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X-ray CT scans

CT image reconstruction problem:
Determine unknown attenuation map x given sinogram data y
using system matrix A.
Defer motion hereafter...
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Statistical image reconstruction: CT example

• A picture is worth 1000 words
• (and perhaps several 1000 seconds of computation?)

Thin-slice FBP ASIR (denoise) Statistical
Seconds A bit longer Much longer

(Same sinogram, so all at same dose)
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Why statistical/iterative methods for CT?

• Accurate physics models
◦ X-ray spectrum, beam-hardening, scatter, ...

=⇒ reduced artifacts? quantitative CT?
◦ X-ray detector spatial response, focal spot size, ...

=⇒ improved spatial resolution?
◦ detector spectral response (e.g., photon-counting detectors)

=⇒ improved contrast between distinct material types?

• Nonstandard geometries
◦ transaxial truncation (wide patients)
◦ long-object problem in helical CT
◦ irregular sampling in “next-generation” geometries
◦ coarse angular sampling in image-guidance applications
◦ limited angular range (tomosynthesis)
◦ “missing” data, e.g., bad pixels in flat-panel systems
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Why iterative for CT ... continued

• Appropriate models of (data dependent) measurement statistics
◦ weighting reduces influence of photon-starved rays (cf. FBP)

=⇒ reducing image noise or X-ray dose

• Object constraints / priors
◦ nonnegativity
◦ object support
◦ piecewise smoothness
◦ object sparsity (e.g., angiography)
◦ sparsity in some basis
◦ motion models
◦ dynamic models
◦ ...

Henry Gray, Anatomy of
the Human Body, 1918,
Fig. 413.

Constraints may help reduce image artifacts or noise or dose.

Similar motivations/benefits in PET and SPECT.
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Disadvantages of iterative methods for CT?

I Computation time
I Must reconstruct entire FOV
I Complexity of models and software
I Algorithm nonlinearities
◦ Difficult to analyze resolution/noise properties (cf. FBP)
◦ Tuning parameters
◦ Challenging to characterize performance / assess IQ
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Sub-mSv example

3D helical X-ray CT scan of abdomen/pelvis:
100 kVp, 25-38 mA, 0.4 second rotation, 0.625 mm slice, 0.6 mSv.

FBP ASIR Statistical
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MBIR example: Chest CT

Helical chest CT study with dose = 0.09 mSv.
Typical CXR effective dose is about 0.06 mSv.
(Health Physics Soc.: http://www.hps.org/publicinformation/ate/q2372.html)

FBP MBIR
Veo (MBIR) images courtesy of Jiang Hsieh, GE Healthcare
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History: Statistical reconstruction for X-ray CT∗

• Iterative method for X-ray CT (Hounsfield, 1968)

• ART (Kaczmarz) for tomography (Gordon, Bender, Herman, JTB, 1970)

• ...
• Roughness regularized LS for tomography (Kashyap & Mittal, 1975)

• Poisson likelihood (transmission) (Rockmore and Macovski, TNS, 1977)

• EM algorithm for Poisson transmission (Lange and Carson, JCAT, 1984)

• Iterative coordinate descent (ICD) (Sauer and Bouman, T-SP, 1993)

• Ordered-subsets algorithms (Manglos et al., PMB 1995)
(Kamphuis & Beekman, T-MI, 1998)

(Erdoğan & Fessler, PMB, 1999)

• ...
• Commercial OS for Philips BrightView SPECT-CT (2010)

• Commercial ICD for GE CT scanners (Veo) (circa 2010)

• FDA 510(k) clearance of Veo (Sep. 2011)

• First Veo installation in USA (at UM) (Jan. 2012)
(∗ numerous omissions, including many denoising methods)
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Statistical image reconstruction for CT: Formulation

Optimization problem formulation: x̂ = arg minx≥0 Ψ(x)

Ψ(x)︸ ︷︷ ︸
cost

function

,
1
2 ‖y − Ax‖2

W︸ ︷︷ ︸
data-fit term

physics & statistics

+β
N∑

j=1

∑
k∈Nj

ψ(xj − xk)

︸ ︷︷ ︸
regularizer

prior models

y : measured data (sinogram)
A : system matrix (physics / geometry)
W : weighting matrix (statistics)
x : unknown image (attenuation map)
β : regularization parameter(s)
Nj : neighborhood of jth voxel
ψ : edge-preserving potential function
(piece-wise smoothness / gradient sparsity)
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Statistical image reconstruction for CT: Research

x̂ = arg min
x≥0

Ψ(x), Ψ(x) , 1
2 ‖y − Ax‖2

W +
∑

j

∑
k

βj,k ψ(xj − xk)

