Michigan $=n g i n e e r i n g$

Accelerated Non-Cartesian SENSE Reconstruction Using a Majorize-Minimize Algorithm Combining Variable-Splitting

Sathish Ramani and Jeffrey A. Fessler

Electrical Engineering and Computer Science Department
University of Michigan, Ann Arbor, MI, USA

Overview

- Non-Cartesian k-space trajectories
- Efficient k-space coverage, robustness to motion \& off-resonance effects
- Reconstruction is however more involved than for Cartesian trajectories
- More computation: NUFFTs perform interpolation in addition to FFTs
- This work: An algorithm for non-Cartesian SENSE reconstruction
- Combines majorize-minimize strategy with variable-splitting
- Has reduced need of NUFFTs
- Organization of the talk:
- Quick overview of regularized SENSE
- Existing variable-splitting methods for regularized SENSE
- Proposed majorize-minimize + variable-splitting scheme
- Experimental results

Regularized SENSE Reconstruction

- Regularized SENSE reconstruction: model-based optimization problem

$$
\begin{aligned}
& \hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\left\{J(\mathbf{x}) \triangleq\|\mathbf{y}-\mathrm{FSx}\|_{2}^{2}+\Psi(\mathrm{Rx})\right\} \\
& \mathbf{y}=\left[\begin{array}{c}
\mathbf{y}_{1} \\
\vdots \\
\mathbf{y}_{L}
\end{array}\right] ; \quad \mathbf{y}_{l} \in \mathbb{C}^{M}: \text { data from lth coil } \\
& \mathbf{S}=\left[\begin{array}{c}
\mathrm{S}_{1} \\
\vdots \\
\mathbf{S}_{L}
\end{array}\right] ; \quad \mathrm{S}_{l} \in \mathbb{C}^{N \times N}: \text { diagonal sensitivity matrix for } l \text { th coil } \\
& \mathbf{F}=\mathrm{I}_{L} \otimes \mathbf{F}_{\mathrm{u}} ; \quad \mathbf{F}_{\mathrm{u}} \in \mathbb{C}^{M \times N}: \text { non-Cartesian Fourier encoding matrix }
\end{aligned}
$$

- $\Psi(\mathrm{Rx})$ is a suitable regularizer: imposes prior information, reduces noise \& artifacts, e.g., TV, ℓ_{1}-regularizers, etc.
$\mathrm{R} \in \mathbb{R}^{P \times N}$: finite differences, wavelet frames, etc.

Regularized SENSE Reconstruction

- Regularized SENSE reconstruction: model-based optimization problem

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\left\{J(\mathbf{x}) \triangleq\|\mathbf{y}-\mathrm{FSx}\|_{2}^{2}+\Psi(\mathrm{Rx})\right\}
$$

- Challenges:
- Gram matrix $\mathrm{S}^{\prime} \mathrm{F}^{\prime} \mathrm{FS}$ of data-fit term is highly shift-variant
- $\mathrm{F}^{\prime} \mathrm{F}$ not circulant, unlike Cartesian case
- Regularizer Ψ is non-quadratic and often non-differentiable
- Problem size can be large
- Inherent mathematical structures in the problem
- $\mathrm{F}^{\prime} \mathrm{F}$ is Toeplitz for non-Cartesian trajectories (no field inhomogeneity)
- $\mathrm{S}^{\prime} \mathrm{S}$ is diagonal
- $\mathrm{R}^{\prime} \mathrm{R}$ is circulant (e.g., finite differences with periodic boundary conditions)
- Exploit inherent structures: separate F, S and R via variable splitting

Variable Splitting \& Augmented Lagrangian

- Regularized SENSE reconstruction: model-based optimization problem

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\left\{J(\mathbf{x}) \triangleq\|\mathbf{y}-\mathbf{F S x}\|_{2}^{2}+\Psi(\mathrm{Rx})\right\}
$$

- Split-Bregman (SB) type algorithms

Goldstein et al. SIAM J. Img. Sci., 2009
$\mathbf{u}_{1}=\mathbf{R x}$ only decouples \mathbf{R} from regularizer Ψ

Variable Splitting \& Augmented Lagrangian

- Regularized SENSE reconstruction: model-based optimization problem

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\left\{J(\mathbf{x}) \triangleq\|\mathbf{y}-\mathrm{FSx}\|_{2}^{2}+\Psi(\mathrm{Rx})\right\}
$$

- Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009
$\mathrm{u}_{1}=\mathrm{Rx}$ only decouples R from regularizer Ψ
- Augmented Lagrangian (AL) algorithm

Ramani et al. IEEE TMI 2011
$\mathrm{u}_{0}=$ Sx separates F and S
$\mathbf{u}_{1}=\mathrm{Ru}_{2}$ separates R from regularizer Ψ
$\mathbf{u}_{2}=\mathrm{x}$ separates R from S

