Model-based image reconstruction of chemiluminescence using a plenoptic 2.0 camera

Hung Nien, Jeffrey A. Fessler, and Volker Sick

EECS Department and Mechanical Engineering Department University of Michigan, Ann Arbor

> ICIP 2015: Computational Imaging
> Sept. 29, 2015

Disclosure

- Supported by NSF under grant number CBET-1402707
- Equipment support from Intel Corporation

Motivation: combustion in transparent engine cylinder

Motivation

Tomographic reconstruction of 3D chemiluminescence patterns such as flame fronts using a plenoptic camera.

Previous work

- Tomo-PIV (particle image velocimetry) (4-6 cameras) [Elsinga et al., 2006]
- Plenoptic 1.0 camera for PIV [Fahringer et al., 2012]
- Single-camera stereo [Greene et al., 2013] [Chen et al., 2015]

Depth maps for translucent objects?

Plenoptic camera

Plenoptic cameras use micro-lens arrays to capture 4-D light field information of a scene. The angular information enables:

- depth estimation (for object surfaces illuminated externally) e.g., via triangulation [Perwaß, SPIE, 2012]
- tomographic reconstruction (for luminescent objects) (cf., digital X-ray tomosynthesis - limited-angle tomography).

\diamond Images courtesy of Raytrix GmbH and Lytro, Inc.

Model-based image reconstruction (MBIR)

Overall goal: reconstruct 3D chemiluminescence pattern \mathbf{x} from plenoptic camera measurement \mathbf{y}.

MBIR components:

- 3D object model (basis coefficients) x
- Image voxel, basis function, ...
- System model A (\# of sensor elements $\times \#$ of object voxels)
- Linearity, finite voxel size, finite pixel size, ...
- Data noise statistics $\mathrm{p}(\mathbf{y} \mid \mathbf{A x})$
- Additive Gaussian, Poisson, ...
- Cost function $\Psi(\mathbf{x})$
- Data fidelity, regularizer, physical constraints, ...
- Iterative algorithm (arg $\min _{x}$)
- MART, FISTA, Newton's methods, ...
[Nuyts et al., Phys. Med. Biol., 2013]

Model-based image reconstruction (continued)

We reconstructed objects by solving a regularized LS problem:

$$
\mathbf{x}^{\star} \in \arg \min _{\mathbf{x}}\left\{\Psi(\mathbf{x}) \triangleq \frac{1}{2}\|\mathbf{y}-\mathbf{A}\|_{2}^{2}+\mathrm{R}(\mathbf{x})\right\} \text { s.t. } \mathbf{x} \succeq \mathbf{0}
$$

where R denotes an edge-preserving corner-rounded TV regularizer.
We focused on R defined as

$$
\mathrm{R}(\mathbf{x}) \triangleq \sum_{i=1} \beta_{i} \sum_{n} \varphi_{\text {Huber }}\left(\left[\mathbf{C}_{i} \mathbf{x}\right]_{n}\right)
$$

- \mathbf{C}_{i} : finite difference matrix along ith direction
- β_{i} : corresponding regularization parameter.
- $\varphi_{\text {Huber }}(t) \approx|t|$

System model for a plenoptic camera

[Bishop \& Favaro, IEEE T-PAMI, 2012]

System model for a plenoptic camera

Build (pre-compute) system matrix \mathbf{A} one column at a time

System model for a plenoptic camera

thin lens formula: $1 / z+1 / Z=1 / F$

System model for a plenoptic camera

System model for a plenoptic camera

System model for a plenoptic camera

Use superposition to consider one microlens at a time

System model for a plenoptic camera

If microlens had large diameter...

System model for a plenoptic camera

If main lens had large diameter...

