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Statistical image reconstruction: a CT revolution

• A picture is worth 1000 words
• (and perhaps several 1000 seconds of computation?)

Thin-slice FBP ASIR Statistical

Seconds A bit longer Much longer

(Same sinogram, so all at same dose)
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Outline

• Model-based image reconstruction
◦ Low-dose X-ray CT
◦ MRI

• Accelerating low-dose X-ray CT image reconstruction
◦ Optimized first-order methods

Donghwan Kim, JF; ArXiv 2014 Math. Prog., in review; ICIP 2015, submitted

◦ Ordered-subsets + momentum
Donghwan Kim, Sathish Ramani, JF; IEEE T-MI, Jan. 2015.

◦ Distributed block-separable ordered subsets
Donghwan Kim, JF; Fully 3D, 2015, to appear

◦ Duality-based approach using GPU
Madison G McGaffin, JF; Fully 3D, 2015, to appear

• Accelerating model-based MR image reconstruction
◦ BARISTA (B1-based, adaptive restart, iterative soft thresholding algorithm)

M. J. Muckley, D. C. Noll, JF; IEEE T-MI, Feb. 2015.

Conspicuously down-played: Alternating direction method of multipliers (ADMM)

http://arxiv.org/abs/arxiv 1406.5468
http://dx.doi.org/10.1109/TMI.2014.2350962
http://www.fully3d.org
http://www.fully3d.org
http://dx.doi.org/10.1109/TMI.2014.2363034
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X-ray CT scans

Source

Detectors

 

yyy: measured data (sinogram)
AAA: system matrix
xxx: unknown image (attenuation map)
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X-ray CT scans
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X-ray CT scans
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X-ray CT scans

ct movie
CT image reconstruction problem:
Determine attenuation map xxx from sinogram data yyy

Ignoring motion hereafter...


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton0'){ocgs[i].state=false;}}
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MRI scans

No moving parts to animate...

mr movie
MR image reconstruction problem:
Determine magnetization image xxx from k-space data yyy


var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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Inverse problems

Unknown object
xxx →

Imaging system
AAA

physics, noise, ...
→ Measurements

yyy

How to reconstruct object xxx from data yyy?

Classical approach:
• analytical / direct / non-iterative
◦ Filtered back-projection (FBP) for CT
◦ Inverse FFT for MRI

• idealized description of the system
◦ geometry / sampling
◦ disregards noise and simplifies physics

• typically fast

Contemporary approach:
• model-based / statistical / iterative
• based on “reasonably accurate” models for physics and statistics
• usually much slower
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Why statistical/iterative methods for CT?

• Accurate physics models
◦ X-ray spectrum, beam-hardening, scatter, ...
=⇒ reduced artifacts? quantitative CT?
◦ X-ray detector spatial response, focal spot size, ...
=⇒ improved spatial resolution?
◦ detector spectral response (e.g., photon-counting detectors)
=⇒ improved contrast between distinct material types?

• Nonstandard geometries
◦ transaxial truncation (wide patients)
◦ long-object problem in helical CT
◦ irregular sampling in “next-generation” geometries
◦ coarse angular sampling in image-guidance applications
◦ limited angular range (tomosynthesis)
◦ “missing” data, e.g., bad pixels in flat-panel systems

• Appropriate models of (data dependent) measurement statistics
◦ weighting reduces influence of photon-starved rays (cf. FBP)
=⇒ reducing image noise or X-ray dose
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and more...

• Object constraints / priors
◦ nonnegativity
◦ object support
◦ piecewise smoothness
◦ object sparsity (e.g., angiography)
◦ sparsity in some basis
◦ motion models
◦ dynamic models
◦ ...

Henry Gray, Anatomy of the

Human Body, 1918,

Fig. 413.

These constraints may help reduce image artifacts or noise or dose.

Disadvantages?
• Computation time (super computer)
• Must reconstruct entire FOV
• Complexity of models and software
• Algorithm nonlinearities
◦ Difficult to analyze resolution/noise properties (cf. FBP)
◦ Tuning parameters
◦ Challenging to characterize performance / assess image quality
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Statistical image reconstruction overview

• Object model
• Physics/system model
• Statistical model
• Cost function Ψ = log-likelihood + regularization
• Iterative algorithm for minimization

“Find the image x̂xx that best fits the measured data yyy according to the physics model,
the measurement statistics model and prior information about the object”

xxx(n+1)

Measurements

Iteration

System
Model

Calibration ...

