Accelerating image reconstruction using variable splitting methods

Jeffrey A. Fessler
EECS Dept., BME Dept., Dept. of Radiology
University of Michigan
web.eecs.umich.edu/~fessler

Purdue University
Integrated Imaging Seminar
May. 3, 2013
Disclosure

- Research support from GE Healthcare
- Research support to GE Global Research
- Supported in part by NIH grants R01 HL-098686 and P01 CA-87634
- Equipment support from Intel
Dedication

John Fessler, 1934-2011

Heavilon Tower Clock, 1896-
Statistical image reconstruction: a CT revolution

- A picture is worth 1000 words
- (and perhaps several 1000 seconds of computation?)

Thin-slice FBP
Seconds

ASIR
A bit longer

Statistical
Much longer

(Same sinogram, so all at same dose)
Outline

- **Image denoising** (review)

- **Image restoration**
 Antonios Matakos, Sathish Ramani, JF, IEEE T-IP, May 2013
 Accelerated edge-preserving image restoration without boundary artifacts

- **Low-dose X-ray CT image reconstruction**
 A splitting-based iterative algorithm for accelerated statistical X-ray CT reconstruction

- **Model-based MR image reconstruction**
 Parallel MR image reconstruction using augmented Lagrangian methods
Image denoising
Denoising using sparsity

Measurement model:

\[
\underbrace{y}_{\text{observed}} = \underbrace{x}_{\text{unknown}} + \underbrace{\varepsilon}_{\text{noise}}
\]

Object model: assume \(Qx \) is sparse (compressible) for some orthogonal sparsifying transform \(Q \), such as an orthogonal wavelet transform (OWT).

Sparsity regularized estimator:

\[
\hat{x} = \arg\min_x \frac{1}{2} \| y - x \|_2^2 + \beta \| Qx \|_p.
\]

Regularization parameter \(\beta \) determines trade-off.

Equivalently (because \(Q^{-1} = Q' \) is an orthonormal matrix):

\[
\hat{x} = Q'\hat{\theta}, \quad \hat{\theta} = \arg\min_{\theta} \frac{1}{2} \| Qy - \theta \|_2^2 + \beta \| \theta \|_p = \text{shrink}(Qy : \beta, p)
\]

Non-iterative solution!

But sparsity in orthogonal transforms often yields artifacts.
Hard thresholding example

Noisy image

Denoised

$PSNR = 76.1 \text{ dB}$

$PSNR = 89.7 \text{ dB}$

$p = 0$, orthonormal Haar wavelets
Sparsity using shift-invariant models

Analysis form:
Assume Rx is sparse for some sparsifying transform R. Often R is a “tall” matrix, e.g., finite differences along horizontal and vertical directions, i.e., anisotropic total variation (TV). Often R is shift invariant: $\|Rx\|_p = \|R \text{ circshift}(x)\|_p$ and $R'R$ is circulant.

\[\hat{x} = \arg\min_x \frac{1}{2} \|y - x\|_2^2 + \beta \|Rx\|_p. \]

\text{transform sparsity}

Synthesis form
Assume $x = S\theta$ where coefficient vector θ is sparse. Often S is a “fat” matrix (over-complete dictionary) and $S'S$ is circulant.

\[\hat{x} = S\hat{\theta}, \quad \hat{\theta} = \arg\min_\theta \frac{1}{2} \|y - S\theta\|_2^2 + \beta \|\theta\|_p \]

\text{sparse coefficients}

Analysis form preferable to synthesis form?
(Elad et al., Inv. Prob., June 2007)
Constrained optimization

Unconstrained estimator (analysis form for illustration):

\[\hat{x} = \arg\min_x \frac{1}{2} \| y - x \|^2_2 + \beta \| Rx \|_p. \]

(Nonnegativity constraint or box constraints easily added.)

Equivalent constrained optimization problem:

\[\min_{x,v} \frac{1}{2} \| y - x \|^2_2 + \beta \| v \|_p \text{ sub. to } v = Rx. \]

(Y. Wang et al., SIAM J. Im. Sci., 2008)
(M Afonso, J Bioucas-Dias, M Figueiredo, IEEE T-IP, Sep. 2010)

(The auxiliary variable \(v \) is discarded after optimization; keep only \(\hat{x} \).)