System model for a plenoptic camera

Combined effect of main lens and microlens

System model for a plenoptic camera

Combined effect of main lens and microlens

System model - continued

Continuous-space PSF of the i th micro-lens is:

$$
\beta_{i}(s, t ; x, y, z)=\underbrace{\beta_{i}^{\mathrm{ML}-\mu \mathrm{L}}(s, t ; x, y, z)}_{\alpha \operatorname{circ}\left(s, t ; c_{i}^{\mathrm{ML}-\mu \mathrm{L}}, B_{i}\right)} \cdot \underbrace{\beta_{i}^{\mu \mathrm{L}}(s, t ; x, y, z)}_{\alpha \operatorname{circ}\left(s, t ; c_{i}^{\mu \mathrm{L}}, b_{i}\right)},
$$

where

- (s, t) denotes 2D sensor coordinates
- centers $\mathbf{c}_{i}^{\mathrm{ML}-\mu \mathrm{L}}, \mathbf{c}_{i}^{\mu \mathrm{L}}$, and radii B_{i}, and b_{i} depend on the object point position (x, y, z) and camera geometry.
- $\sum_{i} \beta_{i}(s, t ; x, y, z)$ sketched:

Continuous-space PSF

Computational challenges

- Dense micro-lens array
- Highly shift-variant point spread function
- Non-separable aperture / PSF (cf., X-ray CT)
- Lens aberrations
- Finite sensor pixel size

The discrete PSF of a micro-lens consists of integrals of the circle-circle intersection over each sensor pixel, where the circle centers depend on the position of the "point source."
We approximate each finite-sized sensor pixel as $L \times L$ infinitesimal pixels, i.e., $L \times$-subsampling in each direction.

- Finite object voxel size

Computational challenges

- Dense micro-lens array
- Highly shift-variant point spread function
- Non-separable aperture / PSF (cf., X-ray CT)
- Lens aberrations
- Finite sensor pixel size

The discrete PSF of a micro-lens consists of integrals of the circle-circle intersection over each sensor pixel, where the circle centers depend on the position of the "point source."
We approximate each finite-sized sensor pixel as $L \times L$ infinitesimal pixels, i.e., $L \times$-subsampling in each direction.

- Finite object voxel size

Finite-sized object voxel effects

One (x, y) transaxial plane of a 3D object voxel

Finite-sized object voxel effects

One (x, y) transaxial plane of a 3D object voxel

Finite-sized object voxel effects

One (x, y) transaxial plane of a 3D object voxel

Finite-sized object voxel effects

One (x, y) transaxial plane of a 3D object voxel

Finite-sized object voxel effects

One (x, y) transaxial plane of a 3D object voxel

Finite-sized object voxel: baseline approximation

We approximate each cubic voxel as $K \times K \times K$ equally spaced infinitesimal voxels, i.e., $K \times$-subsampling in each direction.

\dagger We used $K=7$ here.

Finite-sized object voxel: baseline approximation

We approximate each cubic voxel as $K \times K \times K$ equally spaced infinitesimal voxels, i.e., $K \times$-subsampling in each direction.

(infinitesimal)

Why finite voxel size matters

 븁 -

Infinitesimal voxels

Finite-sized voxels

\dagger Using $0.5 \times 0.5 \times 0.5\left[\mathrm{~mm}^{3}\right]$ cubic voxels and $K=7$.

Why finite voxel size matters (zoomed)

 -
 -

Numerical experiments: imaging geometry

Numerical experiments: object geometry

- $100 \times 100 \times 100$ voxel object
- $0.5 \times 0.5 \times 0.5\left[\mathrm{~mm}^{3}\right]$ voxels
- 50 [mm] field-of-view
- $7 \times$ sensor subsampling when precomputing \mathbf{A}
- 50 dB SNR (additive white Gaussian noise)

- To avoid an inverse crime when synthesizing plenoptic sensor pictures, we used a voxelized object having a $2 \times$ finer grid in 3D, with $11 \times$ subsampling per dimension.

