Accelerated Dual Gradient-Based Methods for Total Variation Image Denoising/Deblurring Problems (and other Inverse Problems)

Donghwan Kim and Jeffrey A. Fessler

EECS Department, University of Michigan

IEEE ICASSP 2017 March 7, 2017

- Total-variation (TV) regularization is useful in many inverse problems, such as "Large-Scale Computational Imaging with Wave Models."
- TV regularized optimization problems are challenging due to:
 - nonseparability of finite-difference operator,
 - nonsmoothness of ℓ_1 norm.
- Variable splitting methods + Proximal gradient methods
 - Split Bregman, ADMM, · · ·
 - "FISTA + Gradient Projection (GP)"

[Beck and Teboulle, IEEE TIP, 2009]

- Goal: Provide faster convergence for "FISTA + GP"
 - eventually: for large-scale inverse problems
 - here: for TV-based image deblurring.

Existing Methods for Inner Dual Problem: GP, FGP

- Proposed Methods for Inner Dual Problem: FGP-OPG, OGP
- 4 Examples

1 Problem

- Inverse Problems
- FISTA for Inverse Problems
- 2 Existing Methods for Inner Dual Problem: GP, FGP
- Proposed Methods for Inner Dual Problem: FGP-OPG, OGP
- 4 Examples
- 5 Summary

Consider the linear model:

$$b = Ax + \varepsilon$$
,

where $\boldsymbol{b} \in \mathbb{R}^{MN}$ is observed data, $\boldsymbol{A} \in \mathbb{R}^{MN \times MN}$ is a system matrix, $\boldsymbol{x} = \{x_{m,n}\} \in \mathbb{R}^{MN}$ is a true image, and $\boldsymbol{\varepsilon} \in \mathbb{R}^{MN}$ is additive noise.

To estimate image x, solve the TV-regularized least-squares problem:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \Phi(\boldsymbol{x}), \quad \Phi(\boldsymbol{x}) := \frac{1}{2} ||\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}||_2^2 + \lambda ||\boldsymbol{x}||_{\mathrm{TV}},$$

where the (anistropic) Total Variation (TV) semi-norm uses finite differences:

$$||\boldsymbol{x}||_{\mathrm{TV}} := \sum_{m=1}^{M-1} \sum_{n=1}^{N-1} |x_{m,n} - x_{m+1,n}| + |x_{m,n} - x_{m,n+1}|.$$

FISTA for Inverse Problems

FISTA

[Beck and Teboulle, SIIMS, 2009]

$$\begin{array}{l} \mbox{nitialize } {\pmb{x}}_0 = {\pmb{\eta}}_0, \ L_{\pmb{A}} = ||{\pmb{A}}||_2^2, \ t_0 = 1, \ \bar{\lambda} := \lambda/L_{\pmb{A}}. \\ \mbox{For } i = 1, 2, \dots \\ \mbox{$\bar{b}}_i := {\pmb{\eta}}_{i-1} - \frac{1}{L_{\pmb{A}}} {\pmb{A}}^\top ({\pmb{A}} {\pmb{\eta}}_{i-1} - {\pmb{b}}) & (\mbox{gradient descent step}) \\ \mbox{$\pmb{x}}_i = \mathop{\arg\min}_{\pmb{x}} \ H_i(\pmb{x}), & H_i(\pmb{x}) = \frac{1}{2} \left\| \pmb{x} - \bar{\pmb{b}}_i \right\|_2^2 + \bar{\lambda} \, ||\pmb{x}||_{\rm TV}^2 \\ \ t_i = \frac{1}{2} \left(1 + \sqrt{1 + 4t_{i-1}^2} \right) & (\mbox{momentum factors}) \\ \mbox{$\pmb{\eta}}_i = \pmb{x}_i + \frac{t_{i-1} - 1}{t_i} (\pmb{x}_i - \pmb{x}_{i-1}) & (\mbox{momentum update}) \\ \end{array}$$

FISTA decreases the cost function with the optimal rate $O(1/i^2)$:

$$\Phi(oldsymbol{x}_i) - \Phi(oldsymbol{x}_*) \leq rac{2L_{oldsymbol{A}}||oldsymbol{x}_0 - oldsymbol{x}_*||_2^2}{(i+1)^2}, ext{ where }oldsymbol{x}_* ext{ is an optimal solution}.$$

However, it is difficult to exactly compute the inner problem for TV.

