

 S. Bonnet, A. Koenig, S. Roux, P. Hugonnard, R. Guillemaud, and P. Grangeat.
 Dynamic X-ray computed tomography.
 Proc. IEEE, 91(10):1574–87, October 2003.

[19] S. G. Lingala and M. Jacob. Accelerated Dynamic MRI using adaptive signal models, 2015.

MRI: Physics, Image Reconstruction, and Analysis, CRC Press (Book Chapter).

[20] E. J. Candès, X. Li, Y. Ma, and J. Wright.
 Robust principal component analysis?
 J. Assoc. Comput. Mach., 58(3):1–37, May 2011.

[21] R. Otazo, E. Candès, and D. K. Sodickson. Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components.

Mag. Res. Med., 73(3):1125–36, March 2015.

[22] S. G. Lingala, Y. Hu, E. DiBella, and M. Jacob. Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-t SLR. *IEEE Trans. Med. Imag.*, 30(5):1042–54, May 2011.

[23] S. Ravishankar, B. E. Moore, R. R. Nadakuditi, and J. A. Fessler.
 Low-rank and adaptive sparse signal (LASSI) models for highly accelerated dynamic imaging.

IEEE Trans. Med. Imag., 36(5):1116–28, May 2017.

- [24] S. Ravishankar, B. Wen, and Y. Bresler.
 Online sparsifying transform learning Part I: algorithms. *ieee-jstsp*, 9(4):625–36, June 2015.
- [25] S. Ravishankar and Y. Bresler. Online sparsifying transform learning - Part II: convergence analysis. *ieee-jstsp*, 9(4):637–46, June 2015.

[26] S. Ravishankar, B. E. Moore, R. R. Nadakuditi, and J. A. Fessler.

Efficient online dictionary adaptation and image reconstruction for dynamic MRI.

In Proc., IEEE Asilomar Conf. on Signals, Systems, and Comp., 2017. Submitted.

[27] B. E. Moore and S. Ravishankar.

Online data-driven dynamic image restoration using DINO-KAT models.

In *Proc. IEEE Intl. Conf. on Image Processing*, 2017. To appear.