Ψ

Parameters

xxx(n)

• Repeatedly revisiting the sinogram data can use measurement statistics fully
• Repeatedly updating the image can exploit object properties
• ... greatest potential dose reduction, but repetition is expensive...



14

Sub-mSv example

3D helical X-ray CT scan of abdomen/pelvis:
100 kVp, 25-38 mA, 0.4 second rotation, 0.625 mm slice, 0.6 mSv.

FBP ASIR Statistical
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MBIR example: Routine chest CT

Helical chest CT study with dose = 0.09 mSv.
Typical CXR effective dose is about 0.06 mSv. Source: Health Physics Society.

http://www.hps.org/publicinformation/ate/q2372.html

FBP MBIR

Veo (MBIR) images courtesy of Jiang Hsieh, GE Healthcare



16

History: Statistical reconstruction for PET

• Iterative method for emission tomography (Kuhl, 1963)

• FBP for PET (Chesler, 1971)

• Weighted least squares for 3D SPECT (Goitein, NIM, 1972)

• Richardson/Lucy iteration for image restoration (1972, 1974)

• Poisson likelihood (emission) (Rockmore and Macovski, TNS, 1976)

• Expectation-maximization (EM) algorithm (Shepp and Vardi, TMI, 1982)

• Regularized (aka Bayesian) Poisson emission reconstruction
(Geman and McClure, ASA, 1985)

• Ordered-subsets EM (OSEM) algorithm (Hudson and Larkin, TMI, 1994)

• Commercial release of OSEM for PET scanners circa 1997

Today, most (all?) commercial PET systems include unregularized OSEM,
and recently possibly some regularized version.

15 years between key EM paper (1982) and commercial adoption (1997)
(25 years if you count the R/L paper in 1972 that is the same as EM)
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Key factors in PET

• OS algorithm accelerated convergence by order of magnitude
• Computers got faster (but problem size grew too)
• Key clinical validation papers?
• Key numerical observer studies?
• Nuclear medicine physicians grew accustomed to appearance

of images reconstructed using statistical methods

FBP: ML-EM:

Llacer et al., 1993
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Whole-body PET example

FBP ML-OSEM

Meikle et al., 1994

Key factor in PET: modeling measurement statistics
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History: Statistical reconstruction for X-ray CT∗

• Iterative method for X-ray CT (Hounsfield, 1968)

• ART for tomography (Gordon, Bender, Herman, JTB, 1970)

• ...

• Roughness regularized LS for tomography (Kashyap & Mittal, 1975)

• Poisson likelihood (transmission) (Rockmore and Macovski, TNS, 1977)

• EM algorithm for Poisson transmission (Lange and Carson, JCAT, 1984)

• Iterative coordinate descent (ICD) (Sauer and Bouman, T-SP, 1993)

• Ordered-subsets algorithms (Manglos et al., PMB 1995)
(Kamphuis & Beekman, T-MI, 1998)

(Erdoğan & Fessler, PMB, 1999)

• ...

• Commercial introduction of OS for Philips BrightView SPECT-CT 2010

• Commercial introduction of ICD for CT scanners circa 2010

• FDA 510(k) clearance of Veo Sep. 2011

• First Veo installation in USA (at UM) Jan. 2012

(∗ numerous omissions, including many denoising methods)
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Statistical image reconstruction for low-dose CT

Optimization problem formulation:

x̂xx = argmin
xxx≥000︸ ︷︷ ︸

optimization

algorithm

Ψ(xxx), Ψ(xxx)︸︷︷︸
cost

function

,
1
2
‖yyy−AAAxxx‖2

WWW︸ ︷︷ ︸
data-fit term

physics & statistics

+β
N

∑
j=1

∑
k∈N j

ψ(x j− xk)︸ ︷︷ ︸
regularizer
prior models

yyy : measured data (sinogram)
AAA : system matrix (physics / geometry)
WWW : weighting matrix (statistics)
xxx : unknown image (attenuation map)
ψ : edge-preserving potential function (piece-wise smoothness / sparse gradients)