Apparent topics:
• regularization design / parameter selection ψ, βjk
• statistical modeling W , ‖·‖
• system modeling A
• optimization algorithms (arg min)
• assessing IQ of x̂

Other topics:
• system design
• motion
• spectral
• dose ...
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SIR for CT: Optimization challenges

x̂ = arg min
x≥0

Ψ(x), Ψ(x) , 1
2 ‖y − Ax‖2

W +
N∑

j=1

∑
k

βj,k ψ(xj − xk)

Optimization challenges:
• large problem size: x ∈ R512×512×600, y ∈ R888×64×7000

• A is sparse but still too large to store; compute Ax on-the-fly
• W has enormous dynamic range (1 to exp(−9) ≈ 1.2 · 10−4)
• Gram matrix A′WA highly shift variant
• Ψ is non-quadratic but convex (and often smooth)
• nonnegativity constraint
• data size grows: dual-source CT, spectral CT, wide-cone CT, ...
• Moore’s law insufficient

latest GPU clocks slower, but more threads
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Optimization transfer (Majorize-Minimize) methods: 1D
Ψ
(x
) Ψ(x)

φ(n)(x)

x
(n)

x
(n+1)

x

Surrogate function (majorizer)
Cost function

φ(n)(x (n)) = Ψ(x (n))
φ(n)(x) ≥ Ψ(x)

cf. ML-EM

x (n+1) = arg min
x

φ(n)(x)
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Optimization transfer (Majorize-Minimize) methods: 2D
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Separable Quadratic Surrogates (SQS): Math

L(x) = 1
2 ‖y − Ax‖2

W

= L
(
x (n))+∇ L

(
x (n))(x − x (n)) + 1

2
(
x − x (n))′A′WA

(
x − x (n))︸ ︷︷ ︸

non-separable

≤ L
(
x (n))+∇ L

(
x (n))(x − x (n)) + 1

2
(
x − x (n))′D (

x − x (n))︸ ︷︷ ︸
separable

, φ(n)
L (x), a “SQS”,

where A′WA � D = diag{A′WA1} . (De Pierro, T-MI, Mar. 1995)
Proofs:
• Convexity of x2

• Geřsgorin disk theorem (D − A′WA is diagonally dominant)
• Cauchy-Schwarz inequality
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Separable Quadratic Surrogates (SQS): Pictures

• Find minimizer of L(x): challenging
• Find minimizer of φ(n)

L (x): easy (separate 1D problems)
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WLS-SQS: Iteration

General optimization transfer (majorize-minimize) method:

x (n+1) = arg min
x

φ(n)
L (x)

For SQS:

φ(n)
L (x) = L

(
x (n))+∇ L

(
x (n))(x − x (n)) + 1

2
(
x − x (n))′D (

x − x (n))
∇φ(n)

L (x) = ∇ L
(
x (n))+D

(
x − x (n))

0 = ∇φ(n)
L

(
x (n+1)

)
= ∇ L

(
x (n))+D

(
x (n+1) − x (n)

)
x (n+1) = x (n) −D−1∇ L

(
x (n))

“diagonally preconditioned gradient descent”
(Erdoğan & JF, PMB, 1999)
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SQS versus GD: Math

Ordinary gradient descent (GD) for WLS:

x (n+1) = x (n) − α∇ L
(
x (n)) = x (n) − αA′W (Ax (n) − y),

where textbook step size is reciprocal of Lipschitz constant:

α = 1
λmax(A′WA) .

WLS-GD is equivalent to WLS-SQS with “isotropic” majorizer
Hessian:

D = λmax(A′WA)I.

Drawbacks:
• λmax(A′WA) usually impractical to compute (in CT)

(power iteration?)
• GD usually converges slower than SQS due to smaller step sizes
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SQS versus GD: Pictures
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SQS versus GD: Pictures
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Classical gradient descent (GD)
Assumptions:
• Ψ is convex (need not be strictly convex)
• Ψ has non-empty set of global minimizers

x̂ ∈ X ∗ =
{

x (?) ∈ RN : Ψ(x (?)) ≤ Ψ(x), ∀x ∈ RN
}

• Ψ is smooth (differentiable with L-Lipschitz gradient)
‖∇Ψ(x)−∇Ψ(z)‖2 ≤ L ‖x − z‖2 , ∀x, z ∈ RN

GD with step size 1/L ensures monotonic descent of Ψ:

x (n+1) = x (n) − 1
L ∇Ψ

(
x (n)) .