- Equivalent constrained problem:
- SB: $\quad \mathcal{B} \triangleq[\mathbf{I}-\mathrm{R}] \quad$ and $\mathbf{z} \triangleq\left[\begin{array}{c}\mathrm{u}_{1} \\ \mathrm{x}\end{array}\right]$
- AL: $\mathcal{B} \triangleq\left[\begin{array}{cccc}\mathbf{I} & \mathbf{0} & \mathbf{0} & -\mathrm{S} \\ \mathbf{0} & \mathbf{I} & -\mathrm{R} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} & -\mathbf{I}\end{array}\right]$ and $\mathbf{z} \triangleq\left[\begin{array}{c}\mathbf{u}_{0} \\ \mathbf{u}_{1} \\ \mathbf{u}_{2} \\ \mathbf{x}\end{array}\right]$

Variable Splitting \& Augmented Lagrangian

- Regularized SENSE reconstruction: model-based optimization problem

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\left\{J(\mathbf{x}) \triangleq\|\mathbf{y}-\mathrm{FSx}\|_{2}^{2}+\Psi(\mathbf{R x})\right\}
$$

- Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009
$\mathrm{u}_{1}=\mathrm{Rx}$ only decouples R from regularizer Ψ
- Augmented Lagrangian (AL) algorithm

Ramani et al. IEEE TMI 2011
$\mathrm{u}_{0}=$ Sx separates F and S
$\mathbf{u}_{1}=\mathrm{Ru}_{2}$ separates R from regularizer Ψ
$\mathbf{u}_{2}=\mathrm{x}$ separates R from S

- Equivalent constrained problem:

$$
\begin{gathered}
\min _{\mathbf{z}} J(\mathbf{z}) \text { s.t. } \mathcal{B} \mathbf{z}=\mathbf{0} \\
\mathcal{L}(\mathbf{z}, \boldsymbol{\eta})=J(\mathbf{z})+\frac{\mu}{2}\left\|\mathcal{B}_{\mathbf{z}}-\boldsymbol{\eta}\right\|_{\boldsymbol{\Lambda}}^{2}+c(\boldsymbol{\eta})
\end{gathered}
$$

- Augmented Lagrangian function:
- μ is a penalty parameter; $\Lambda \equiv$ relative weighting of constraints
- $\boldsymbol{\eta}$ is a Lagrange-multiplier-type vector for the constraint $\mathcal{B} \mathbf{z}=\mathbf{0}$

Variable Splitting \& Augmented Lagrangian

- Regularized SENSE reconstruction: model-based optimization problem

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\left\{J(\mathbf{x}) \triangleq\|\mathbf{y}-\mathrm{FSx}\|_{2}^{2}+\Psi(\mathrm{Rx})\right\}
$$

- Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009
$\mathrm{u}_{1}=\mathrm{Rx}$ only decouples R from regularizer Ψ
- Augmented Lagrangian (AL) algorithm

Ramani et al. IEEE TMI 2011

$$
\begin{aligned}
& \mathbf{u}_{0}=\mathrm{Sx} \text { separates } \mathrm{F} \text { and } \mathrm{S} \\
& \mathbf{u}_{1}=\mathrm{R} \mathbf{u}_{2} \text { separates } \mathrm{R} \text { from regularizer } \Psi \\
& \mathbf{u}_{2}=\mathbf{x} \text { separates } \mathrm{R} \text { from } \mathrm{S}
\end{aligned}
$$

- Equivalent constrained problem:

$$
\min _{\mathbf{z}} J(\mathbf{z}) \text { s.t. } \mathcal{B} \mathbf{z}=\mathbf{0}
$$

- Augmented Lagrangian function: $\quad \mathcal{L}(\mathbf{z}, \boldsymbol{\eta})=J(\mathbf{z})+\frac{\mu}{2}\|\mathcal{B} \mathbf{z}-\boldsymbol{\eta}\|_{\boldsymbol{\Lambda}}^{2}+c(\boldsymbol{\eta})$
- Algorithm: Alternating minimization of $\mathcal{L}\left(\mathbf{z}, \boldsymbol{\eta}^{(k)}\right)$ w.r.t. components of \mathbf{z}

$$
\text { Update } \boldsymbol{\eta}^{(k+1)}=\boldsymbol{\eta}^{(k)}-\mathcal{B}_{\mathbf{z}}{ }^{(k+1)}
$$

Variable Splitting \& Augmented Lagrangian

- Regularized SENSE reconstruction: model-based optimization problem

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\left\{J(\mathbf{x}) \triangleq\|\mathbf{y}-\mathrm{FSx}\|_{2}^{2}+\Psi(\mathrm{Rx})\right\}
$$

- Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009
- u_{1}-update corresponds to a denoising problem
- x-update requires "inverting" the shift-variant matrix ($\mathrm{S}^{\prime} \mathrm{F}^{\prime} \mathrm{FS}+\mathrm{R}^{\prime} \mathrm{R}$)
- Augmented Lagrangian (AL) algorithm
- u_{0}-update requires "inverting" the Toeplitz matrix ($\mathrm{F}^{\prime} \mathrm{F}+\mu \mathrm{I}$)
- u_{1}-update corresponds to a denoising problem
- \mathbf{u}_{2}-update requires "inverting" the circulant matrix ($\mathrm{R}^{\prime} \mathrm{R}+\beta \mathbf{I}$)
- x-update requires "inverting" the diagonal matrix ($\mathrm{S}^{\prime} \mathrm{S}+\gamma \mathbf{I}$)

Variable Splitting \& Augmented Lagrangian

- Regularized SENSE reconstruction: model-based optimization problem

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\left\{J(\mathbf{x}) \triangleq\|\mathbf{y}-\mathrm{FS}\|_{2}^{2}+\Psi(\mathrm{Rx})\right\}
$$

- Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009
- x-update requires "inverting" the shift-variant matrix $\left(S^{\prime} \mathrm{F}^{\prime} \mathrm{FS}+\mathrm{R}^{\prime} \mathrm{R}\right)$
- Augmented Lagrangian (AL) algorithm

Ramani et al. IEEE TMI 2011

- u_{0}-update requires "inverting" the Toeplitz matrix $\left(\mathrm{F}^{\prime} \mathrm{F}+\mu \mathrm{I}\right)$

Variable Splitting \& Augmented Lagrangian

- Regularized SENSE reconstruction: model-based optimization problem

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\left\{J(\mathbf{x}) \triangleq\|\mathbf{y}-\mathrm{FSx}\|_{2}^{2}+\Psi(\mathrm{Rx})\right\}
$$

- Split-Bregman (SB) type algorithms Goldstein et al. SIAM J. Img. Sci., 2009
- x-update requires "inverting" the shift-variant matrix $\left(S^{\prime} \mathbf{F}^{\prime} \mathrm{FS}+\mathrm{R}^{\prime} \mathrm{R}\right)$
- Augmented Lagrangian (AL) algorithm Ramani et al. IEEE TMI 2011
- \mathbf{u}_{0}-update requires "inverting" the Toeplitz matrix ($\mathrm{F}^{\prime} \mathrm{F}+\mu \mathbf{I}$)
- Non-Cartesian MRI: Need iterative solvers for \mathbf{x} in SB and u_{0} in ALA
- $\mathrm{F}^{\prime} \mathrm{F}=\mathrm{I}_{L} \otimes \mathrm{~F}_{\mathrm{u}}^{\prime} \mathrm{F}_{\mathrm{u}} \Longrightarrow L$ solvers needed for L coils
- Repeated products with $\mathrm{F}_{\mathrm{u}}^{\prime} \mathrm{F}_{\mathrm{u}} \equiv$ more computation e.g., embedding $\mathrm{F}_{\mathrm{u}}^{\prime} \mathrm{F}_{\mathrm{u}}$ in a larger circulant matrix $\equiv \mathrm{FFT}$ s of larger size
- Proposed approach: Majorize-minimize strategy
- Replaces $\mathrm{F}^{\prime} \mathrm{F}$ with a circulant matrix

Majorize-Minimize Approach

- Regularized SENSE reconstruction: model-based optimization problem

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\left\{J(\mathbf{x}) \triangleq\|\mathbf{y}-\mathrm{FSx}\|_{2}^{2}+\Psi(\mathrm{Rx})\right\}
$$

- Majorization: $D(\mathbf{y}, \mathrm{Sx}) \triangleq\|\mathrm{y}-\mathrm{FSx}\|_{2}^{2}$

$$
\begin{aligned}
\leq & D\left(\mathbf{y}, \mathbf{S} \mathbf{x}_{(j)}\right)+2 \mathcal{R}\left\{\left(\mathbf{x}-\mathbf{x}_{(j)}\right)^{\prime} \nabla D(\mathbf{y}, \mathrm{Sx})\right\} \\
& \left.+\left(\mathbf{x}-\mathbf{x}_{(j)}\right)\right)^{\prime} \mathbf{S}^{\prime} \mathbf{C}^{\prime} \mathrm{CS}\left(\mathbf{x}-\mathbf{x}_{(j)}\right) \\
= & 2 \mathcal{R}\left\{-\mathrm{x}^{\prime} \mathbf{S}^{\prime}\left[\mathbf{F}^{\prime} \mathbf{y}+\operatorname{MSx}_{(j)}\right]\right\}+\mathbf{x}^{\prime} \mathbf{S}^{\prime} \mathbf{C}^{\prime} \mathrm{CSx}+c \\
\triangleq & D_{\operatorname{maj}}\left(\mathbf{y}, \mathbf{S x}, \mathbf{x}_{(j)}\right)
\end{aligned}
$$