Numerical experiments: object geometry

- $100 \times 100 \times 100$ voxel object
- $0.5 \times 0.5 \times 0.5\left[\mathrm{~mm}^{3}\right]$ voxels
- 50 [mm] field-of-view
- $7 \times$ sensor subsampling when precomputing \mathbf{A}
- 50 dB SNR (additive white Gaussian noise)

- To avoid an inverse crime when synthesizing plenoptic sensor pictures, we used a voxelized object having a $2 \times$ finer grid in 3D, with $11 \times$ subsampling per dimension.

Numerical experiments: object geometry

- $100 \times 100 \times 100$ voxel object
- $0.5 \times 0.5 \times 0.5\left[\mathrm{~mm}^{3}\right]$ voxels
- 50 [mm] field-of-view
- $7 \times$ sensor subsampling when precomputing \mathbf{A}
- 50 dB SNR (additive white Gaussian noise)

- To avoid an inverse crime when synthesizing plenoptic sensor pictures, we used a voxelized object having a $2 \times$ finer grid in 3D, with $11 \times$ subsampling per dimension.

Numerical experiments: plenoptic cameras

	Camera \#1	Camera \#2	Camera \#3	
$f_{\text {main }}$	80	80	80	$[\mathrm{~mm}]$
f-number	1.4	2.8	1.4	
$d_{\text {main }}$	57.14	28.57	57.14	$[\mathrm{~mm}]$
$f_{\text {micro }}$	0.35	0.35	0.35	$[\mathrm{~mm}]$
$d_{\text {micro }}$	0.27	0.135	0.135	$[\mathrm{~mm}]$
type	larger	Bishop \& Favaro	overlaps	

- $9 \mu \mathrm{~m} \times 9 \mu \mathrm{~m}$ sensor pixel size
- 850×850 pixel sensor

Numerical experiments: plenoptic cameras

	Camera \#1	Camera \#2	Camera \#3	
$f_{\text {main }}$	80	80	80	$[\mathrm{~mm}]$
f-number	1.4	2.8	1.4	
$d_{\text {main }}$	57.14	28.57	57.14	$[\mathrm{~mm}]$
$f_{\text {micro }}$	0.35	0.35	0.35	$[\mathrm{~mm}]$
$d_{\text {micro }}$	0.27	0.135	0.135	$[\mathrm{~mm}]$
type	larger	Bishop \& Favaro	overlaps	

- $9 \mu \mathrm{~m} \times 9 \mu \mathrm{~m}$ sensor pixel size
- 850×850 pixel sensor

Numerical experiments: plenoptic cameras

	Camera \#1	Camera \#2	Camera \#3	
$f_{\text {main }}$	80	80	80	$[\mathrm{~mm}]$
f-number	1.4	2.8	1.4	
$d_{\text {main }}$	57.14	28.57	57.14	$[\mathrm{~mm}]$
$f_{\text {micro }}$	0.35	0.35	0.35	$[\mathrm{~mm}]$
$d_{\text {micro }}$	0.27	0.135	0.135	$[\mathrm{~mm}]$
type	larger	Bishop \& Favaro	overlaps	

- $9 \mu \mathrm{~m} \times 9 \mu \mathrm{~m}$ sensor pixel size
- 850×850 pixel sensor

Numerical experiments: simulated plenoptic pictures

Better angular resolution than Camera \#2, but worse spatial resolution

Numerical experiments: simulated plenoptic pictures

Bishop \& Favaro, 2012

Numerical experiments: simulated plenoptic pictures

Overlapping (larger) subimages: demultiplexing needed, but (perhaps) more angular information than Camera \#2.