Drori & Teboulle (2014) derive tightest “inaccuracy” bound:

Ψ
(
x (n))−Ψ

(
x (?))︸ ︷︷ ︸

inaccuracy

≤
L
∥∥x (0) − x (?)

∥∥2
2

4n + 2 .

For a Huber-like function Ψ0, GD achieves that (tight) bound.
O(1/n) rate is undesirably slow.
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Nesterov’s fast gradient method (FGM1)

Nesterov (1983) iteration: Initialize: t0 = 1, z (0) = x (0)

z (n+1) = x (n) − 1
L ∇Ψ

(
x (n)) (usual GD update)

tn+1 = 1
2

(
1 +

√
1 + 4t2

n

)
(magic momentum factors)

x (n+1) = z (n+1) + tn − 1
tn+1

(
z (n+1) − z (n)

)
(update with momentum)

I Reverts to GD if tn = 1, ∀n.
I Comparable computation as GD
I Drawbacks?
◦ Store one additional image-sized vector z (n)

◦ Ψ need not decrease monotonically
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FGM1 properties

FGM1 shown by Nesterov to be O(1/n2) for “primary” sequence:

Ψ
(
z (n))−Ψ

(
x (?)) ≤ 2L

∥∥x (0) − x (?)
∥∥2

2
(n + 1)2 .

Nesterov constructed a function Ψ1 such that any first-order
method converges no faster than

3
32L

∥∥x (0) − x (?)
∥∥2

2
(n + 1)2 ≤ Ψ

(
x (n))−Ψ

(
x (?)) .

Thus O(1/n2) rate of FGM1 is optimal.
Donghwan Kim (2014) analyzed “secondary” sequence:

Ψ
(
x (n))−Ψ

(
x (?)) ≤ 2L

∥∥x (0) − x (?)
∥∥2

2
(n + 2)2 .

29 / 63



Generalizing Nesterov’s FGM

FGM1 is in the general class of first-order methods:

x (n+1) = x (n) − 1
L

n∑
k=0

hn+1,k ∇Ψ
(
x (k)

)
where the step-size factors {hn,k} are

1 0 0 0 0 0
0 1.25 0 0 0 0
0 0.10 1.40 0 0 0
0 0.05 0.20 1.50 0 0
0 0.03 0.11 0.29 1.57 0
...

. . .


Use of previous gradients =⇒ “momentum”
Is this the optimal choice for {hn,k} ?
Can we improve on the constant 2 in worst-case convergence rate?
Drori & Teboulle (2014) numerically found 2× better {hn,k}
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Optimized gradient method (OGM1)
New approach by optimizing {hn,k} analytically
Initialize: t0 = 1, z (0) = x (0) (Donghwan Kim and JF; 2014, 2015)

z (n+1) = x (n) − 1
L ∇Ψ

(
x (n)) (usual GD update)

tn+1 = 1
2

(
1 +

√
1 + 4t2

n

)
(momentum factors)

x (n+1) = z (n+1) + tn − 1
tn+1

(
z (n+1) − z (n)

)
+ tn

tn+1

(
z (n+1) − x (n)

)
︸ ︷︷ ︸

new momentum

Smaller (worst-case) convergence bound than Nesterov by 2×:

Ψ
(
z (n))−Ψ

(
x (?)) ≤ 1L

∥∥x (0) − x (?)
∥∥2

2
(n + 1)2 .

Recently DK found a Huber-like function for which OGM1 achieves that upper bound
(thus tight), inspired by numerical work of Taylor et al. (2015).
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Example: Image restoration (!?)