Inner Denoising Problem of FISTA

For solving inverse problems with FISTA, the inner minimization problem is a "simpler" TV-regularized *denoising* problem:

FISTA's inner TV-regularized denoising problem

$$oldsymbol{x}_i pprox rgmin_{oldsymbol{x}} H_i(oldsymbol{x}), \quad H_i(oldsymbol{x}) := \underbrace{rac{1}{2} \left\|oldsymbol{x} - oldsymbol{ar{b}}_i
ight\|_2^2}_{ ext{no} oldsymbol{A} \ !} + ar{\lambda} \left||oldsymbol{x}||_{ ext{TV}}.$$

Still, no easy solution because

- nonseparability of finite differences,
- absolute value function in TV semi-norm is nonsmooth.

Beck and Teboulle [IEEE TIP, 2009] approach:

- write *dual* of FISTA's inner denoising problem (based on Chambolle [JMIV, 2004])
- apply iterative Gradient Projection (GP) method
- for a finite number of iterations.

2 Existing Methods for Inner Dual Problem: GP, FGP

- Variable Splitting + Duality for Inner Denoising
- Gradient Projection (GP) and Fast GP (FGP) for Dual Problem
- Convergence Analysis of the Inner Primal Sequence

Proposed Methods for Inner Dual Problem: FGP-OPG, OGP

4 Examples

5 Summary

Rewrite the inner denoising problem of FISTA in composite form:

$$\underset{\boldsymbol{x}}{\operatorname{arg\,min}} \left\{ H(\boldsymbol{x}) := f(\boldsymbol{x}) + g(\boldsymbol{D}\boldsymbol{x}) \right\}$$

$$f(\boldsymbol{x}) := \frac{1}{2} ||\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}||_2^2, \quad g(\boldsymbol{z}) := \lambda ||\boldsymbol{z}||_1$$

where $g(\boldsymbol{D}\boldsymbol{x}) = \lambda ||\boldsymbol{D}\boldsymbol{x}||_1 = \lambda ||\boldsymbol{x}||_{\mathrm{TV}}.$

Using variable splitting, an equivalent *constrained* problem is:

$$\underset{\boldsymbol{x}}{\operatorname{arg\,min}} \min_{\boldsymbol{z}} \min_{\boldsymbol{z}} \left\{ \tilde{H}(\boldsymbol{x}, \boldsymbol{z}) := f(\boldsymbol{x}) + g(\boldsymbol{z}) : \boldsymbol{D} \boldsymbol{x} = \boldsymbol{z} \right\}.$$

Note that $H(x) = \tilde{H}(x, Dx)$, and g(z) is separable unlike g(Dx).

Variable splitting + Duality for Inner Denoising (cont'd

To efficiently solve this constrained problem, consider the Lagrangian dual:

$$q(\boldsymbol{y}) := \inf_{\boldsymbol{x},\boldsymbol{z}} \mathcal{L}(\boldsymbol{x},\boldsymbol{z},\boldsymbol{y}) = -f^*(\boldsymbol{D}^\top \boldsymbol{y}) - g^*(-\boldsymbol{y}),$$

$$\begin{split} \mathcal{L}(\boldsymbol{x}, \boldsymbol{z}, \boldsymbol{y}) &:= f(\boldsymbol{x}) + g(\boldsymbol{z}) - \langle \boldsymbol{y}, \boldsymbol{D}\boldsymbol{x} - \boldsymbol{z} \rangle & \quad \text{(Lagrangian)} \\ f^*(\boldsymbol{u}) &= \max_{\boldsymbol{x}} \{ \langle \boldsymbol{u}, \, \boldsymbol{x} \rangle - f(\boldsymbol{x}) \} & \quad \text{(convex conjugates)} \\ g^*(\boldsymbol{y}) &= \max_{\boldsymbol{z}} \{ \langle \boldsymbol{y}, \, \boldsymbol{z} \rangle - g(\boldsymbol{z}) \}. \end{split}$$

