Open problems in signal processing: Medical imaging

Jeffrey A. Fessler

EECS Dept., BME Dept., Dept. of Radiology University of Michigan

http://web.eecs.umich.edu/~fessler

ICASSP Panel 2017-03-06

- Image reconstruction goals
 - Produce "better" images from same data
 - Produce "good" images from less data or noisier data (cf. data used by conventional algorithms)
- Image reconstruction challenges
 - Accurate physics/statistics models for system/sensor
 - Best/suitable signal models
 - Fast computation / optimization
 - Characterization / performance guarantees
- Image processing goals and challenges

▶ ?

Typical "modern" formulation (MBIR) [1–5]:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}} \Psi(\boldsymbol{x}), \quad \Psi(\boldsymbol{x}) = -\log \mathsf{p}(\boldsymbol{y} \mid \boldsymbol{x}) + \mathsf{R}(\boldsymbol{x})$$

"Bayesian / variational / statistical / regularized / iterative / ..."

Active research topics:

- p(y | x) : physics / statistics models (computation trade-offs)
- R(x) : regularizer / prior information / signal models
- arg min : optimization algorithms
- \hat{x} : characterization / performance guarantees

(Clinical "breakthrough" \approx 20 years ago in PET, \approx 4 in CT, \approx 0 from now in MRI)

Breakthroughs / impact I

What is the most important breakthrough in your field in the past 10 years and how did this affect your field?

1. Advances in computing power (but Moore's law insufficient) \implies Clinical adoption of MBIR methods in PET and CT.

- 2. Advances in optimization algorithms
 - incremental gradients / ordered subsets [6–8]
 - non-smooth problems: (AL/ADMM, proximal splitting, majorization, ...) [9, 10]
 - ▶ momentum methods (*e.g.*, FISTA) [11, 12]
 - non-convex problems (...)
 - \implies OS made MBIR for PET clinically feasible.
- Signal models based on sparsity (compressed sensing ...) [13-20]
 ⇒ Emboldened research on highly under-sampled problems.

"dynamic" = changing over time = motion [21–24]

- Nuisance motions:
 - Breathing
 - Cardiac
 - Peristalsis
 - Tremors
 - Kids ...

 \implies Faster scans (shorter time) can help reduce motion blur

- Motions of interest (true "dynamic" scans):
 - Vocalization (for speech studies)
 - Cardiac (for function)
 - Joint articulation (musculoskeletal scans)
 - Contrast agent (blood flow / perfusion)
 - Diffusion

 \Longrightarrow Trade-offs between temporal resolution and spatial resolution

Dynamic MRI sampling: Fantasy edition

- Scan "twice as fast" !?
- ► Matrix completion problem!? ⇒... robust PCA (L+S) ... [25, 26]

- All 3D dynamic MRI data is inherently under-sampled
- No real "fully sampled" data exists, now or ever
- Unlikely to satisfy any "matrix completion" sufficient conditions (N measurements but N² unknowns per frame)
- Retrospective "under sampling" of "fully sampled" dynamic data is dubious
- Opportunity: powerful signal models needed for reconstruction from such data
- Challenge: validation of signal models given such highly incomplete data (low-rank / locally low rank / tensors / wavelets / non-local patches / ...)

Regularization / signal models

Edge-preserving roughness penalties / Markov random fields:

$$\mathsf{R}(\boldsymbol{x}) = \beta \sum_{j=1}^{n_{\mathrm{p}}} \sum_{k \in \mathcal{N}_J} \psi(x_j - x_k).$$

- Sparsity (analysis form): $R(\mathbf{x}) = \beta \| \mathbf{W} \mathbf{x} \|_1$.
- Sparsity (synthesis form): $\boldsymbol{x} = \boldsymbol{D}\boldsymbol{z}, \quad \|\boldsymbol{z}\|_0 \leq k, \ \boldsymbol{D}$ "known"

$$\mathsf{R}(\boldsymbol{x}) = \min_{\boldsymbol{z}} \beta \|\boldsymbol{x} - \boldsymbol{D}\boldsymbol{z}\|_{2}^{2} + \alpha \|\boldsymbol{z}\|_{p}$$

Sparsity of patches in adapted (learned) patch dictionary:

$$\mathsf{R}(\boldsymbol{x}) = \min_{\boldsymbol{D} \in \mathcal{D}} \min_{\boldsymbol{Z}} \beta \sum_{k} \|\boldsymbol{P}_{k}\boldsymbol{x} - \boldsymbol{D}\boldsymbol{z}_{k}\|_{2}^{2} + \alpha \|\boldsymbol{Z}\|_{p}$$

Dynamic problems: low-rank / locally low-rank, tensors, ...