- Circulant matrix $\mathrm{C}=\mathrm{I}_{L} \otimes \mathrm{C}_{\mathrm{u}}$ such that $\mathrm{C}_{\mathrm{u}}^{\prime} \mathrm{C}_{\mathrm{u}} \succeq \mathrm{F}_{\mathrm{u}}^{\prime} \mathrm{F}_{\mathrm{u}}$

$$
\mathrm{M} \triangleq \mathrm{C}^{\prime} \mathrm{C}-\mathrm{F}^{\prime} \mathbf{F}=\mathbf{I}_{L} \otimes\left[\mathrm{C}_{\mathrm{u}}^{\prime} \mathrm{C}_{\mathrm{u}}-\mathrm{F}_{\mathrm{u}}^{\prime} \mathrm{F}_{\mathrm{u}}\right] \succeq \mathbf{0}
$$

Majorize-Minimize Approach

- Regularized SENSE reconstruction: model-based optimization problem

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x}}\left\{J(\mathbf{x}) \triangleq\|\mathbf{y}-\mathrm{FS}\|_{2}^{2}+\Psi(\mathrm{Rx})\right\}
$$

- $D_{\text {maj }}\left(\mathbf{y}, \mathrm{Sx}, \mathbf{x}_{(j)}\right)=2 \mathcal{R}\left\{-\mathrm{x}^{\prime} \mathbf{S}^{\prime}\left[\mathrm{F}^{\prime} \mathbf{y}+\operatorname{MSx}_{(j)}\right]\right\}+\mathrm{x}^{\prime} \mathrm{S}^{\prime} \mathrm{C}^{\prime} \mathrm{CSx}+c$

$$
\mathrm{M} \triangleq \mathrm{C}^{\prime} \mathrm{C}-\mathrm{F}^{\prime} \mathrm{F}
$$

- Majorizer: $\quad J_{\text {maj }}\left(\mathbf{x}, \mathbf{x}_{(j)}\right) \triangleq D_{\text {maj }}\left(\mathbf{y}, \mathrm{Sx}, \mathbf{x}_{(j)}\right)+\Psi(\mathrm{Rx})$

$$
J_{\text {maj }}\left(\mathbf{x}, \mathbf{x}_{(j)}\right) \leq J(\mathbf{x}) \forall \mathbf{x} \text { with equality at } \mathbf{x}_{(j)}
$$

- Majorize-minimize scheme

$$
\mathbf{x}_{(j+1)}=\arg \min _{\mathbf{x}} J_{\mathrm{maj}}\left(\mathbf{x}, \mathbf{x}_{(j)}\right)
$$

Variable Splitting for Minimization Step

- $J_{\text {maj }}\left(\mathbf{x}, \mathbf{x}_{(j)}\right)=2 \mathcal{R}\left\{-\mathrm{x}^{\prime} \mathbf{S}^{\prime}\left[\mathbf{F}^{\prime} \mathbf{y}+\mathrm{MSx}_{(j)}\right]\right\}+\mathrm{x}^{\prime} \mathbf{S}^{\prime} \mathrm{C}^{\prime} \mathrm{CSx}+\Psi(\mathrm{Rx})$

$$
\mathrm{M} \triangleq \mathrm{C}^{\prime} \mathrm{C}-\mathrm{F}^{\prime} \mathrm{F}
$$

- Minimization of $J_{\text {maj }}$ using variable-splitting and augmented Lagrangian

$$
\begin{aligned}
& \mathrm{u}_{0}=\mathrm{Sx} \text { separates } \mathrm{C} \text { and } \mathrm{S} \\
& \mathrm{u}_{1}=\mathrm{Ru}_{2} \text { separates } \mathrm{R} \text { from regularizer } \Psi \\
& \mathrm{u}_{2}=\mathrm{x} \text { separates } \mathrm{R} \text { from } \mathrm{S}
\end{aligned}
$$

- Equivalent constrained problem: $\min _{\mathbf{z}} J_{\mathrm{maj}}(\mathbf{z})$ s.t. $\mathbf{A z}=\mathbf{0}$

$$
\mathbf{A} \triangleq\left[\begin{array}{cccc}
\mathbf{I} & \mathbf{0} & \mathbf{0} & -\mathrm{S} \\
\mathbf{0} & \mathbf{I} & -\mathrm{R} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{I} & -\mathbf{I}
\end{array}\right] \text { and } \mathbf{z} \triangleq\left[\begin{array}{l}
\mathrm{u}_{0} \\
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\mathbf{x}
\end{array}\right]
$$