Penalty approach:

\[\hat{x} = \arg\min_x \min_v \frac{1}{2} \| y - x \|^2_2 + \beta \| v \|_p + \frac{\mu}{2} \| v - Rx \|^2_2. \]

Large \(\mu \) better enforces the constraint \(v = Rx \), but can worsen conditioning.

Preferable (?) approach: augmented Lagrangian.
Augmented Lagrangian method: V1

General linearly constrained optimization problem:
\[\min_u \Psi(u) \quad \text{sub. to} \quad Cu = b. \]

Form \textit{augmented Lagrangian}:
\[L(u, \gamma) \triangleq \Psi(u) + \gamma'(Cu - b) + \frac{\rho}{2} \|Cu - b\|^2 \]
where \(\gamma \) is the \textit{dual variable} or \textit{Lagrange multiplier vector}.

AL method alternates between minimizing over \(u \) and gradient ascent on \(\gamma \):
\[u^{(n+1)} = \arg \min_u L(u, \gamma^{(n)}) \]
\[\gamma^{(n+1)} = \gamma^{(n)} + \rho \left(Cu^{(n+1)} - b \right). \]

Desirable convergence properties.
AL penalty parameter \(\rho \) affects convergence \textit{rate}, not solution!

Unfortunately, minimizing over \(u \) is impractical here:
\[v = Rx \quad \text{equivalent to} \quad Cu = b, \quad C = [R \quad -I], \quad u = \begin{bmatrix} x \\ v \end{bmatrix}, \quad b = 0. \]
Augmented Lagrangian method: V2

General linearly constrained optimization problem:

$$\min_u \Psi(u) \ \text{sub. to} \ C u = b.$$

Form (modified) *augmented Lagrangian* by completing the square:

$$L(u, \eta) \triangleq \Psi(u) + \frac{\rho}{2} \|C u - \eta\|_2^2 + C_\eta,$$

where \(\eta \triangleq b - \frac{1}{\rho} \gamma \) is a modified *dual variable* or *Lagrange multiplier vector*.

AL method alternates between minimizing over \(u \) and gradient ascent on \(\eta \):

$$u^{(n+1)} = \arg\min_u L(u, \gamma^{(n)})$$

$$\eta^{(n+1)} = \eta^{(n)} - (C u^{(n+1)} - b).$$

Desirable convergence properties.

AL penalty parameter \(\rho \) affects convergence *rate*, not solution!

Unfortunately, minimizing over \(u \) is impractical here:

$$v = Rx \quad \text{equivalent to} \quad C u = b, \quad C = [R \quad -I], \quad u = \begin{bmatrix} x \\ v \end{bmatrix}, \quad b = 0.$$
Alternating direction method of multipliers (ADMM)

When \(u \) has multiple component vectors, e.g., \(u = \begin{bmatrix} x \\ v \end{bmatrix} \), rewrite (modified) augmented Lagrangian in terms of all component vectors:

\[
L(x, v; \eta) = \Psi(x, v) + \frac{\rho}{2} \| Rx - v - \eta \|_2^2
\]

\[
= \frac{1}{2} \| y - x \|_2^2 + \beta \| v \|_p + \frac{\rho}{2} \| Rx - v - \eta \|_2^2
\]

cf. penalty!

because here \(Cu = Rx - v \).

Alternate between minimizing over each component vector:

\[
x^{(n+1)} = \arg\min_x L(x, v^{(n)}, \eta^{(n)})
\]

\[
v^{(n+1)} = \arg\min_v L(x^{(n+1)}, v, \eta^{(n)})
\]

\[
\eta^{(n+1)} = \eta^{(n)} + (Rx^{(n+1)} - v^{(n+1)})
\]

Reasonably desirable convergence properties. (Inexact inner minimizations!)

Sufficient conditions on matrix \(C \).