For simplicity, define the following convex functions:

$$\begin{split} F(\boldsymbol{y}) &:= f^*(\boldsymbol{D}^{\top}\boldsymbol{y}) = \frac{1}{2} ||\boldsymbol{D}^{\top}\boldsymbol{y} + \bar{\boldsymbol{b}}||_2^2 - \frac{1}{2} ||\bar{\boldsymbol{b}}||_2^2, \qquad (\text{quadratic})\\ G(\boldsymbol{y}) &:= g^*(-\boldsymbol{y}) = \begin{cases} 0, & \boldsymbol{y} \in \mathcal{Y}_{\bar{\lambda}} := \{\boldsymbol{y} : \|\boldsymbol{y}\|_{\infty} \leq \bar{\lambda}\}, \\ \infty, & \text{otherwise,} \end{cases} \qquad (\text{separable}) \end{split}$$

for an equivalent composite convex function:

$$\tilde{q}(\boldsymbol{y}) := -q(\boldsymbol{y}) = F(\boldsymbol{y}) + G(\boldsymbol{y}).$$

Gradient Projection (GP) for Dual Problem

Dual of inner problem equivalent to solving a constrained quadratic problem:

$$\min_{\boldsymbol{y}\in\mathcal{Y}_{\bar{\lambda}}}F(\boldsymbol{y}), \quad F(\boldsymbol{y}):=f^*(\boldsymbol{D}^{\top}\boldsymbol{y})=\frac{1}{2}||\boldsymbol{D}^{\top}\boldsymbol{y}+\bar{\boldsymbol{b}}||_2^2-\frac{1}{2}||\bar{\boldsymbol{b}}||_2^2.$$

Quadratic function $F(\boldsymbol{y})$ has Lipschitz continuous gradient with a constant $L := ||\boldsymbol{D}||_2^2$, *i.e.*, for any $\boldsymbol{y}, \boldsymbol{w} ||\nabla F(\boldsymbol{y}) - \nabla F(\boldsymbol{w})||_2 \leq L||\boldsymbol{y} - \boldsymbol{w}||_2$. Separability of ℓ_{∞} ball $\mathcal{Y}_{\bar{\lambda}} \Longrightarrow$ GP algorithm natural.

GP for Dual Problem

Initialize $\boldsymbol{y}_0, L = ||\boldsymbol{D}||_2^2$. For $k = 1, 2, \dots 1$ $\nabla F(\boldsymbol{y}_{k-1}) = \boldsymbol{D}(\boldsymbol{D}^\top \boldsymbol{y}_{k-1} + \bar{\boldsymbol{b}})$ $\boldsymbol{y}_k = p(\boldsymbol{y}_{k-1}) := \mathcal{P}_{\mathcal{Y}_{\bar{\lambda}}}\left(\boldsymbol{y}_{k-1} - \frac{1}{L}\nabla F(\boldsymbol{y}_{k-1})\right)$

where $\mathcal{P}_{\mathcal{Y}_{\bar{\lambda}}}(\boldsymbol{y}) := [\min\{|y_l|, \bar{\lambda}\} \operatorname{sgn}\{y_l\}]$ projects \boldsymbol{y} onto ℓ_{∞} ball $\mathcal{Y}_{\bar{\lambda}}$.

11/28

[Chambole, EMMCVPR, 2005]

Fast Gradient Projection (FGP) for Dual Problem

GP convergence rate is O(1/k). To accelerate, use FGP (for dual problem).