True
x

 

Blurry
y

 

Restored
x̂

 

Rate

0 50 100 150 200

10
−2

10
0

 

 

GM

FGM

OGM

Ψ(x (n))−Ψ(x̂) vs iteration n
arg minx ‖y − Ax‖2

2 + R(x)
32 / 63



Outline

Introduction to low-dose X-ray CT reconstruction

Optimization methods for CT reconstruction
Optimization transfer
Separable quadratic surrogates
Momentum
Ordered subsets

Parallelization

Summary / open problems

33 / 63



Ordered subsets approximation

I Data decomposition (aka incremental gradients, cf. stochastic GD):

Ψ(x) =
M∑

m=1
Ψm(x), Ψm(x) , 1

2 ‖ym − Amx‖2
Wm︸ ︷︷ ︸

1/Mth of measurements

+ 1
M R(x)

I Key idea. For x far from minimizer: ∇Ψ(x) ≈ M∇Ψm(x)
I SQS:

x (n+1) = x (n) −D−1∇Ψ
(
x (n))

I OS-SQS:
for n = 0, 1, . . . (iteration)

for m = 1, . . . ,M (subset)
k = nM + m (subiteration)

xk+1 = xk −D−1M∇Ψm
(
xk
)

︸ ︷︷ ︸
less work

I Applied coil-wise in parallel MRI (Muckley, Noll, JF, ISMRM 2014)
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Ordered subsets version of OGM1

For more acceleration, combine OGM1 with ordered subsets (OS).

OS-OGM1:
Initialize: t0 = 1, z (0) = x (0)

for n = 0, 1, . . . (iteration)
for m = 1, . . . ,M (subset)

k = nM + m (subiteration)

zk+1 =
[
xk −D−1M∇Ψm

(
xk
)]

+
(typical OS-SQS)

tk+1 = 1
2

(
1 +

√
1 + 4t2

k

)
xk+1 = zk+1 + tk − 1

tk+1

(
zk+1 − zk

)
+ tk

tk+1

(
zk+1 − xk

)
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OS-OGM1 properties

I Approximate convergence rate for Ψ: O
( 1

n2M2

)
(Donghwan Kim and JF; CT 2014)

I Same compute per iteration as other OS methods
(One forward / backward projection and M regularizer gradients per iteration)

I Same memory as OGM1 (two more images than OS-SQS)

I Guaranteed convergence for M = 1
I No convergence theory for M > 1
◦ unstable for large M
◦ small M preferable for parallelization

I Now fast enough to show X-ray CT examples...
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OS-OGM1 results: data

• 3D cone-beam helical X-ray CT scan
• pitch 0.5
• image x: 512× 512× 109 with 70 cm FOV and 0.625 mm slices
• sinogram : y 888 detectors × 32 rows × 7146 views
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OS-OGM1 results: convergence rate

Root mean square difference (RMSD) between x (n) and x (∞) over
ROI (in HU), versus iteration. (“Proposed” = OGM1.)
(Compute times per iteration are very similar.)
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OS-OGM1 results: images

At iteration n = 10 with M = 12 subsets.
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OS divergence example

1 1

4

◦ one-pixel image
◦ three intersecting rays

◦ A =

 1
1
4


◦ x = 2, y = Ax =

 2
2
8


◦ condition number of A′A = 1
◦ consistent system of eqns.
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OS divergence example

OS-SQS-LS for M = 3 subsets:

xnew = xold −D−13∇mxold = xold −D−13A′(Axold − y)

D = diag{A′A1} = 12 + 12 + 42 = 18
After 3 updates:

x (n+1) − x =
(

1− 3
1812

)(
1− 3

1812
)(

1− 3
1842

) (
x (n) − x

)
= −2(15/18)3 (x (n) − x

)
= −125

108
(
x (n) − x

)
Divergence of OS-SQS-LS is possible even in well-conditioned,
consistent case
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Parallelization challenges in CT

I CT is not “embarrassingly parallel” (except across patients)
I In 2D, Hessian A′WA is not only dense, but completely full

(picture)

I In 3D, Hessian A′WA is dense and almost full
(picture)
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Amazon Cloud version of OS-OGM
Distribute long object (320 useful slices) into (overlapping) slabs
(128 slices each) across 5 separate clusters, each with 10 nodes
having 16 cores.
Use MPI (message passing interface) for within-cluster
communication:

Forward 
Projection

Back 
Projection

Regularization Update
Forward 

Projection

. . .
Broadcast

Communication
Broadcast

Communication

1 16 324864 8096 128 160 192 224
1

16

32

48

64

80

96

128

160

192

224

Numbers of Cores

S
p

e
e

d
u

p

 

 

Ideal Speedup

Observed Speedup

1 32 64 96 128 160 192 224
10

1

10
2
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3
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T
im
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e
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e
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o
n

 (
s

e
c

)

