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Medical imaging overview

System
(sensor)

Data−−−→
y

Image
reconstruction

Images−−−−−→
x̂

Image
processing → ?

I Image reconstruction goals
I Produce “better” images from same data
I Produce “good” images from less data or noisier data

(cf. data used by conventional algorithms)
I Image reconstruction challenges

I Accurate physics/statistics models for system/sensor
I Best/suitable signal models
I Fast computation / optimization
I Characterization / performance guarantees

I Image processing goals and challenges
I ?
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Model-based image reconstruction

Object−−−−−→
x

System Data−−−→
y

Estimator Image−−−−→
x̂

Typical “modern” formulation (MBIR) [1–5]:

x̂ = arg min
x

Ψ(x), Ψ(x) = − log p(y | x) + R(x)

“Bayesian / variational / statistical / regularized / iterative / ...”

Active research topics:
• p(y | x) : physics / statistics models (computation trade-offs)
• R(x) : regularizer / prior information / signal models
• arg min : optimization algorithms
• x̂ : characterization / performance guarantees

(Clinical “breakthrough” ≈20 years ago in PET, ≈4 in CT, ≈0 from now in MRI)
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Breakthroughs / impact I

What is the most important breakthrough in your field in the past 10 years and how
did this affect your field?

1. Advances in computing power (but Moore’s law insufficient)
=⇒ Clinical adoption of MBIR methods in PET and CT.

(Courtesy of R. Leahy)
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Breakthroughs / impact II

2. Advances in optimization algorithms
I incremental gradients / ordered subsets [6–8]
I non-smooth problems: (AL/ADMM, proximal splitting,

majorization, ...) [9, 10]
I momentum methods (e.g., FISTA) [11, 12]
I non-convex problems (...)

=⇒ OS made MBIR for PET clinically feasible.

3. Signal models based on sparsity (compressed sensing ...)
[13–20]
=⇒ Emboldened research on highly under-sampled problems.
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Dynamic MRI overview

“dynamic” = changing over time = motion [21–24]
I Nuisance motions:
• Breathing
• Cardiac
• Peristalsis
• Tremors
• Kids ...

=⇒ Faster scans (shorter time) can help reduce motion blur
I Motions of interest (true “dynamic” scans):
• Vocalization (for speech studies)
• Cardiac (for function)
• Joint articulation (musculoskeletal scans)
• Contrast agent (blood flow / perfusion)
• Diffusion

=⇒ Trade-offs between temporal resolution and spatial resolution
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Dynamic MRI sampling: Fantasy edition
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I Scan “twice as fast” !?
I Matrix completion problem!? =⇒... robust PCA (L+S) ...

[25, 26]
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Dynamic MRI sampling: Reality
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I All 3D dynamic MRI data is inherently under-sampled
I No real “fully sampled” data exists, now or ever
I Unlikely to satisfy any “matrix completion” sufficient conditions

(N measurements but N2 unknowns per frame)
I Retrospective “under sampling” of “fully sampled” dynamic data is dubious
I Opportunity: powerful signal models needed for reconstruction from such data
I Challenge: validation of signal models given such highly incomplete data

(low-rank / locally low rank / tensors / wavelets / non-local patches / ...)
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Regularization / signal models

I Edge-preserving roughness penalties / Markov random fields:

R(x) = β

np∑
j=1

∑
k∈NJ

ψ(xj − xk) .

I Sparsity (analysis form): R(x) = β ‖W x‖1 .

I Sparsity (synthesis form): x = Dz, ‖z‖0 ≤ k, D “known”

R(x) = min
z

β ‖x −Dz‖2
2 + α ‖z‖p

I Sparsity of patches in adapted (learned) patch dictionary:

R(x) = min
D∈D

min
Z

β
∑

k
‖Pkx −Dzk‖2

2 + α ‖Z‖p

I Dynamic problems: low-rank / locally low-rank, tensors, ...
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Image reconstruction algorithm generations

I Analytical reconstruction methods (classical):
idealized mathematical imaging system models [27]
e.g., CT inverse Radon transform, MR inverse FFT

I Model-based image reconstruction (“recent”):
I physics and statistics models
I mathematical signal models

I Data-driven image reconstruction (emerging):
parts of reconstruction algorithm learned from training data
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Data-driven image reconstruction: transform learning

I Training stage
Learn sparsifying transform Ω̂
from training data (image patches) {x1, x2, . . . , }:

Ω̂ , arg min
Ω

min
Z

∑
k
‖Ωxk − zk‖2

2 + λ ‖Z‖p .

Efficient methods with some convergence guarantees
Sai Ravishankar & Yoram Bresler, 2012-2015 [28–37].

I Image reconstruction stage:

arg min
x

Ψ(x), Ψ(x) , − log p(y | x) + R(x)

R(x) , min
Z

∑
j

∥∥∥Ω̂P jx − z j
∥∥∥2

2
+ λ ‖Z‖p .

Regularizer based on training data [38, 39] (!)
I Adaptive (blind) versions [40–44]
I Synthesis (dictionary) variant [45–47]
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Data-driven image reconstruction: algorithm design

New paradigm:

Object−−−−−−→
x

System Data−−−−−→
y

Estimator︸ ︷︷ ︸
↑

training data

Image−−−−−→
x̂

I Recent papers (mostly using “deep” convolutional neural
networks): [48–57] (“deep imaging” ?)

I Many more to appear in 2017, e.g., [58].
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Data-driven image reconstruction: Example

Sparse-view CT “reconstruction” with learned streak removal
Han et al. 2016 [51]
Streak-estimation stages learned from (fully sampled) training data

13 / 20



Data-driven image reconstruction: Results

[51, Fig. 7], Han et al. 2016
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Data-driven image reconstruction: Challenges

I Slow learning from training data: O(days)
(But very fast processing after training, cf. iterative MBIR)

I Re-training for different imaging conditions
I Non-convexity / nonlinearity
I Characterization / performance guarantees

(Job security for signal processors...)

Special issue of IEEE Transactions on Medical Imaging:

https://ieee-tmi.org
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