Optimization challenges:
• large problem size: xxx ∈ R512×512×600, yyy ∈ R888×64×7000

• AAA is sparse but still too large to store; compute AAAxxx on-the-fly
• WWW has enormous dynamic range (1 to exp(−9)≈ 1.2 ·10−4)
• Gram matrix AAA′WWWAAA highly shift variant
• Ψ is non-quadratic but convex (and often smooth)
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Optimization algorithms for X-ray CT
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Classical gradient descent (GD)

Assumptions:
• Ψ is convex (need not be strictly convex)
• Ψ has non-empty set of global minimizers

x̂xx ∈X ∗ =
{

xxx(?) ∈ RN
: Ψ(xxx(?))≤Ψ(xxx), ∀xxx ∈ RN

}
• Ψ is smooth (differentiable with L-Lipshitz gradient)
‖∇Ψ(xxx)−∇Ψ(zzz)‖2 ≤ L‖xxx− zzz‖2 , ∀xxx,zzz ∈ RN

Gradient descent (GD) with step size 1/L ensures monotonic descent of Ψ:

xxx(n+1) = xxx(n)− 1
L

∇Ψ
(
xxx(n)) .

Drori & Teboulle (2014) derive tightest “inaccuracy” bound:

Ψ
(
xxx(n))−Ψ

(
xxx(?)
)︸ ︷︷ ︸

inaccuracy

≤
L
∥∥xxx(0)− xxx(?)

∥∥2
2

4n+2
.

They construct a Huber-like function Ψ for which GD achieves that (tight) bound.

But O(1/n) rate is undesirably slow.
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Nesterov’s fast gradient method (FGM1)

Nesterov (1983) iteration: Initialize: t0 = 1, zzz(0) = xxx(0)

zzz(n+1) = xxx(n)− 1
L

∇Ψ
(
xxx(n)) (usual GD update)

tn+1 =
1
2

(
1+
√

1+4t2
n

)
(magic momentum factors)

xxx(n+1) = zzz(n+1)+
tn−1
tn+1

(
zzz(n+1)− zzz(n)

)
(update with momentum) .

Reverts to GD if tn = 1,∀n.

Shown by Nesterov to be O(1/n2) for “primary” sequence:

Ψ
(
zzz(n)
)
−Ψ

(
xxx(?)
)
≤

2L
∥∥xxx(0)− xxx(?)

∥∥2
2

(n+1)2 .

Nesterov constructed a function Ψ such that any first-order method achieves

3
32L
∥∥xxx(0)− xxx(?)

∥∥2
2

(n+1)2 ≤Ψ
(
xxx(n))−Ψ

(
xxx(?)
)
.

Thus O(1/n2) rate of FGM1 is optimal.

Donghwan Kim (2014) analyzed “secondary” sequence: Ψ(xxx(n))−Ψ(xxx(?))≤
2L
∥∥xxx(0)− xxx(?)

∥∥2
2

(n+2)2 .
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Generalizing Nesterov’s FGM

FGM1 is in the general class of first-order methods:

xxx(n+1) = xxx(n)− 1
L

n

∑
k=0

hn+1,k ∇Ψ
(
xxx(k))

where the step-size factors {hn,k} are given by:

hn+1,k =



tn−1
tn+1

hn,k, k = 0, . . . ,n−2

tn−1
tn+1

(hn,n−1−1) , k = n−1

1+
tn−1
tn+1

, k = n.


1 0 0 0 0 0
0 1.25 0 0 0 0
0 0.10 1.40 0 0 0
0 0.05 0.20 1.50 0 0
0 0.03 0.11 0.29 1.57 0
0 0.02 0.07 0.18 0.36 1.62


Note use of previous gradients =⇒ “momentum”

Is this the optimal choice for {hn,k} ?
Can we do better than the constant 2 in worst-case convergence rate?