ADMM for image denoising

Augmented Lagrangian:

\[
L(x, v; \eta) = \frac{1}{2} \| y - x \|_2^2 + \beta \| v \|_p + \frac{\rho}{2} \| Rx - v - \eta \|_2^2
\]

Update of primal variable (unknown image):

\[
x^{(n+1)} = \arg \min_x L(x, v^{(n)}, \eta^{(n)}) = \left[I + \rho R' R \right]^{-1} (y + \rho R' (v^{(n)} + \eta^{(n)}))
\]

Update of auxiliary variable:

\[
v^{(n+1)} = \arg \min_v L(x^{(n+1)}, v, \eta^{(n)}) = \text{shrink}(Rx^{(n+1)} - \eta^{(n)}; \beta / \rho, p)
\]

Update of multiplier: \(\eta^{(n+1)} = \eta^{(n)} + (Rx^{(n+1)} - v^{(n+1)}) \)

Equivalent to “split Bregman” approach. (Goldstein & Osher, SIAM J. Im. Sci. 2009)

Each update is simple and exact (non-iterative) if \([I + \rho R' R]^{-1} \) is easy.
ADMM image denoising example

R : horizontal and vertical finite differences (anisotropic TV), $p = 1$ (i.e., ℓ_1), $\beta = 1/2$, $\rho = 1$ (condition number of $(I + \rho R'R)$ is 9)
ADMM image denoising iterates

admm denoising movie
Image restoration
Image restoration models

Unrealistic model:

\[
\begin{align*}
\underbrace{y}_{\text{observed}} &= \underbrace{A}_{\text{blur}} \underbrace{x}_{\text{unknown}} + \underbrace{\epsilon}_{\text{noise}}
\end{align*}
\]

Measured blurry image \(y\) and unknown image \(x\) have the same size. \(A\) is a circulant matrix corresponding to a shift-invariant blur model.

Somewhat more realistic measurement model:

\[
y = TAx + \epsilon
\]

Measured blurry image \(y\) is smaller than unknown image \(x\). \(T\) is a (fat) “truncation” matrix, akin to \([0 \ I \ 0]\).

Image restoration with sparsity regularization

Regularized estimator:

\[
\hat{x} = \arg \min_x \frac{1}{2} \|y - TAx\|^2 + \beta \|Rx\|_p.
\]

Basic equivalent constrained optimization problem:

\[
\min_{x,v} \frac{1}{2} \|y - TAx\|^2 + \beta \|v\|_p \quad \text{sub. to } v = Rx.
\]

Corresponding (modified) augmented Lagrangian (cf. “split Bregman”):

\[
L(x,v;\eta) = \frac{1}{2} \|y - TAx\|^2 + \beta \|v\|_p + \frac{\rho}{2} \|Rx - v - \eta\|^2
\]

ADMM update of primal variable (unknown image):

\[
x^{(n+1)} = \arg \min_x L(x,v^{(n)},\eta^{(n)}) = \left[AT'TA + \rho R'R\right]^{-1} \left(A'T'y + \rho R' \left(v^{(n)} + \eta^{(n)}\right)\right)
\]

Simple if \(A'A\) and \(R'R\) are circulant and \(T = I\) (unrealistic).
Otherwise need iterative inner (quadratic) minimization: PCG.
Improved ADMM for image restoration

New equivalent constrained optimization problem:

$$\min_{x,u,v} \frac{1}{2} \| y - Tu \|_2^2 + \beta \| v \|_p \quad \text{sub. to} \quad v = Rx, \quad u = Ax.$$

Corresponding (modified) augmented Lagrangian:

$$L(x, u, v; \eta_1, \eta_2) = \frac{1}{2} \| y - Tu \|_2^2 + \beta \| v \|_p + \frac{\rho_1}{2} \| Rx - v - \eta_1 \|_2^2 + \frac{\rho_2}{2} \| Ax - u - \eta_2 \|_2^2$$

ADMM update of primal variable (unknown image):

$$\arg \min_x L(x, u, v, \eta_1, \eta_2) = \left[\rho_2 A' A + \rho_1 R'R \right]^{-1} \left(\rho_1 R' (v + \eta_1) + \rho_2 A' (u + \eta_2) \right)$$

Simple if $A'A$ and $R'R$ are circulant. No inner iterations needed!