[Beck and Teboulle, IEEE TIP, 2009]

FGP for Dual Problem

Initialize $\boldsymbol{y}_0 = \boldsymbol{w}_0, \ t_0 = 1.$ For $k \ge 1,$ $\boldsymbol{y}_k = \mathrm{p}(\boldsymbol{w}_{k-1})$ $t_k = \frac{1}{2} \left(1 + \sqrt{1 + 4t^2}\right)$

$$egin{aligned} &t_k = rac{1}{2} \left(1 + \sqrt{1 + 4t_{k-1}}
ight) \ &oldsymbol{w}_k = oldsymbol{y}_k + rac{t_{k-1} - 1}{t_k} (oldsymbol{y}_k - oldsymbol{y}_{k-1}) \end{aligned}$$

FGP decreases the dual function with the optimal rate ${\cal O}(1/k^2)$, i.e.,

$$\tilde{q}(\boldsymbol{y}_k) - \tilde{q}(\boldsymbol{y}_*) \le \frac{2L||\boldsymbol{y}_0 - \boldsymbol{y}_*||_2^2}{(k+1)^2}$$

for an optimal dual solution y_* .

Convergence Analysis of the Inner Primal Sequence

More important is convergence rate of the inner primal sequence:

$$\boldsymbol{x}(\boldsymbol{y}) := \boldsymbol{D}^{\top} \boldsymbol{y} + \bar{\boldsymbol{b}}.$$

[Beck and Teboulle, ORL, 2014] showed the following bounds:

$$||\boldsymbol{x}(\boldsymbol{y}_k) - \boldsymbol{x}_*||_2 \le (2(\tilde{q}(\boldsymbol{y}_k) - \tilde{q}(\boldsymbol{y}_*)))^{1/2}$$
$$\underbrace{H(\boldsymbol{x}(\boldsymbol{y}_k)) - H(\boldsymbol{x}_*)}_{\therefore O(1/k) \text{ for FGP}} \le \gamma_H \left(2 \underbrace{(\tilde{q}(\boldsymbol{y}_k) - \tilde{q}(\boldsymbol{y}_*))}_{O(1/k^2) \text{ for FGP}}\right)^{1/2}$$

for $\gamma_H := \max_{\boldsymbol{x}} \max_{\boldsymbol{d} \in \partial H(\boldsymbol{x})} ||\boldsymbol{d}||_2 < \infty.$

FGP has optimal rate $O(1/k^2)$ for the inner dual function decrease. $\Longrightarrow O(1/k)$ rate for the inner primal sequence.

Next: new algorithm that improves the convergence rate of the inner primal function $H(x(y_k)) - H(x_*)$ to $O(1/k^{1.5})$.

FISTA for solving inverse problems

- ${\ensuremath{\, \circ }}$ Momentum to provide fast $O(1/i^2)$ rate for outer loop
- Inner TV denoising problem (challenging)
 - Consider dual of inner denoising problem
 - Algorithms for inner dual problem:
 - GP (slow)
 - FGP (faster due to momentum)
 - Next: new momentum-type algorithms (FGP-OPG, OGP)

2) Existing Methods for Inner Dual Problem: GP, FGP

Proposed Methods for Inner Dual Problem: FGP-OPG, OGP

- New Convergence Analysis of Inner Primal Sequence
- FGP-OPG for Dual Problem
- OGM and Its Projection Version for Dual Problem
- 4 Examples

5 Summary

New inner primal-dual gap bound (and the inner primal function bound):

$$\begin{aligned} H(\boldsymbol{x}(\mathbf{p}(\boldsymbol{y}))) - H(\boldsymbol{x}_*) &\leq H(\boldsymbol{x}(\mathbf{p}(\boldsymbol{y}))) - q(\mathbf{p}(\boldsymbol{y})) \\ &\leq 2L \left(|| \mathbf{p}(\boldsymbol{y})||_2 + \gamma_g \right) \underbrace{|| \mathbf{p}(\boldsymbol{y}) - \boldsymbol{y} ||_2}_{\text{gradient projection norm}} \end{aligned}$$

for $\gamma_g := \max_{\boldsymbol{z}} \max_{\boldsymbol{d} \in \partial g(\boldsymbol{z})} ||\boldsymbol{d}||_2 < \infty$. [Kim and Fessler, arXiv:1609.09441] Recall projected gradient is $p(\boldsymbol{y}) = \mathcal{P}_{\mathcal{Y}_{\bar{\lambda}}} \left(\boldsymbol{y} - \frac{1}{L} \nabla F(\boldsymbol{y}) \right)$.