- Analytical reconstruction methods (classical): idealized mathematical imaging system models [27] *e.g.*, CT inverse Radon transform, MR inverse FFT
- Model-based image reconstruction ("recent"):
 - physics and statistics models
 - mathematical signal models

 Data-driven image reconstruction (emerging): parts of reconstruction algorithm learned from *training data*

► Training stage

Learn sparsifying transform $\hat{\Omega}$ from training data (image patches) $\{x_1, x_2, \dots, \}$:

$$\hat{\boldsymbol{\Omega}} \triangleq \underset{\boldsymbol{\Omega}}{\operatorname{arg\,min\,min}} \sum_{\boldsymbol{Z}} \|\boldsymbol{\Omega}\boldsymbol{x}_{k} - \boldsymbol{z}_{k}\|_{2}^{2} + \lambda \|\boldsymbol{Z}\|_{p}.$$

Efficient methods with some convergence guarantees Sai Ravishankar & Yoram Bresler, 2012-2015 [28–37].

Image reconstruction stage:

$$\arg\min_{\mathbf{x}} \Psi(\mathbf{x}), \quad \Psi(\mathbf{x}) \triangleq -\log p(\mathbf{y} \mid \mathbf{x}) + \mathsf{R}(\mathbf{x})$$

$$\mathsf{R}(\boldsymbol{x}) \triangleq \min_{\boldsymbol{Z}} \sum_{j} \left\| \hat{\boldsymbol{\Omega}} \boldsymbol{P}_{j} \boldsymbol{x} - \boldsymbol{z}_{j} \right\|_{2}^{2} + \lambda \left\| \boldsymbol{Z} \right\|_{p}.$$

Regularizer based on training data [38, 39] (!)

- Adaptive (blind) versions [40–44]
- Synthesis (dictionary) variant [45–47]

New paradigm:

- Recent papers (mostly using "deep" convolutional neural networks): [48–57] ("deep imaging" ?)
- ▶ Many more to appear in 2017, e.g., [58].

Sparse-view CT "reconstruction" with learned streak removal Han et al. 2016 [51] Streak-estimation stages learned from (fully sampled) training data

[51, Fig. 7], Han et al. 2016

Data-driven image reconstruction: Challenges

- Slow learning from training data: O(days) (But very fast processing after training, cf. iterative MBIR)
- Re-training for different imaging conditions
- Non-convexity / nonlinearity
- Characterization / performance guarantees

(Job security for signal processors...)

Special issue of IEEE Transactions on Medical Imaging:

https://ieee-tmi.org

Bibliography I

- R. M. Leahy and J. Qi. "Statistical approaches in quantitative positron emission tomography." In: Statistics and Computing 10.2 (Apr. 2000), 147–65.
- [2] R. M. Lewitt and S. Matej. "Overview of methods for image reconstruction from projections in emission computed tomography." In: Proc. IEEE 91.10 (Oct. 2003), 1588–611.
- [3] M. Lustig, D. Donoho, and J. M. Pauly. "Sparse MRI: The application of compressed sensing for rapid MR imaging." In: Mag. Res. Med. 58.6 (Dec. 2007), 1182–95.
- [4] J-B. Thibault et al. "A three-dimensional statistical approach to improved image quality for multi-slice helical CT." In: *Med. Phys.* 34.11 (Nov. 2007), 4526–44.
- [5] M. Lustig et al. "Compressed sensing MRI." In: IEEE Sig. Proc. Mag. 25.2 (Mar. 2008), 72–82.
- [6] H. M. Hudson and R. S. Larkin. "Accelerated image reconstruction using ordered subsets of projection data." In: IEEE Trans. Med. Imag. 13.4 (Dec. 1994), 601–9.
- [7] S. Ahn and J. A. Fessler. "Globally convergent image reconstruction for emission tomography using relaxed ordered subsets algorithms." In: IEEE Trans. Med. Imag. 22.5 (May 2003), 613–26.
- [8] S. Ahn et al. "Quantitative comparison of OSEM and penalized likelihood image reconstruction using relative difference penalties for clinical PET." In: Phys. Med. Biol. 60.15 (Aug. 2015), 5733–52.
- [9] I. Daubechies, M. Defrise, and C. De Mol. "An iterative thresholding algorithm for linear inverse problems with a sparsity constraint." In: Comm. Pure Appl. Math. 57.11 (Nov. 2004), 1413–57.
- [10] M. V. Afonso, José M Bioucas-Dias, and Mário A T Figueiredo. "Fast image recovery using variable splitting and constrained optimization." In: IEEE Trans. Im. Proc. 19.9 (Sept. 2010), 2345–56.
- [11] A. Beck and M. Teboulle. "Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems." In: IEEE Trans. Im. Proc. 18.11 (Nov. 2009), 2419–34.
- [12] D. Kim and J. A. Fessler. "Optimized first-order methods for smooth convex minimization." In: Mathematical Programming 159.1 (Sept. 2016), 81–107.