Augmented Lagrangian for Minimization Step

- $J_{\text {maj }}\left(\mathbf{x}, \mathbf{x}_{(j)}\right)=2 \mathcal{R}\left\{-\mathrm{x}^{\prime} \mathbf{S}^{\prime}\left[\mathrm{F}^{\prime} \mathbf{y}+\mathrm{MSx}_{(j)}\right]\right\}+\mathrm{x}^{\prime} \mathrm{S}^{\prime} \mathrm{C}^{\prime} \mathrm{CSx}+\Psi(\mathrm{Rx})$

$$
\mathrm{M} \triangleq \mathrm{C}^{\prime} \mathrm{C}-\mathrm{F}^{\prime} \mathrm{F}
$$

- Minimization of $J_{\text {maj }}$ using variable-splitting and augmented Lagrangian

$$
\begin{aligned}
& \mathbf{u}_{0}=\mathrm{Sx} \text { separates } \mathrm{C} \text { and } \mathrm{S} \\
& \mathbf{u}_{1}=\mathrm{R} \mathbf{u}_{2} \text { separates } \mathrm{R} \text { from regularizer } \Psi \\
& \mathbf{u}_{2}=\mathbf{x} \text { separates } \mathrm{R} \text { from } \mathrm{S}
\end{aligned}
$$

- Augmented Lagrangian function:

$$
\begin{aligned}
\mathcal{L}\left(\mathbf{u}_{0}, \mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{x}\right) \triangleq & 2 \mathcal{R}\left\{-\mathbf{u}_{0}^{\prime}\left[\mathbf{F}^{\prime} \mathbf{y}+\mathbf{M S x}(j)\right]\right\}+\mathbf{u}_{0}^{\prime} \mathrm{C}^{\prime} \mathrm{Cu}_{0}+\Psi\left(\mathbf{u}_{1}\right) \\
& +\mu\left\|\mathbf{u}_{0}-\mathbf{S x}-\eta_{0}\right\|_{2}^{2}+\mu \nu_{1}\left\|\mathbf{u}_{1}-\mathrm{Ru}_{2}-\eta_{1}\right\|_{2}^{2} \\
& +\mu \nu_{2}\left\|\mathbf{u}_{2}-\mathbf{x}-\boldsymbol{\eta}_{2}\right\|_{2}^{2} \\
& \mu, \nu_{1}, \nu_{2}>0 \text { are penalty parameters }
\end{aligned}
$$

Algorithm Summary

- $J_{\text {maj }}\left(\mathbf{x}, \mathbf{x}_{(j)}\right)=2 \mathcal{R}\left\{-\mathrm{x}^{\prime} \mathbf{S}^{\prime}\left[\mathbf{F}^{\prime} \mathbf{y}+\mathrm{MSx}_{(j)}\right]\right\}+\mathrm{x}^{\prime} \mathbf{S}^{\prime} \mathrm{C}^{\prime} \mathrm{CSx}+\Psi(\mathrm{Rx})$
- Every j th majorize-minimize iteration involves
- One product with $\mathrm{M} \triangleq \mathrm{C}^{\prime} \mathrm{C}-\mathrm{F}^{\prime} \mathrm{F} \equiv$ one product with $\mathrm{F}^{\prime} \mathrm{F}$
- $k=1 \cdots K$ iterations of alternating minimization of \mathcal{L} and $\boldsymbol{\eta}_{0,1,2}$-updates
- Warm-starting of constraint variables $\mathbf{u}_{0,1,2}$ and $\boldsymbol{\eta}_{0,1,2}$
- Every k th iteration of alternating minimization involves
- Inversion of circulant matrices $\left(\mathrm{C}^{\prime} \mathrm{C}+\mu \mathbf{I}\right) \&\left(\mathrm{R}^{\prime} \mathrm{R}+\nu_{2} / \nu_{1} \mathrm{I}\right)$
- Inversion of diagonal matrix ($\mathrm{S}^{\prime} \mathrm{S}+\nu_{2} \mathrm{I}$)
- Denoising problem that admits closed-form solutions for many Ψ
- Trivial Lagrange-multiplier $\boldsymbol{\eta}_{0,1,2}$-updates