ADMM update of new auxiliary variable u:

$$\arg \min_u L(x, u, v, \eta_1, \eta_2) = \left[T'T + \rho_2 I \right]^{-1} \left(T'y + \rho_2 (Ax - \eta_2) \right)$$

v update is shrinkage again. Very easy to code!
Image restoration results: quality

Measurement y

Using circulant model with boundary preprocessing

ADMM with Reeves model

15 \times 15 pixel uniform blur, 50dB BSNR $= 10 \log(\text{Var}\{TAX\} / \sigma^2)$, isotropic TV regularization, $\beta = 2^{-17}$

Qualitatively confirms Reeves model is preferable.
Image restoration results: iterations

Analysis form convergence speed comparison for TV regularization
Image restoration results: speed

Proposed ADMM is fast due to non-iterative inner updates.
X-ray CT image reconstruction
Low-dose X-ray CT image reconstruction

Regularized estimator:

\[\hat{x} = \arg \min_{x \succeq 0} \frac{1}{2} \| y - Ax \|_W^2 + \beta \| Rx \|_p. \]

Complications:

- \(A' A \) is not circulant (but “approximately Toeplitz” in 2D)
- \(A' W A \) is highly shift variant due to huge dynamic range of weighting \(W \)
- Non-quadratic (edge-preserving) regularization \(\| \cdot \|_p \)
- Nonnegativity constraint
- Large problem size
Basic ADMM for X-ray CT

Basic equivalent constrained optimization problem (cf. split Bregman):

$$\min_{x \geq 0, v} \frac{1}{2} \|y - Ax\|_W^2 + \beta \|v\|_p \text{ sub. to } v = Rx.$$

Corresponding (modified) augmented Lagrangian (cf. “split Bregman”):

$$L(x, v; \eta) = \frac{1}{2} \|y - Ax\|_W^2 + \beta \|v\|_p + \frac{\rho}{2} \|Rx - v - \eta\|_2^2$$

ADMM update of primal variable (unknown image):

$$x^{(n+1)} = \arg\min_x L(x, v^{(n)}, \eta^{(n)}) = \left[A'WA + \rho R'R\right]^{-1} (A'Wy + \rho R' (v^{(n)} + \eta^{(n)}))$$

- Ignoring nonnegativity constraint
- $\left[A'WA + \rho R'R\right]^{-1}$ requires iteration (e.g., PCG) but hard to precondition
- Auxiliary variable $v = Rx$ is enormous in 3D CT
Improved ADMM for X-ray CT

$$\min_{x \geq 0, u, v} \frac{1}{2} \| y - u \|_W^2 + \beta \| v \|_p \quad \text{sub. to } v = Rx, \quad u = Ax.$$

Corresponding (modified) augmented Lagrangian:

$$L(x, u, v; \eta_1, \eta_2) = \frac{1}{2} \| y - u \|_W^2 + \beta \| v \|_p + \frac{\rho_1}{2} \| Rx - v - \eta_1 \|_2^2 + \frac{\rho_2}{2} \| Ax - u - \eta_2 \|_2^2$$

ADMM update of primal variable (ignoring nonnegativity):

$$\arg\min_x L(x, u, v, \eta_1, \eta_2) = \left[\rho_2 A' A + \rho_1 R'R \right]^{-1} \left(\rho_1 R' (v + \eta_1) + \rho_2 A' (u + \eta_2) \right)$$

For 2D CT, $\left[\rho_2 A' A + \rho_1 R'R \right]^{-1}$ is approximately Toeplitz so a circulant preconditioner is very effective.

ADMM update of auxiliary variable u:

$$\arg\min_u L(x, u, v, \eta_1, \eta_2) = \left[W + \rho_2 I \right]^{-1} \left(Wy + \rho_2 (Ax - \eta_2) \right)$$

v update is shrinkage again. Reasonably simple to code.

(Sathish Ramani & JF, IEEE T-MI, Mar. 2012)
2D X-ray CT image reconstruction results: quality

True

Hanning FBP

Regularized

PWLS with ℓ_1 regularization of shift-invariant Haar wavelet transform. No nonnegativity constraint, but probably unimportant if well-regularized.
2D X-ray CT image reconstruction results: speed

Circulant preconditioner for $\left[\rho_2 A'A + \rho_1 R'R\right]^{-1}$ is crucial to acceleration.