Drori & Teboulle (2014) numerically found {hn,k} that are factor of two better.
(Factors of two matter practically.)
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Optimized gradient method (OGM1)

New approach by optimizing {hn,k} analytically (Donghwan Kim and JF; 2014, 2015):

Initialize: t0 = 1, zzz(0) = xxx(0)

zzz(n+1) = xxx(n)− 1
L

∇Ψ
(
xxx(n)) (usual GD update)

tn+1 =
1
2

(
1+
√

1+4t2
n

)
(momentum factors)

xxx(n+1) = zzz(n+1)+
tn−1
tn+1

(
zzz(n+1)− zzz(n)

)
+

tn
tn+1

(
zzz(n+1)− xxx(n))︸ ︷︷ ︸

new momentum

.

Smaller (worst-case) convergence bound than Nesterov by factor of 2:

Ψ
(
zzz(n)
)
−Ψ

(
xxx(?)
)
≤

1L
∥∥xxx(0)− xxx(?)

∥∥2
2

(n+1)2 .

Recently (very) DK found a Huber-like function for which OGM1 achieves that upper
bound (thus tight), inspired by numerical work of Taylor et al. (2015).
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Example: Image restoration (!?)

True xxx:

 

Blurred yyy:

 

Restored
x̂xx

 

Rate:
Ψ(xxx(n))−Ψ(x̂xx)
vs iteration n

0 50 100 150 200

10
−2

10
0

 

 

GM

FGM

OGM
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Ordered subsets version of OGM1

For further acceleration, combine OGM with ordered subsets (OS),

Ψ(xxx) =
M

∑
m=1

Ψm(xxx), Ψm(xxx),
1
2
‖yyym−AAAmxxx‖2

WWW m︸ ︷︷ ︸
1/Mth of measurements

+
1
M

R(xxx)

(aka incremental gradients, cf. stochastic gradient descent)

Initialize: t0 = 1, zzz(0) = xxx(0)

for n = 0,1, . . . (iteration)
for m = 1, . . . ,M (subset)

k = nM+m (subiteration)

zzzk+1 =
[
xxxk−DDDM∇Ψm

(
xxxk)]

+
(typical OS-SQS)

tk+1 =
1
2

(
1+
√

1+4t2
k

)
xxxk+1 = zzzk+1+

tk−1
tk+1

(
zzzk+1− zzzk)+ tk

tk+1

(
zzzk+1− xxxk) (momentum)

Approximate convergence rate for Ψ: O
( 1

n2M2

)
(Donghwan Kim and JF; CT 2014)

Now fast enough to show an X-ray CT example...
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OS+OGM results: data

• 3D cone-beam helical X-ray CT scan
• pitch 0.5
• image xxx: 512×512×109 with 70 cm FOV and 0.625 mm slices
• sinogram : yyy 888 detectors × 32 rows × 7146 views
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OS+OGM results: convergence rate

Root mean square difference (RMSD) between xxx(n) and xxx(∞) over ROI (in HU), versus
iteration. (Compute time per iteration very similar.)
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OS+OGM results: images

At iteration 10 with M = 12 subsets.
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Towards parallel computing
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Amazon Cloud version of OS+OGM

Distribute long object (320 useful slices) into (overlapping) slabs (128 slices each)
across 5 separate clusters, each with 10 nodes having 16 cores.

Use MPI (message passing interface) for within-cluster communication:

Forward 
Projection

Back 
Projection

Regularization Update
Forward 

Projection

. . .
Broadcast

Communication
Broadcast

Communication

1 16 324864 8096 128 160 192 224
1

16

32

48

64

80

96

128

160

192

224

Numbers of Cores

S
p

e
e

d
u

p

 

 

Ideal Speedup

Observed Speedup

1 32 64 96 128 160 192 224
10

1

10
2

10
3

Number of Cores

T
im

e
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e
r 
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e

ra
ti

o
n

 (
s

e
c

)

FP BP Reg Update Comm
0

5

10

15

20

25

30

35

T
im

e
 (

s
e

c
)

 

 

10 nodes

1 node

Linearly scaled
10 nodes

Rosen, Wu, Wenisch, JF (Fully 3D, 2013)

• Overlapping slabs is inefficient
• Communication time (within cluster, after every subset) is serious bottleneck
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Optimization transfer (Majorize-Minimize) methods

(θ)

n
θ
n+1

θ
θ

Optimization Transfer

L

n
Q ( θ | θ  )