Numerical experiments: image reconstruction

[Recap] Our image reconstruction problem is:

$$
\mathbf{x}^{\star} \in \arg \min _{\mathbf{x}}\left\{\Psi(\mathbf{x}) \triangleq \frac{1}{2}\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2}^{2}+\mathrm{R}(\mathbf{x})\right\} \text { s.t. } \mathbf{x} \succeq \mathbf{0}
$$

- 500 iterations of FISTA with adaptive restart [Beck \& Teboulle, IEEE T-IP, 2009]
[O'Donoghue \& Candès, FCM, 2015]
- Precomputed / stored A (column-wise sparse)
- $7 \times$ object subsampling (x, y, z)
- $7 \times$ sensor subsampling (s, t)
- 320 secs/slice for camera \#1 (60 threads @ MATLAB)
- 26 3D neighbors used in the (smoothed) TV regularizer

Numerical experiments: finite voxel size

Infinitesimal voxels
Camera \#1

Finite-sized voxels Camera \#1

Contours at isovalue $=20 \%$ of maximum intensity.

Numerical experiments: aperture size

Large aperture/coarse MLA Camera \#1

Small aperture/dense MLA Camera \#2

Better lateral resolution of Camera 2 not helpful here.

Numerical experiments: aperture size - slices

Prantom

Phantom

Camera \#1 [approx., SNR = 50 dB]

Camera \#2 [approx., SNR = 50 dB]
xy

Numerical experiments: overlapping subimages

Non-overlapping subimages

Camera \#2

Overlapping subimages

Numerical experiments: overlapping subimages - slices

Prantom

Phantom

Camera \#2 [approx., SNR = 50 dB]

Camera \#3 [approx., SNR = 50 dB]

Numerical experiments: object distance

$$
d_{\text {object }}=700[\mathrm{~mm}]
$$

Camera \#2

$$
d_{\text {object }}=550[\mathrm{~mm}]
$$

Numerical experiments: object distance - slices

Prantom

Phantom
$x y$ az

Camera \#2 [approx., SNR = 50 dB]

$$
d_{\text {object }}=700[\mathrm{~mm}]
$$

Camera \#2 [approx., SNR = 50 dB]

$d_{\text {object }}=550[\mathrm{~mm}]$

Numerical experiments: sharp vs smooth object

Sharp object edges

Camera \#3

Smooth object edges

Numerical experiments: sharp vs smooth object - slices

Sharp phantom

Smooth phantom

Conclusions

- Model-based image reconstruction may be viable for 3D chemiluminescence from plenoptic camera data
- Voxel-size modeling is important
- Larger angular range of incident light improves z-resolution (but more severe lens aberration?)
- F-number matching can be relaxed (overlapping sub-images) to improve depth resolution in tomographic formulation
- Need fast on-the-fly forward/back-nrojections to solve real large-scale image reconstruction problems

Conclusions

- Model-based image reconstruction may be viable for 3D chemiluminescence from plenoptic camera data
- Voxel-size modeling is important
- Larger angular range of incident light improves z-resolution (but more severe lens aberration?)
- F-number matching can be relaxed (overlapping sub-images) to improve depth resolution in tomographic formulation
- Need fast on-the-fly forward/back-projections to solve real large-scale image reconstruction problems

Conclusions

- Model-based image reconstruction may be viable for 3D chemiluminescence from plenoptic camera data
- Voxel-size modeling is important
- Larger angular range of incident light improves z-resolution (but more severe lens aberration?)
- F-number matching can be relaxed (overlapping sub-images) to improve depth resolution in tomographic formulation
- Need fast on-the-fly forward/back-projections to solve real large-scale image reconstruction problems

Conclusions

- Model-based image reconstruction may be viable for 3D chemiluminescence from plenoptic camera data
- Voxel-size modeling is important
- Larger angular range of incident light improves z-resolution (but more severe lens aberration?)
- F-number matching can be relaxed (overlapping sub-images) to improve depth resolution in tomographic formulation
- Need fast on-the-fly forward/back-projections to solve real large-scale image reconstruction problems

Conclusions

- Model-based image reconstruction may be viable for 3D chemiluminescence from plenoptic camera data
- Voxel-size modeling is important
- Larger angular range of incident light improves z-resolution (but more severe lens aberration?)
- F-number matching can be relaxed (overlapping sub-images) to improve depth resolution in tomographic formulation
- Need fast on-the-fly forward/back-projections to solve real large-scale image reconstruction problems