FP BP Reg Update Comm
0

5

10

15

20

25
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35

T
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e
 (

s
e

c
)

 

 

10 nodes

1 node

Linearly scaled
10 nodes

Rosen, Wu, Wenisch, JF (Fully 3D, 2013)
• Overlapping slabs is inefficient
• Communication time (within cluster, after every subset) is

serious bottleneck
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Block-separable surrogates for distributed reconstruction
Conventional OS approach uses a voxel-wise SQS:

Ψ(x) ≤ Ψ
(
x (n))+∇Ψ

(
x (n))(x − x (n)) + 1

2(x − x (n))′D(x − x (n))

= Ψ
(
x (n))+

N∑
j=1

∂

∂xj
Ψ
(
x (n))(xj − x (n)

j ) + 1
2 dj

(
xj − x (n)

j

)2

Diagonal matrix D majorizes the Hessian of Ψ: ∇2 Ψ(x) � D.
Distributed computing alternative: slab-separable surrogate:

Ψ(x)−Ψ
(
x (n)) ≤ B∑

b=1
Ψb(xb)

Ψb(xb) , ∇xb Ψ
(
x (n))(xb − x (n)

b ) + 1
2
(
xb − x (n)

b

)′
Hb

(
xb − x (n)

b

)
Block diagonal matrix H = diag{H1, . . . ,HB} majorizes ∇2 Ψ(x) .
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BSS continued

Ψb(xb) , ∇xb Ψ
(
x (n))(xb − x (n)

b ) + 1
2
(
xb − x (n)

b

)′
Hb

(
xb − x (n)

b

)

Hb , A′bW ΛbAb, Λb , diag{A1� Ab1b}

Updates parallelizable across blocks (slabs):

x (n+1)
b , arg min

xb�0
Ψb(xb) .

I Reduces communication.
I (Apply favorite optimization method within slab.)
I (Donghwan Kim and JF; Fully 3D, 2015)
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Block-separable surrogate (BSS) OS-OGM
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BSS OS-OGM: data

• 256× 256× 160 XCAT phantom (Segars et al., 2008)
• Simulated helical CT, 444× 32× 492
• M = 12 subsets, B = 10 blocks, L = 5 inner iterations
• Matlab emulation

FBP initializer x (0) Converged x (∞)
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BSS OS-OGM: rates

• Outer loop interrupts momentum
=⇒ BSS is slower per iteration than OS-OGM

• Reduced communication reduces overall time
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BSS OS-OGM: images

• Comparable images
• Algorithm designed for distributed computation
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Duality approach for using GPU
• Data transfer between system RAM and GPU can be bottleneck
• “Hide” communication time by overlapping with computation

Algorithm synopsis: (Madison McGaffin and JF; Fully 3D, 2015)
• Write cost function Ψ(x) in terms of dual variables v and u for

data-fit and regularizer:

Ψ(x) =
M∑

i=1
hi ([Ax]i ) +

∑
k
ψ([Cx]k)

x (n+1) = arg min
x

sup
u,v(

A′ u +C ′ v
)′ x − M∑

i=1
h∗i (ui )−

∑
k
ψ∗(vk) +µ

2
∥∥x − x (n)

∥∥2
2

h∗i and ψ∗ denote convex conjugates of hi and ψ
• Alternate between updating
◦ several projection view dual variables {ui}
◦ dual variables for one regularization direction {vk}

• Using dual variables “decouples” regularizer and data terms
• OS-like method with convergence theorem
• More details in Dr. McGaffin’s talk
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Duality-GPU: data

• 3D cone-beam helical X-ray CT scan
• pitch 0.5
• image x: 512× 512× 109 with 70 cm FOV and 0.625 mm slices
• sinogram : y 888 detectors × 32 rows × 7146 views
• OpenCL on aging NVIDIA GTX 480 GPU with 2.5 GB RAM

FBP initializer x (0) Converged x (∞)
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Duality-GPU: timing results

• Algorithm designed specifically for GPU architecture
characteristics
• Future work:
◦ combine with BSS for multiple nodes ?
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Duality-GPU: image results
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Summary

I Model-based image reconstruction can
• improve image quality for low-dose X-ray CT
• enable faster MRI scans via under-sampling

I Much more: dynamic image reconstruction, motion
compensation, ...