Similar results for real head CT scan in paper.
Lower-memory ADMM for X-ray CT

\[
\min_{x,u,z \succeq 0} \frac{1}{2} \| y - u \|^2_W + \beta \| Rz \|_p \quad \text{sub. to } z = x, \quad u = Ax.
\]

(M McGaffin, S Ramani, JF, SPIE 2012)

Corresponding (modified) augmented Lagrangian:

\[
L(x, u, z; \eta_1, \eta_2) = \frac{1}{2} \| y - u \|^2_W + \beta \| Rz \|_p + \frac{\rho_1}{2} \| x - z - \eta_1 \|^2_2 + \frac{\rho_2}{2} \| Ax - u - \eta_2 \|^2_2
\]

ADMM update of primal variable (nonnegativity not required, use PCG):

\[
\arg \min_x L(x, u, z, \eta_1, \eta_2) = \left[\rho_2 A' A + \rho_1 I \right]^{-1} \left(\rho_1 (z + \eta_1) + \rho_2 A'(u + \eta_2) \right).
\]

ADMM update of auxiliary variable \(z \):

\[
\arg \min_{z \succeq 0} L(x, u, z, \eta_1, \eta_2) = \arg \min_{z \succeq 0} \frac{\rho_1}{2} \| x - z - \eta_1 \|^2_2 + \beta \| Rz \|_p.
\]

Use nonnegatively constrained, edge-preserving image denoising.

ADMM updates of auxiliary variables \(u \) and \(v \) same as before.
Variations...
3D X-ray CT image reconstruction results

Awaiting better preconditioner for $[\rho_2A'A + \rho_1I]^{-1}$
Image reconstruction for parallel MRI
Parallel MRI

Undersampled Cartesian k-space, multiple receive coils, ...
(Pruessmann et al., MRM, Nov. 1999)

Compressed sensing parallel MRI \equiv further (random) under-sampling
Model-based image reconstruction in parallel MRI

Regularized estimator:

\[\hat{x} = \arg \min_x \frac{1}{2} \| y - FSx \|_2^2 + \beta \| Rx \|_p. \]

\(F \) is under-sampled DFT matrix (fat)

Features:
- coil sensitivity matrix \(S \) is block diagonal \((\text{Pruessmann et al., MRM, Nov. 1999})\)
- \(FF' \) is circulant

Complications:
- Data-fit Hessian \(S'F'FS \) is highly shift variant due to coil sensitivity maps
- Non-quadratic (edge-preserving) regularization \(\| \cdot \|_p \)
- Complex quantities
- Large problem size (if 3D)
Basic ADMM for parallel MRI

Basic equivalent constrained optimization problem (cf. split Bregman):

$$\min_{x,v} \frac{1}{2} \|y - FSx\|^2_2 + \beta \|v\|_p \text{ sub. to } v = Rx.$$

Corresponding (modified) augmented Lagrangian (cf. “split Bregman”):

$$L(x, v; \eta) = \frac{1}{2} \|y - FSx\|^2_2 + \beta \|v\|_p + \frac{\rho}{2} \|Rx - v - \eta\|^2_2$$

(Skipping technical details about complex vectors.)

ADMM update of primal variable (unknown image):

$$x^{(n+1)} = \arg \min_x L(x, v^{(n)}, \eta^{(n)}) = \left[S'F'FS + \rho R'R \right]^{-1} \left(S'F'y + \rho R' \left(v^{(n)} + \eta^{(n)} \right) \right)$$

- \(\left[S'F'FS + \rho R'R \right]^{-1} \) requires iteration (e.g., PCG) but hard to precondition
- (Trivial for single coil case with \(S = I \).)
- The “problem” matrix is on opposite side:
 - MRI: \(FS \)
 - Restoration: \(TA \)
Improved ADMM for parallel MRI

\[
\min_{x,u,v,z} \frac{1}{2} \| y - Fu \|_2^2 + \beta \| v \|_p \quad \text{sub. to } v = Rz, \quad u = Sx, \quad z = x.
\]