Bibliography

[1] G. E. Elsinga, B. Wieneke, F. Scarano, and A. Schröder, "Tomographic 3D-PIV and Applications," in Particle Image Velocimetry, Springer Berlin Heidelberg, 2008, pp. 103-25.
[2] T. W. Fahringer and B. S. Thurow, "Tomographic reconstruction of a 3-D flow field using a plenoptic camera," in AIAA Fluid Dynamics Conf., 2012, p. 2826.
[3] M. L. Greene and V. Sick, "Volume-resolved flame chemiluminescence and laser-induced fluorescence imaging," Appl Phys B, vol. 113, no. 1, 87-92, Oct. 2013.
[4] H. Chen, P. Lillo, and V. Sick, "3D spray-flow interaction in a spark-ignition direct-injection engine," Int/. J. Engine Research, 2015, To appear.
[5] C. Perwass and L. Wietzke, "Single lens 3D-camera with extended depth-of-field," in Proc. SPIE 8291 Human Vision and Electronic Imaging XVII, 2012, p. 829108.
[6] J. Nuyts, B. De Man, J. A. Fessler, W. Zbijewski, and F. J. Beekman, "Modelling the physics in iterative reconstruction for transmission computed tomography," Phys. Med. Biol., vol. 58, no. 12, R63-96, Jun. 2013.
[7] T. E. Bishop and P. Favaro, "The light field camera: Extended depth of field, aliasing, and superresolution," IEEE Trans. Patt. Anal. Mach. Int., vol. 34, no. 5, 972-86, May 2012.
[8] A. Beck and M. Teboulle, "Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems," IEEE Trans. Im. Proc., vol. 18, no. 11, 2419-34, Nov. 2009.
[9] B. O'Donoghue and E. Candès, "Adaptive restart for accelerated gradient schemes," Found. Computational Math., vol. 15, no. 3, 715-32, Jun. 2015.

Approximate box blur

In practice, $B_{i} \gg b_{i}$, so β_{i} is usually a circle.
The continuous-space PSF of a voxel slice at depth z is

$$
\begin{aligned}
& \int_{x-\frac{\Delta_{x}}{2}}^{x+\frac{\Delta_{x}}{2}} \int_{y-\frac{\Delta_{y}}{2}}^{y+\frac{\Delta_{y}}{2}} \beta_{i}(s, t ; \bar{x}, \bar{y}, z) d \bar{y} d \bar{x} \\
\approx & \int_{x-\frac{\Delta_{x}}{2}}^{x+\frac{\Delta_{x}}{2}} \int_{y-\frac{\Delta_{y}}{2}}^{y+\frac{\Delta_{y}}{2}} \operatorname{circ}\left(s, t ; \mathbf{c}_{i}^{\mu \mathrm{L}}(\bar{x}, \bar{y}), b_{i}\right) d \bar{y} d \bar{x} \\
= & \int_{-\frac{\Delta_{x}}{2}}^{\frac{\Delta_{x}}{2}} \int_{-\frac{\Delta_{y}}{2}}^{\frac{\Delta_{y}}{2}} \operatorname{circ}\left(s, t ; \mathbf{c}_{i}^{\mu \mathrm{L}}\left(x+\delta_{x}, y+\delta_{y}\right), b_{i}\right) d \delta_{y} d \delta_{x} \\
= & \iint \operatorname{circ}\left(s-\delta_{s}, t-\delta_{t} ; \mathbf{c}_{i}^{\mu \mathrm{L}}(x, y), b_{i}\right) \cdot \operatorname{rect}\left(\delta_{s}, \delta_{t} ; w_{s}, w_{t}\right) d \delta_{t} d \delta_{s} .
\end{aligned}
$$

Infinitesimal vs finite-sized sensor pixel: point object

(For an infinitesimal voxel)

Infinitesimal vs finite-sized sensor pixel: sphere object

point voxel point sensor

point voxel finite sensor

finite voxel finite sensor