Algorithm Summary

- $J_{\text {maj }}\left(\mathbf{x}, \mathbf{x}_{(j)}\right)=2 \mathcal{R}\left\{-\mathbf{x}^{\prime} \mathbf{S}^{\prime}\left[\mathbf{F}^{\prime} \mathbf{y}+\mathrm{MSx}_{(j)}\right]\right\}+\mathrm{x}^{\prime} \mathbf{S}^{\prime} \mathrm{C}^{\prime} \mathrm{CSx}+\Psi(\mathrm{Rx})$
- Every j th majorize-minimize iteration involves
- One product with $\mathrm{M} \triangleq \mathrm{C}^{\prime} \mathrm{C}-\mathrm{F}^{\prime} \mathrm{F} \equiv$ one product with $\mathrm{F}^{\prime} \mathrm{F}$
- $k=1 \cdots K$ iterations of alternating minimization of \mathcal{L} and $\boldsymbol{\eta}_{0,1,2}$-updates
- Warm-starting of constraint variables $\mathbf{u}_{0,1,2}$ and $\eta_{0,1,2}$
- Every k th iteration of alternating minimization involves
- Inversion of circulant matrices $\left(\mathrm{C}^{\prime} \mathrm{C}+\mu \mathbf{I}\right) \&\left(\mathrm{R}^{\prime} \mathrm{R}+\nu_{2} / \nu_{1} \mathrm{I}\right)$
- Inversion of diagonal matrix ($\mathrm{S}^{\prime} \mathrm{S}+\nu_{2} \mathrm{I}$)
- Denoising problem that admits closed-form solutions for many Ψ
- Trivial Lagrange-multiplier $\boldsymbol{\eta}_{0,1,2}$-updates
- Acceleration using two-step strategy

Beck et al. SIAM J. Img. Sci., 2009

$$
\begin{aligned}
& \mathbf{x}_{(j+1)}=\arg \min _{\mathbf{x}} J_{\mathrm{maj}}\left(\mathbf{x}, \mathbf{w}_{(j)}\right) ; \quad \text { Form } J_{\mathrm{maj}} \text { at } \mathbf{w}_{(j)} \text { instead of } \mathbf{x}_{(j)} \\
& \mathbf{w}_{(j)}=\mathbf{x}_{(j)}+\left(a_{j}-1\right) / a_{j+1}\left(\mathbf{x}_{(j)}-\mathbf{x}_{(j-1)}\right) ; \quad a_{j+1}=\left[1+\sqrt{1+4 a_{j}^{2}}\right] / 2
\end{aligned}
$$

Construction of the Majorizer

- Obtain circulant $\widetilde{\mathrm{C}}$ such that $\widetilde{\mathrm{C}}^{\prime} \widetilde{\mathrm{C}} \approx \mathrm{F}^{\prime} \mathrm{F}$ in Frobenius-norm

Chan et al. SIAM J. Sci. Stat. Comp. 1988

- Find $\alpha>0$ such that $\alpha \widetilde{\mathbf{C}}^{\prime} \widetilde{\mathbf{C}} \succeq \mathbf{F}^{\prime} \mathbf{F}$ using Power method
- Requires matrix-vector products with $\mathrm{F}^{\prime} \mathrm{F}$
- Depends only on the trajectory: can be precomputed for various trajectories
- Desired circulant matrix in the majorizer: $\mathbf{C} \triangleq \sqrt{\alpha} \widetilde{\mathbf{C}}$
- Illustration for a radial trajectory with 16 spokes containing 512 samples each

Algorithms Compared in This Work

- Compared proposed methods with recent splitting-based algorithms
- Split-Bregman (SB-n)
- Bregman Operator Splitting (BOS)
- Augmented Lagrangian (AL-n)

Goldstein et al. SIAM J. Img. Sci. 2009
Zhang et al. SIAM J. Img. Sci. 2010
Ramani et al. IEEE TMI 2011

- Proposed: MAjorize-Minimize AL (MAMAL-K)
- Proposed: Majorize-minimize AL with Two-Step (MALTS-K)
n inner PCG iterations for SB and AL
K inner AL iterations for MAMAL \& MALTS
- Circulant preconditioner using $\widetilde{\mathrm{C}}^{\prime} \widetilde{\mathrm{C}}$ for inner-linear-systems in SB \& AL
- Denoising-like step involves shrinkage: common to all algorithms
- Automatically set penalty parameters of all algorithms to obtain same shrinkage-threshold

Simulation with Analytical Shepp-Logan Phantom

- Simulated noisy data using analytical Shepp-Logan phantom

Guerquin-Kern et al. IEEE TMI 2012

- Radial trajectory: 16 spokes each with 512 samples $\approx 32 \times$ acceleration
- $L=8$ coils with simulated sensitivity maps
- SNR of data = 40 dB ;

$$
\mathrm{SNR}=10 \log _{10}\left(\left\|\mathrm{y}_{\text {true }}\right\|_{2}^{2} / N \sigma^{2}\right)
$$

- Simulated 32×32 Cartesian low-resolution data for body and surface coils
- Estimated smoothed sensitivity maps Allison et al. IEEE TMI 2013
- Initialization: sum-of-squares (SoS) of conjugate phase (CP) reconstruction
- Regularization parameter adjusted manually
- Reconstructed 512×512 images using TV regularizer
- Ran 1000 iterations of SB-10 to obtain a solution x^{\star}
- Computed NRMSD w.r.t. x^{\star} as $\frac{\left\|\mathrm{x}_{(j)}-\mathrm{x}^{\star}\right\|_{2}}{\left\|\mathrm{x}^{\star}\right\|_{2}}$