- The rate of decrease of the gradient projection norm $|| p(y_k) y_k ||_2$ of both (!) GP and FGP is only O(1/k).
- Recent new algorithm FPG-OPG decreases gradient projection norm with rate ${\cal O}(1/k^{1.5})$ and best known constant.

[Kim and Fessler, arXiv:1608.03861]

• \implies FPG-OPG provider better rates above.

FGP-OPG for Dual Problem [Kim and Fessler, arXiv:1608.03861]

nitialize
$$y_0 = w_0, t_0 = T_0 = 1$$

For $k = 1, ..., N$,
 $y_k = p(w_{k-1})$ (gradient projection update)
 $t_k = \begin{cases} \frac{1+\sqrt{1+4t_{k-1}^2}}{2}, & k = 1, ..., \lfloor \frac{N}{2} \rfloor - 1\\ \frac{N-k+1}{2}, & \text{otherwise} \end{cases}$
 $T_k = \sum_{i=0}^k t_i$ (new momentum factor)
 $w_k = y_k + \frac{(T_{k-1} - t_{k-1})t_k}{t_{k-1}T_k}(y_k - y_{k-1}) + \frac{(t_{k-1}^2 - T_{k-1})t_k}{t_{k-1}T_k}(y_k - w_{k-1})$
(new momentum update)

This becomes FGP for usual t_k choice where $t_k^2 = T_k$ for all k.

FGP-OPG has the following bound for the "smallest" gradient projection norm: [Kim and Fessler, arXiv:1608.03861]

$$\begin{split} \min_{\boldsymbol{y} \in \{\boldsymbol{w}_0, ..., \boldsymbol{w}_{N-1}, \boldsymbol{y}_N\}} ||\operatorname{p}(\boldsymbol{y}) - \boldsymbol{y}||_2 &\leq \frac{||\boldsymbol{y}_0 - \boldsymbol{y}_*||_2}{\sqrt{\sum_{k=0}^{N-1} (T_k - t_k^2) + T_{N-1}}} \\ &\leq \frac{2\sqrt{6}||\boldsymbol{y}_0 - \boldsymbol{y}_*||_2}{N^{1.5}}. \end{split}$$

Improves on O(1/N) bound of GP and FGP.

(Using $t_k = \frac{k+a}{a}$ for any a > 2 also provides the rate $O(1/k^{1.5})$ without selecting N in advance, unlike FGP-OPG.)

Optimized Gradient Method (OGM)

For unconstrained problem, *i.e.* $G(\mathbf{y}) = 0$, the following OGM decreases the (dual) function faster than FGP (in the worst-case).

OGM

[Kim and Fessler, Math. Prog., 2016]

nitialize
$$y_0 = w_0, \ \theta_0 = 1$$

For $k = 1, ..., N$,
 $y_k = w_{k-1} - \frac{1}{L} \nabla F(w_{k-1})$
 $\theta_k = \begin{cases} \frac{1 + \sqrt{1 + 4\theta_{k-1}^2}}{2}, & k = 1, ..., N - 1, \\ \frac{1 + \sqrt{1 + 8\theta_{k-1}^2}}{2}, & k = N, \end{cases}$
 $w_k = y_k + \frac{\theta_{k-1} - 1}{\theta_k} (y_k - y_{k-1}) + \frac{\theta_{k-1}}{\theta_k} (y_k - w_{k-1})$

For unconstrained problem, OGM satisfies better bound than FGM:

$$ilde{q}(m{w}_k) - ilde{q}(m{y}_*) \leq rac{1L||m{y}_0 - m{y}_*||_2^2}{(k+1)^2}.$$