Bibliography II

- [13] D. Donoho. "Superresolution via sparsity constraints." In: SIAM J. Math. Anal. 23.5 (1993), 1309-31.
- [14] G. Harikumar and Y. Bresler. "A new algorithm for computing sparse solutions to linear inverse problems." In: Proc. IEEE Conf. Acoust. Speech Sig. Proc. Vol. 3. 1996, 1331–4.
- [15] G. Harikumar, C. Couvreur, and Y. Bresler. "Fast optimal and suboptimal algorithms for sparse solutions to linear inverse problems." In: Proc. IEEE Conf. Acoust. Speech Sig. Proc. Vol. 3. 1998, 1877–80.
- [16] D. L. Donoho and M. Elad. "Optimally sparse representation in general (nonorthogonal) dictionaries via 1 minimization." In: Proc. Natl. Acad. Sci. 100.5 (Mar. 2003), 2197–2202.
- [17] D. Donoho. "For most large underdetermined systems of linear equations, the minimal ell-1 norm solution is also the sparsest solution." In: Comm. Pure Appl. Math. 59.6 (June 2006), 797–829.
- [18] D. L. Donoho. "Compressed sensing." In: IEEE Trans. Info. Theory 52.4 (Apr. 2006), 1289–1306.
- [19] E. J. Candès, J. Romberg, and T. Tao. "Stable signal recovery from incomplete and inaccurate measurements." In: Comm. Pure Appl. Math. 59.8 (2006), 1207–23.
- [20] M. Elad. Sparse and redundant representations: from theory to applications in signal and image processing. Berlin: Springer, 2010.
- [21] R. S. Lawson. "Application of mathematical methods in dynamic nuclear medicine studies." In: Phys. Med. Biol. 44.4 (Apr. 1999), R57–98.
- [22] A. R. Padhani. "Dynamic contrast-enhanced MRI in clinical oncology: Current status and future directions." In: J. Mag. Res. Im. 16.4 (Oct. 2002), 407–22.
- [23] S. Bonnet et al. "Dynamic X-ray computed tomography." In: Proc. IEEE 91.10 (Oct. 2003), 1574-87.
- [24] S. G. Lingala and M. Jacob. Accelerated Dynamic MRI using adaptive signal models. MRI: Physics, Image Reconstruction, and Analysis, CRC Press (Book Chapter). 2015.
- [25] E. J. Candès et al. "Robust principal component analysis?" In: J. Assoc. Comput. Mach. 58.3 (May 2011), 1–37.

Bibliography III

- [26] R. Otazo, E. Candès, and D. K. Sodickson. "Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components." In: Mag. Res. Med. 73.3 (Mar. 2015), 1125–36.
- [27] F. Natterer and F. Wübbeling. Mathematical methods in image reconstruction. Philadelphia: Soc. Indust. Appl. Math., 2001.
- [28] S. Ravishankar and Y. Bresler. "Learning sparsifying transforms for image processing." In: Proc. IEEE Intl. Conf. on Image Processing. 2012, 681–4.
- [29] S. Ravishankar and Y. Bresler. "Learning doubly sparse transforms for image representation." In: Proc. IEEE Intl. Conf. on Image Processing. 2012, 685-.
- [30] S. Ravishankar and Y. Bresler. "Learning sparsifying transforms." In: IEEE Trans. Sig. Proc. 61.5 (Mar. 2013), 1072–86.
- [31] S. Ravishankar and Y. Bresler. "Learning doubly sparse transforms for images." In: IEEE Trans. Im. Proc. 22.12 (Dec. 2013), 4598–612.
- [32] S. Ravishankar and Y. Bresler. "Closed-form solutions within sparsifying transform learning." In: Proc. IEEE Conf. Acoust. Speech Sig. Proc. 2013, 5378–82.
- [33] S. Ravishankar and Y. Bresler. "Learning overcomplete sparsifying transforms for signal processing." In: Proc. IEEE Conf. Acoust. Speech Sig. Proc. 2013, 3088–92.
- [34] S. Ravishankar and Y. Bresler. "Doubly sparse transform learning with convergence guarantees." In: Proc. IEEE Conf. Acoust. Speech Sig. Proc. 2014, 5262–6.
- [35] S. Ravishankar and Y. Bresler. "I₀ sparsifying transform learning with efficient optimal updates and convergence guarantees." In: IEEE Trans. Sig. Proc. 63.9 (May 2015), 2389–404.
- [36] S. Ravishankar, B. Wen, and Y. Bresler. "Online sparsifying transform learning Part I: algorithms." In: ieee-jstsp 9.4 (June 2015), 625–36.