Simulation with Analytical Shepp-Logan Phantom

Estimated sensitivity maps

Simulation with Analytical Shepp-Logan Phantom

Noisefree phantom

Regularized reconstruction x^{\star}

SoS of CP Reconstruction

Absolute difference

Simulation with Analytical Shepp-Logan Phantom

Plot of NRMSD as function of runtime

Simulation with a T_{2}-weighted Brainweb Image

- Simulated noisy data from a 2048×2048 interpolated T_{2}-weighted image
- Variable density spiral; 5 interleaves; reduction factor ≈ 5
- $L=8$ coils with simulated sensitivity maps
- SNR of data $=50 \mathrm{~dB}$;
$\mathrm{SNR}=10 \log _{10}\left(\left\|\mathrm{y}_{\text {true }}\right\|_{2}^{2} / N \sigma^{2}\right)$
- Simulated 32×32 Cartesian low-resolution data for body and surface coils
- Estimated smoothed sensitivity maps Allison et al. IEEE TMI 2013
- Initialization: sum-of-squares (SoS) of conjugate phase (CP) reconstruction
- Regularization parameter adjusted manually
- Reconstructed 256×256 images using ℓ_{1}-regularizer
- Ran 1000 iterations of SB-10 to obtain a solution x^{\star}
- Computed NRMSD w.r.t. x^{\star} as $\frac{\left\|\mathrm{x}_{(j)}-\mathrm{x}^{\star}\right\|_{2}}{\left\|\mathrm{x}^{\star}\right\|_{2}}$

Simulation with a T_{2}-weighted Brainweb Image

Estimated sensitivity maps

Simulation with a T_{2}-weighted Brainweb Image

Noisefree T_{2}-weighted image

Regularized reconstruction x^{\star}

SoS of CP Reconstruction

Absolute difference

Simulation with a T_{2}-weighted Brainweb Image

Plot of NRMSD as function of runtime

Summary \& Conclusion

- Regularized SENSE reconstruction for non-Cartesian trajectories
- Some existing variable-splitting methods can exploit inherent structures in the problem
- These require repeated NUFFT-type computations for non-Cartesian MRI
- Our method combines majorize-minimize \& variable-splitting concepts
- Appropriate majorization can lead to an auxiliary cost function that is "more amenable" to variable splitting
- Proposed method: noniterative update steps, also amenable to two-step acceleration
- Preliminary results indicate faster convergence of the proposed method
- Useful for 3D non-Cartesian trajectories
- Future work: find suitably tight circulant majorizers

Simulation with Analytical Shepp-Logan Phantom

Plot of NRMSD as function of iterations

Simulation with a T_{2}-weighted Brainweb Image

Plot of NRMSD as function of iterations

Alternating Minimization of Augmented Lagrangian

- $J_{\text {maj }}\left(\mathbf{x}, \mathbf{x}_{(j)}\right)=2 \mathcal{R}\left\{-\mathrm{x}^{\prime} \mathbf{S}^{\prime}\left[\mathbf{F}^{\prime} \mathbf{y}+\mathrm{MSx}_{(j)}\right]\right\}+\mathrm{x}^{\prime} \mathbf{S}^{\prime} \mathrm{C}^{\prime} \mathrm{CSx}+\Psi(\mathrm{Rx})$

$$
\mathrm{M} \triangleq \mathrm{C}^{\prime} \mathrm{C}-\mathrm{F}^{\prime} \mathrm{F}
$$

- Augmented Lagrangian function:

$$
\begin{aligned}
\mathcal{L}\left(\mathrm{u}_{0}, \mathrm{u}_{1}, \mathbf{u}_{2}, \mathbf{x}\right) \triangleq & 2 \mathcal{R}\left\{-\mathrm{u}_{0}^{\prime}\left[\mathrm{F}^{\prime} \mathbf{y}+\mathrm{MSx}_{(j)}\right]\right\}+\mathrm{u}_{0}^{\prime} \mathrm{C}^{\prime} \mathrm{Cu}_{0}+\Psi\left(\mathrm{u}_{1}\right) \\
& +\mu\left\|\mathrm{u}_{0}-\mathrm{Sx}-\eta_{0}\right\|_{2}^{2}+\mu \nu_{1}\left\|\mathrm{u}_{1}-\mathrm{Ru}_{2}-\eta_{1}\right\|_{2}^{2} \\
& +\mu \nu_{2}\left\|\mathbf{u}_{2}-\mathbf{x}-\boldsymbol{\eta}_{2}\right\|_{2}^{2}
\end{aligned}
$$