(March 1995 version)



34

Optimization transfer (Majorize-Minimize) methods: 1D

x
(n)

x
(n+1)

Ψ
(x

)

x

Surrogate function
Cost function

Ψ(x) φ
(n)

(x)

xxx(n+1) = argmin
xxx

φ
(n)(xxx)
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Optimization transfer (Majorize-Minimize) methods: 2D



36

Block-separable surrogates for distributed reconstruction

Conventional OS approach uses a (voxel) separable quadratic surrogate (SQS):

Ψ(xxx) ≤ Ψ
(
xxx(n))+∇Ψ

(
xxx(n))(xxx− xxx(n))+

1
2
(xxx− xxx(n))′DDD(xxx− xxx(n))

= Ψ
(
xxx(n))+ N

∑
j=1

∂

∂x j
Ψ
(
xxx(n))(x j− x(n)

j )+
1
2

d j

(
x j− x(n)

j

)2
,

where diagonal matrix DDD majorizes the Hessian of Ψ: ∇2 Ψ(xxx)� DDD.

Distributed computing alternative: derive slab-separable surrogate instead:

Ψ(xxx)−Ψ
(
xxx(n))≤ B

∑
b=1

Ψb(xxxb), Ψb(xxxb), ∇xxxb Ψ
(
xxx(n))(xxxb− xxx(n)

b )+
1
2

(
xxxb− xxx(n)

b

)′
HHHb

(
xxxb− xxx(n)

b

)
,

where block diagonal matrix HHH = diag{HHH1, . . . ,HHHB} majorizes the Hessian of Ψ.

HHHb , AAA′bWWWΛbAAAb, Λb , diag{AAA111�AAAb111b}

Updates parallelizable across blocks (slabs): (Donghwan Kim and JF; Fully 3D, 2015)

xxx(n+1)
b , argmin

xxxb�000
Ψb(xxxb) .

Reduces communication. (Apply favorite optimization method within slab.)
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Block-separable surrogate (BSS) OS+OGM
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BSS OS+OGM: data

• 256×256×160 XCAT phantom (Segars et al., 2008)
• Simulated helical CT, 444×32×492
• M = 12 subsets, B = 10 blocks, L = 5 inner iterations
• Matlab emulation

FBP initializer xxx(0) Converged xxx(∞)
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BSS OS+OGM: rates

• Outer loop interrupts momentum =⇒ BSS is slower per iteration than OS+OGM
• Reduced communication reduces overall time
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BSS OS+OGM: images

• Comparable images
• Algorithm designed for distributed computation
• More results by Fully 3D conference in June...



41

Duality approach for using GPU

• Data transfer between system RAM and GPU can be bottleneck
• Want to “hide” communication time by overlapping with computation

Algorithm synopsis: Madison McGaffin and JF; Fully 3D, 2015 (to appear)

• Write cost function Ψ(xxx) in terms of dual variables vvv and uuu for data-fit and
regularizer:

Ψ(xxx) =
M

∑
i=1

hi([AAAxxx]i)+∑
k

ψ([CCCxxx]k)

xxx(n+1) = argmin
xxx

sup
uuu,vvv

(
AAA′ν +CCC′ vvv

)′ xxx− M

∑
i=1

h∗i (ui)−∑
k

ψ
∗(vk)+

µ

2

∥∥xxx− xxx(n)
∥∥2

2

h∗i and ψ∗ denote convex conjugates of hi and ψ

• Alternate between updating several projection view dual variables {ui}
and dual variables for one regularization direction {vk}
• Using dual variables “decouples” regularizer and data terms
• More details at Fully 3D ...
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Duality-GPU: data

• 3D cone-beam helical X-ray CT scan
• pitch 0.5
• image xxx: 512×512×109 with 70 cm FOV and 0.625 mm slices
• sinogram : yyy 888 detectors × 32 rows × 7146 views
• OpenCL on aging NVIDIA GTX 480 GPU with 2.5 GB of memory

FBP initializer xxx(0) Converged xxx(∞)
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Duality-GPU: timing results

• Algorithm designed specifically for GPU architecture characteristics
• Future work:
◦ combine with BSS for multiple nodes ?
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Duality-GPU: image results
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MRI image reconstruction
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MRI: Why iterative reconstruction?