Bibliography IV

- [37] S. Ravishankar and Y. Bresler. "Online sparsifying transform learning Part II: convergence analysis." In: *ieee-jstsp* 9.4 (June 2015), 637–46.
- [38] X. Zheng et al. "Low dose CT image reconstruction with trained sparsifying transform." In: Proc. IEEE Wkshp. on Image, Video, Multidim. Signal Proc. 2016, 1–5.
- [39] I. Y. Chun et al. "Efficient sparse-view X-ray CT reconstruction using ℓ₁ regularization with learned sparsifying transform." In: Proc. Intl. Mtg. on Fully 3D Image Recon. in Rad. and Nuc. Med. Submitted. 2017.
- [40] S. Ravishankar and Y. Bresler. "Sparsifying transform learning for compressed sensing MRI." In: Proc. IEEE Intl. Symp. Biomed. Imag. 2013, 17–20.
- [41] L. Pfister and Y. Bresler. "Adaptive sparsifying transforms for iterative tomographic reconstruction." In: Proc. 3rd Intl. Mtg. on image formation in X-ray CT. 2014, 107–10.
- [42] S. Ravishankar and Y. Bresler, "Data-driven adaptation of a union of sparsifying transforms for blind compressed sensing MRI reconstruction." In: Proc. SPIE 9597 Wavelets and Sparsity XVI. 2015, p. 959713.
- [43] S. Ravishankar and Y. Bresler. "Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to MRI." In: SIAM J. Imaging Sci. 8.4 (2015), 2519–57.
- [44] S. Ravishankar and Y. Bresler. "Data-driven learning of a union of sparsifying transforms model for blind compressed sensing." In: IEEE Trans. Computational Imaging 2.3 (Sept. 2016), 294–309.
- [45] S. Ravishankar and Y. Bresler. "MR image reconstruction from highly undersampled k-space data by dictionary learning." In: IEEE Trans. Med. Imag. 30.5 (May 2011), 1028–41.
- [46] S. Ravishankar, R. R. Nadakuditi, and J. A. Fessler. "Sum of outer products dictionary learning for inverse problems." In: IEEE GlobalSIP. To appear. 2016.

Bibliography V

- [47] S. Ravishankar, R. R. Nadakuditi, and J. A. Fessler. "Efficient sum of outer products dictionary learning (SOUP-DIL) and its application to inverse problems." In: *IEEE Trans. Computational Imaging* (2016). Submitted.
- [48] H. Chen et al. Low-dose CT via deep neural network. arxiv 1609.08508. 2016.
- [49] H. Chen et al. Low-dose CT denoising with convolutional neural network. arxiv 1610.00321. 2016.
- [50] K. Hammernik et al. "Learning a variational model for compressed sensing MRI reconstruction." In: Proc. Intl. Soc. Mag. Res. Med. 2016, p. 1088.
- [51] Y. S. Han, J. Yoo, and J. C. Ye. Deep residual learning for compressed sensing CT reconstruction via persistent homology analysis. arxiv 1611.06391. 2016.
- [52] K. H. Jin et al. Deep convolutional neural network for inverse problems in imaging. arxiv 1611.03679. 2016.
- [53] E. Kang, J. Min, and J. C. Ye. A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction. arXiv 1610.09736. 2016.
- [54] G. Wang. "A perspective on deep imaging." In: IEEE Access 4 (Nov. 2016), 8914-24.
- [55] S. Wang et al. "Exploiting deep convolutional neural network for fast magnetic resonance imaging." In: Proc. Intl. Soc. Mag. Res. Med. 2016, p. 1778.
- [56] S. Wang et al. "Accelerating magnetic resonance imaging via deep learning." In: Proc. IEEE Intl. Symp. Biomed. Imag. 2016, 514–7.
- [57] H. M. Zhang et al. Image prediction for limited-angle tomography via deep learning with convolutional neural network. arXiv 1607.08707. 2016.
- [58] S. Ravishankar, I. Y. Chun, and J. A. Fessler. "Physics-driven learning of dictionary-based algorithms for MR image reconstruction." In: Proc. Intl. Soc. Mag. Res. Med. Submitted. 2017.