Projection Version of OGM (OGP)

Projection version of OGM (OGP) [Taylor et al., arXiv:1512.07516]

nitialize
$$\boldsymbol{y}_0 = \boldsymbol{w}_0 = \boldsymbol{u}_0, \ t_0 = 1, \ \zeta_0 = 1$$

For $k = 1, \dots, N$,
 $\boldsymbol{y}_k = \boldsymbol{w}_{k-1} - \frac{1}{L} \nabla F(\boldsymbol{w}_{k-1})$
 $\boldsymbol{u}_k = \boldsymbol{y}_k + \frac{\theta_{k-1} - 1}{\theta_k} (\boldsymbol{y}_k - \boldsymbol{y}_{k-1}) + \frac{\theta_{k-1}}{\theta_k} (\boldsymbol{y}_k - \boldsymbol{w}_{k-1})$
 $-\frac{\theta_{k-1} - 1}{\theta_k} \frac{1}{\zeta_{k-1}} (\boldsymbol{w}_{k-1} - \boldsymbol{u}_{k-1})$
 $\boldsymbol{w}_k = \mathcal{P}_{\mathcal{Y}_{\bar{\lambda}}}(\boldsymbol{u}_k)$
 $\zeta_k = 1 + \frac{\theta_{k-1} - 1}{\theta_k} + \frac{\theta_{k-1}}{\theta_k}$

This OGP reduces to OGM when $G(\boldsymbol{y}) = 0$, *i.e.*, $\mathcal{P}_{\mathcal{Y}_{\bar{\lambda}}}(\boldsymbol{y}) = \boldsymbol{y}$.

OGP is "numerically" found to satisfy the bound similar to OGM as

$$ilde{q}(oldsymbol{w}_k) - ilde{q}(oldsymbol{y}_*) \lessapprox rac{1L||oldsymbol{y}_0 - oldsymbol{y}_*||_2^2}{(k+1)^2}$$

2 Existing Methods for Inner Dual Problem: GP, FGP

Proposed Methods for Inner Dual Problem: FGP-OPG, OGP

4 Examples

- TV-regularized Image Denoising
- TV-regularized Image Deblurring

5 Summary

Image Denoising: Experimental Setup

Generated a noisy image b by adding noise $\epsilon \sim \mathcal{N}(0,0.1^2)$ to a normalized 512×512 Lena image $\pmb{x}_{true}.$

True image $(x_{
m true})$

Noisy image (b)

Denoise \boldsymbol{b} by solving the following for $\lambda = 0.1$, using its dual:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} H(\boldsymbol{x}), \quad H(\boldsymbol{x}) := \frac{1}{2} ||\boldsymbol{x} - \boldsymbol{b}||_2^2 + \lambda ||\boldsymbol{x}||_{\mathrm{TV}}.$$

Image Denoising: Primal-Dual Gap vs. Iteration

Denoised image

Known Rate	GP	FGP	FGP-OPG	OGP
Dual Function	O(1/k)	$O(1/k^2)$	$O(1/k^2)$	$O(1/k^2)$
Primal-Dual Gap	O(1/k)	O(1/k)	$O(1/k^{1.5})$	O(1/k)

- FGP(-OPG) and OGP are clearly faster than GP.
- FGP-OPG is slower than FGP and OGP unlike our worst-case analysis.
- OGP provides a speedup over FGP(-OPG).

Image Deblurring: Experimental Setup

Generated a noisy and blurred image b by using a blurring operator A of 19×19 Gaussian filter with standard deviation 4, and by adding noise $\epsilon\sim\mathcal{N}(0,0.001^2)$ to a normalized 512×512 Lena image $x_{\rm true}.$

True image $(x_{ ext{true}})$

Noisy and blurred image (b)

Deblur **b** by solving the following for $\lambda = 0.005$:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \Phi(\boldsymbol{x}), \quad \Phi(\boldsymbol{x}) := \frac{1}{2} ||\boldsymbol{A}\boldsymbol{x} - \boldsymbol{b}||_2^2 + \lambda ||\boldsymbol{x}||_{\mathrm{TV}}.$$