I Computation time remains a significant challenge
I Moore’s law alone will not solve the computation problem
I Algorithms designed for distributed computation are essential
• Block-separable surrogates to reduce communication

(Donghwan Kim and JF; Fully 3D, 2015)
• Duality approach to overlap communication with

computation
Also provides a OS-like algorithm with convergence theory
(Madison McGaffin and JF; Fully 3D, 2015)

55 / 63



IEEE Transactions on Computational Imaging I

IEEE TRANSACTIONS ON 

COMPUTATIONAL IMAGING 

The new IEEE Transactions on Computational Imaging seeks original manu-

scripts for publication. This new journal will publish research results where 

computation plays an integral role in the image formation process. All areas 

of computational imaging are appropriate, ranging from the principles and 

theory of computational imaging, to modeling paradigms for computational 

imaging, to image formation methods, to the latest innovative computational 

imaging system designs. Topics of interest include, but are not limited to the 

following: 

Computational Imaging Methods and  

Models 

 Coded image sensing 

 Compressed sensing 

 Sparse and low-rank models 

 Learning-based models, dictionary methods 

 Graphical image models 

 Perceptual models 

Computational Image Formation 

 Sparsity-based reconstruction 

 Statistically-based inversion methods 

 Multi-image and sensor fusion 

 Optimization-based methods; proximal itera-

tive methods, ADMM 

Computational Photography 

 Non-classical image capture 

 Generalized illumination 

 Time-of-flight imaging 

 High dynamic range imaging 

 Plenoptic imaging 

Computational Consumer  

Imaging 

 Mobile imaging, cell phone imaging 

 Camera-array systems 

 Depth cameras, multi-focus imaging 

 Pervasive imaging, camera networks 

Computational Acoustic Imaging 

 Multi-static ultrasound imaging 

 Photo-acoustic imaging 

 Acoustic tomography 

Computational Microscopy 

 Holographic microscopy 

 Quantitative phase imaging 

 Multi-illumination microscopy 

 Lensless microscopy 

 Light field microscopy 

Imaging Hardware and Software 

 Embedded computing systems 

 Big data computational imaging 

 Integrated hardware/digital design 

Tomographic Imaging 

 X-ray CT 

 PET 

 SPECT 

Magnetic Resonance Imaging 

 Diffusion tensor imaging 

 Fast acquisition 

Radar Imaging 

 Synthetic aperture imaging 

 Inverse synthetic aperture imaging 

Geophysical Imaging 

 Multi-spectral imaging 

 Ground penetrating radar 

 Seismic tomography 

Multi-spectral Imaging 

 Multi-spectral imaging 

 Hyper-spectral imaging 

 Spectroscopic imaging 
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Open problems I

I Algorithms

◦ still faster algorithms with low communication for
distributed computation
◦ effective use of multiple GPU devices
◦ convergence for OS+momentum methods

relaxation rates - auto-tune?
◦ parameters: regularization, stopping rules, ...

I First-order optimization methods

◦ constraints, non-smooth regularizers
◦ Su, Boyd, Candès [30] diffeq analysis of Nesterov;

generalize to OGM?
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Open problems II

I Extensions
◦ motion estimation / compensation
◦ dynamic imaging
◦ spectral CT
◦ big data - corpus of existing (not low-dose) images

I Evaluation
◦ analyzing image quality for nonlinear iterative algorithms
◦ task-based performance assessment
◦ clinical studies of low-dose protocols with iterative

reconstruction
I Practical use
◦ tube current modulation design for iterative reconstruction
◦ sparse view versus reduced tube current?
◦ how low can the dose go?
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Open problem for ODE experts
Nesterov’s fast gradient method revisited (alternate version):

z (n+1) = x (n) − 1
L ∇Ψ

(
x (n)) (usual GD update)

x (n+1) = z (n+1) + n
n + 3

(
z (n+1) − z (n)

)
(update with momentum)

where z (0) = x (0). Again Ψ(x (n)) decreases as O(1/n2).
Su, Boyd, Candès [30] take limit of small step sizes to derive ODE:

Ẍ + 3
t Ẋ +∇Ψ(X) = 0,

for t > 0 where X(0) = x (0) and Ẋ(0) = 0. They show:

Ψ(X(t))−Ψ∗ ≤ 2
∥∥x (0) − x (?)

∥∥2

t2

Open problem: generalize to OGM where
x (n+1) = z (n+1) + tn−1

tn+1

(
z (n+1) − z (n)

)
+ tn

tn+1

(
z (n+1) − x (n)

)
.
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