• Better physics modeling (e.g., field inhomogeneity) =⇒ reduced artifacts

Example: T2*-weighted imaging Sutton et al., IEEE T-MI, 2003

uncorrected traditional model-based field map

• Reducing scan time (“under-sampling”)
◦ Multiple receive coils
◦ Object model assumptions (e.g., sparsity)

http://dx.doi.org/10.1109/TMI.2002.808360
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Parallel MRI

Undersampled Cartesian k-space, multiple receive coils, ...
(Pruessmann et al., MRM, Nov. 1999)

Compressed sensing parallel MRI ≡ further (random) under-sampling
Lustig et al., IEEE Sig. Proc. Mag., Mar. 2008

http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
http://dx.doi.org/10.1109/MSP.2007.914728
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2.5D parallel MR image reconstruction

Example of “compressed sensing” MRI reconstruction:
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original k-space IFFT iterative difference

• Fully sampled body coil image of human brain
• Poisson-disk-based k-space sampling, 16% sampling (acceleration 6.25)
• Square-root of sum-of-squares inverse FFT of zero-filled k-space data for 8 coils (144 × 128)
• Regularized reconstruction xxx(∞)

combined TV and `1 norm of two-level undecimated Haar wavelets
• Difference image magnitude

(Sathish Ramani & JF, IEEE T-MI, Mar. 2011)

http://dx.doi.org/10.1109/TMI.2010.2093536
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Model-based image reconstruction in parallel MRI

Regularized estimator:

x̂xx = argmin
xxx

1
2
‖yyy−FFFSSSxxx‖2

2︸ ︷︷ ︸
data fit

+β‖RRRxxx‖p︸ ︷︷ ︸
sparsity

.

FFF is under-sampled DFT matrix (fat)

Features:
• coil sensitivity matrix SSS is block diagonal (Pruessmann et al., MRM, Nov. 1999)

• FFF ′FFF is circulant (for Cartesian sampling)

Complications:
• Data-fit Hessian SSS′FFF ′FFFSSS is highly shift variant due to coil sensitivity maps
• Non-quadratic (edge-preserving) regularization ‖·‖p
• Non-smooth regularization ‖·‖1
• Complex quantities
• Large problem size (if 3D or dynamic or many coils)

http://dx.doi.org/10.1002/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S
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ISTA methods for parallel MRI

“Traditional” iterative soft thresholding algorithm (ISTA) for sparsity regularized
problems uses (global) Lipschitz constant of data-fit term:

∇
21
2
‖yyy−FFFSSS‖2

2 = SSS′FFF ′FFFSSS≤ SSS′SSS≤ λmaxIII, λmax = max
j

[
SSS′SSS
]

j, j

λmax is maximum sum-of-squares value of sensitivity maps; step size is 1/λmax

Augmented Lagrangian (AL) methods converge faster than ISTA, FISTA, MFISTA

BARISTA: B1-based, adaptive restart, iterative soft thresholding algorithms
For synthesis operator xxx = QQQzzz with zzz sparse:

∇
21
2
‖yyy−FFFSSSQQQ‖2

2 = QQQ′SSS′FFF ′FFFSSSQQQ≤ QQQ′SSS′SSSQQQ≤ DDD

for a suitable diagonal matrix DDD. (cf., SQS) (Muckley et al., IEEE T-MI, Feb. 2015)

DDD−1 becomes voxel-dependent step size, akin to that in CT
Include momentum and adaptive restart of O’Donoghue and Candès (2014).

http://dx.doi.org/10.1109/TMI.2014.2363034
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BARISTA convergence rates

Example of “compressed sensing” MRI reconstruction:

Total variation (TV) regularizer Undecimated Haar Wavelets

Corresponding DDD for each of the two cases:
BARISTA requires no algorithm parameter tuning, unlike AL.
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Summary

Model-based image reconstruction can
• improve image quality for low-dose X-ray CT
• enable faster MRI scans via under-sampling

Computation time remains a significant challenge
Moore’s law will not solve the problem
Algorithms designed for distributed computation are essential
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