Image Deblurring: Cost Function vs. Iteration

50 outer iterations (i) of FISTA with K = 10 inner iterations (k)

Deblurred image

- FISTA converges faster with accelerated inner methods than with GP.
- FISTA with FGP-OPG is slower here than with FGP or OGP, unlike our worst-case analysis.
- FISTA with OGP is faster than with FGP(-OPG).
- ٩

Image Deblurring: Cost Function vs. Iteration

50 outer iterations (i) of FISTA with K = 8 inner iterations (k)

Deblurred image

- FISTA converges faster with accelerated inner methods than with GP.
- FISTA with FGP-OPG is slower here than with FGP or OGP, unlike our worst-case analysis.
- FISTA with OGP is faster than with FGP(-OPG).
- ۲

Image Deblurring: Cost Function vs. Iteration

50 outer iterations (i) of FISTA with K = 5 inner iterations (k)

- FISTA converges faster with accelerated inner methods than with GP.
- FISTA with FGP-OPG is slower here than with FGP or OGP, unlike our worst-case analysis.
- FISTA with OGP is faster than with FGP(-OPG).
- FISTA unstable with too few inner iterations

1 Problem

- 2 Existing Methods for Inner Dual Problem: GP, FGP
- Proposed Methods for Inner Dual Problem: FGP-OPG, OGP
- 4 Examples

- We accelerated (in worst-case bound sense) solving the inner denoising problem of FISTA for inverse problems.
- For that inner denoising problem, standard FGP decreases the (inner) primal function with rate O(1/k).
- Proposed FGP-OPG guarantees a faster rate $O(1/k^{1.5})$ for the (inner) primal-dual gap decrease.
- However, FGP-OPG was slower than FGP in the experiment.
- OGP provided acceleration over FGP(-OPG) in the experiment, possibly due to its fast decrease of the (inner) dual function.
- Future work
 - Develop faster gradient projection methods that decrease the function or the gradient projection.
 - Determine if ${\cal O}(1/k^{1.5})$ is optimal rate for decreasing the gradient projection norm.
 - For TV, compare to parallel proximal algorithm of U. Kamilov. [10]

References

- A. Beck and M. Teboulle. "Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems." In: *IEEE Trans. Im. Proc.* 18.11 (Nov. 2009), 2419–34.
- [2] A. Beck and M. Teboulle. "A fast iterative shrinkage-thresholding algorithm for linear inverse problems." In: SIAM J. Imaging Sci. 2.1 (2009), 183–202.
- [3] A. Chambolle. "An algorithm for total variation minimization and applications." In: J. Math. Im. Vision 20.1-2 (Jan. 2004), 89–97.
- [4] A. Chambolle. "Total variation minimization and a class of binary MRF models." In: Energy Minimization Methods in Computer Vision and Pattern Recognition, EMMCVPR. Lecture Notes Comput. Sci., vol. 3757. 2005, 136–52.
- [5] A. Beck and M. Teboulle. "A fast dual proximal gradient algorithm for convex minimization and applications." In: Operations Research Letters 42.1 (Jan. 2014), 1–6.
- [6] D. Kim and J. A. Fessler. Fast dual proximal gradient algorithms with rate $O(1/k^{1.5})$ for convex minimization. arxiv 1609.09441. 2016.
- [7] D. Kim and J. A. Fessler. Another look at the "Fast iterative shrinkage/Thresholding algorithm (FISTA). arxiv 1608.03861. 2016.
- [8] D. Kim and J. A. Fessler. "Optimized first-order methods for smooth convex minimization." In: *Mathematical Programming* 159.1 (Sept. 2016), 81–107.
- [9] A. B. Taylor, J. M. Hendrickx, and François Glineur. Exact worst-case performance of first-order algorithms for composite convex optimization. arXiv 1512.07516. 2015.
- [10] U. S. Kamilov. "A parallel proximal algorithm for anisotropic total variation 28/28