Corresponding (modified) augmented Lagrangian:

\[
\frac{1}{2} \| y - Fu \|_2^2 + \beta \| v \|_p + \frac{\rho_1}{2} \| Rz - v - \eta_1 \|_2^2 + \frac{\rho_2}{2} \| Sx - u - \eta_2 \|_2^2 + \frac{\rho_3}{2} \| x - z - \eta_3 \|_2^2
\]

ADMM update of primal variable

\[
\arg \min_x L(x, u, v, z; \eta_1, \eta_2, \eta_3) = \left[\rho_2 S' S + \rho_3 I \right]^{-1} (\rho_2 S' (u + \eta_2) + \rho_3 (z + \eta_3)) \text{ diagonal}
\]

ADMM update of auxiliary variables:

\[
\arg \min_u L(x, u, v, z; \eta_1, \eta_2, \eta_3) = \left[F' F + \rho_2 I \right]^{-1} (F' y + \rho_2 (Sx - \eta_2)) \text{ circulant}
\]

\[
\arg \min_z L(x, u, v, z; \eta_1, \eta_2, \eta_3) = \left[\rho_1 R' R + \rho_3 I \right]^{-1} (\rho_1 R' (v + \eta_1) + \rho_3 (x - \eta_3)) \text{ circulant}
\]

\(v\) update is shrinkage again.

Simple, but does not satisfy sufficient conditions.

(Sathish Ramani & JF, IEEE T-MI, Mar. 2011)
2.5D parallel MR image reconstruction results: data

Fully sampled body coil image of human brain
Poisson-disk-based k-space sampling, 16% sampling (acceleration 6.25)
Square-root of sum-of-squares inverse FFT of zero-filled k-space data
2.5D parallel MR image reconstruction results: IQ

- Fully sampled body coil image of human brain
- Regularized reconstruction $x^{(\infty)}$ (1000s of iterations of MFISTA)
 (A Beck & M Teboulle, SIAM J. Im. Sci, 2009)
- Combined TV and ℓ_1 norm of two-level undecimated Haar wavelets
- Difference image magnitude
2.5D parallel MR image reconstruction results: speed

![Graph showing the convergence of different algorithms](image)

AL approach converges to $x^{(\infty)}$ much faster than MFISTA and CG
Current and future directions with ADMM

- Motion-compensated image reconstruction: \(y = AT(\alpha)x + \epsilon \)

 (J H Cho, S Ramani, JF, 2nd CT meeting, 2012)

- Dynamic image reconstruction

- Improved preconditioners for ADMM for 3D CT
 (M McGaffin and JF, Submitted to Fully 3D 2013)

- Combining ADMM with ordered subsets (OS) methods
 (H Nien and JF, Submitted to Fully 3D 2013)

- Generalize parallel MRI algorithm to include spatial support constraint
 (M Le, S Ramani, JF, To appear at ISMRM 2013)

- Non-Cartesian MRI (combine optimization transfer and variable splitting)
 (S Ramani and JF, ISBI 2013, to appear.)

- SPECT-CT reconstruction with non-local means regularizer
 (S Y Chun, Y K Dewaraja, JF, Submitted to Fully 3D 2013)

- Estimation of coil sensitivity maps (quadratic problem!)

- L1-SPIRiT for non-Cartesian parallel MRI

- Multi-frame super-resolution

- Selection of AL penalty parameter \(\rho \) to optimize convergence rate

- Other non-ADMM methods...
Acknowledgements

CT group
- Jang Hwan Cho
- Donghwan Kim
- Jungkuk Kim
- Madison McGaffin
- Hung Nien
- Stephen Schmitt

MR group
- Michael Allison
- Mai Le
- Antonis Matakos
- Matthew Muckley

Post-doctoral fellows
- Se Young Chun
- Sathish Ramani
- Daniel Weller

UM collaborators
- Doug Noll
- Jon-Fredrik Nielsen
- Mitch Goodsitt
- Ella Kazerooni
- Tom Chenevert
- Charles Meyer

GE collaborators
- Bruno De Man
- Jean-Baptiste Thibault
Bibliography

Back-up slide(s)
System matrix / Gram matrix

restore A

restore A'A

tomography A

tomography A'A