- Alternating minimization of \mathcal{L} at j th iteration of majorize-minimize step

$$
\begin{aligned}
& \mathbf{u}_{0(k+1)}=\left(\mathbf{C}^{\prime} \mathbf{C}+\mu \mathbf{I}\right)^{-1}\left[\mathbf{F}^{\prime} \mathbf{y}+\mathbf{M S x}_{(j)}+\mathbf{S} \mathbf{x}_{(j, k)}+\boldsymbol{\eta}_{0(k)}\right] \\
& \mathbf{u}_{1(k+1)}=\arg \min _{\mathbf{u}_{1}} \Psi\left(\mathbf{u}_{1}\right)+\mu \nu_{1}\left\|\mathbf{u}_{1}-\mathbf{R u}_{2(k)}-\boldsymbol{\eta}_{1(k)}\right\|_{2}^{2} \quad \text { (denoising problem) } \\
& \mathbf{u}_{2(k+1)}=\left(\mathbf{R}^{\prime} \mathbf{R}+\nu_{2} / \nu_{1} \mathbf{I}\right)^{-1}\left[\mathbf{R}\left(\mathbf{u}_{1(k+1)}-\boldsymbol{\eta}_{1(k)}\right)+\nu_{2} / \nu_{1}\left(\mathbf{x}_{(j, k)}+\boldsymbol{\eta}_{2(k)}\right)\right] \\
& \mathbf{x}_{(j, k+1)}=\left(\mathbf{S}^{\prime} \mathbf{S}+\nu_{2} \mathbf{I}\right)^{-1}\left[\mathbf{S}\left(\mathbf{u}_{0(k+1)}-\boldsymbol{\eta}_{0(k)}\right)+\nu_{2}\left(\mathbf{u}_{2(k+1)}-\boldsymbol{\eta}_{2(k)}\right)\right]
\end{aligned}
$$

Alternating Minimization of Augmented Lagrangian

- $J_{\text {maj }}\left(\mathbf{x}, \mathbf{x}_{(j)}\right)=2 \mathcal{R}\left\{-\mathrm{x}^{\prime} \mathbf{S}^{\prime}\left[\mathbf{F}^{\prime} \mathbf{y}+\mathrm{MSx}_{(j)}\right]\right\}+\mathrm{x}^{\prime} \mathbf{S}^{\prime} \mathrm{C}^{\prime} \mathrm{CSx}+\Psi(\mathrm{Rx})$

$$
\mathrm{M} \triangleq \mathrm{C}^{\prime} \mathrm{C}-\mathrm{F}^{\prime} \mathrm{F}
$$

- Alternating minimization of \mathcal{L} at j th iteration of majorize-minimize step

$$
\begin{aligned}
& \mathbf{u}_{0(k+1)}=\left(\mathbf{C}^{\prime} \mathbf{C}+\mu \mathbf{I}\right)^{-1}\left[\mathbf{F}^{\prime} \mathbf{y}+\mathbf{M} \mathbf{S x}_{(j)}+\mathbf{S} \mathbf{x}_{(j, k)}+\boldsymbol{\eta}_{0}(k)\right] \\
& \mathbf{u}_{1(k+1)}=\arg \min _{\mathbf{u}_{1}} \Psi\left(\mathbf{u}_{1}\right)+\mu \nu_{1}\left\|\mathbf{u}_{1}-\mathbf{R u}_{2(k)}-\boldsymbol{\eta}_{1(k)}\right\|_{2}^{2} \quad \text { (denoising problem) } \\
& \mathbf{u}_{2(k+1)}=\left(\mathbf{R}^{\prime} \mathbf{R}+\nu_{2} / \nu_{1} \mathbf{I}\right)^{-1}\left[\mathbf{R}\left(\mathbf{u}_{1(k+1)}-\boldsymbol{\eta}_{1(k)}\right)+\nu_{2} / \nu_{1}\left(\mathbf{x}_{(j, k)}+\boldsymbol{\eta}_{2(k)}\right)\right] \\
& \mathbf{x}_{(j, k+1)}=\left(\mathbf{S}^{\prime} \mathbf{S}+\nu_{2} \mathbf{I}\right)^{-1}\left[\mathbf{S}\left(\mathbf{u}_{0(k+1)}-\boldsymbol{\eta}_{0(k)}\right)+\nu_{2}\left(\mathbf{u}_{2(k+1)}-\boldsymbol{\eta}_{2(k)}\right)\right]
\end{aligned}
$$

- Every k th iteration of alternating minimization involves
- Inversion of circulant matrices $\left(\mathrm{C}^{\prime} \mathrm{C}+\mu \mathbf{I}\right) \&\left(\mathrm{R}^{\prime} \mathrm{R}+\nu_{2} / \nu_{1} \mathbf{I}\right)$
- Inversion of diagonal matrix ($\mathrm{S}^{\prime} \mathrm{S}+\nu_{2} \mathbf{I}$)
- Denoising problem that admits closed-form solutions for many Ψ
- Trivial Lagrange-multiplier $\boldsymbol{\eta}_{0,1,2}$-updates

