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Why statistical/iterative methods for CT?

e Accurate physics models
o X-ray spectrum, beam-hardening, scatter, ...
— reduced artifacts? quantitative CT?
o X-ray detector spatial response, focal spot size, ...
— improved spatial resolution?
o detector spectral response (e.g., photon-counting detectors)
— improved contrast?

e Nonstandard geometries
o transaxial truncation (wide patients)
o long-object problem in helical CT
o irregular sampling in “next-generation” geometries
o coarse angular sampling in image-guidance applications
o limited angular range (tomosynthesis)
o “missing” data, e.g., bad pixels in flat-panel systems

e Appropriate models of (data dependent) measurement statistics
o weighting reduces influence of photon-starved rays (cf. FBP)
—> reducing image noise or X-ray dose



and more...

e Object constraints / priors
o nonnegativity
o object support

o piecewise smoothness

o object sparsity (e.g., angiography)

o sparsity in some basis

o motion models Henry Gray, Anatomy of
o dynamic models the Human Body, 1918,
o . Fig. 413.

These constraints may help reduce image artifacts or noise or dose.

Disadvantages?
o Computation (super computer)
e Must reconstruct entire FOV
o Complexity of models and software
e Algorithm
o Difficult to analyze resolution/noise properties (cf. FBP)
o Tuning parameters
o Challenging to characterize performance / assess image quality



“lterative” vs “Statistical”

e Traditional successive substitutions iterations
o e.g., Joseph and Spital (JCAT, 1978) bone correction
o usually only one or two “iterations”
o not statistical

e Algebraic reconstruction methods
o Given sinogram data y and system model A, reconstruct object x by
“solving” y = Ax
o ART, SIRT, SART, ...
o iterative, but typically not statistical = limited (if any) dose reduction
o lterative filtered back-projection (FBP):

(n+1) __ (n) _ )
x" =x"+ o FBP( y Ax | )
step size data forward project

e Statistical reconstruction methods now come in several flavors:
o Image domain
o Sinogram domain
o Fully statistical (both)
o Hybrid methods (e.g., AIR, SPIE 7961-18, 2011, Bruder et al.)
Examine these in more detail next to consider dose.



“Statistical” methods: Image domain

e Denoising methods
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o Relatively fast, even if iterative
o Remarkable advances in denmsmg methods in last decade
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Zhu & Milanfar, T IP Dec. 2010, using “steering kernel regression” (SKR) method

o Typically assume white noise
o Streaks in low-dose FBP appear like edges (highly correlated noise)



e Image denoising methods “guided by data statistics”
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sinogram
statistics?

o Image-domain methods are fast (thus very practical)

o ASIR? IRIS? ...
o The technical details are often a mystery...

final
— Image
X

o FBP often does not use all data efficiently (e.g., Parker weighting)
o Low-dose CT statistics most naturally expressed in sinogram domain

Several studies of potential dose reduction with image-domain methods:
o Hara et al., AJR 193(3) 2009, 32-65 %
o Silva et al., AJR 194(1) 2010, 50-65 %
o Leipsic et al., AJR 195(3) 2010, 27 %

O ...



“Statistical” methods: Sinogram domain

e Sinogram restoration methods

noisy adaptive
sinogram —| or iterative
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o Adaptive: J. Hsieh, Med. Phys., 1998; KachelrieB, Med. Phys., 2001, ...
o lterative: P. La Riviere, IEEE T-MI, 2000, 2005, 2006, 2008, ...

o Relatively fast even if iterative

o Limited denoising without resolution loss = modest

o Difficult to “preserve edges” in sinograms

FBP, 10 mA
Wang et al., T-MlI, Oct. 2006, using PWLS-GS on sinogram

reduction?
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FBP from denoised sinogram



“Fully” (?) statistical image reconstruction

e Object model

e Physics/system model

o Statistical model

e Cost function (log-likelihood + regularization)
e lterative algorithm for minimization

“Find the image x that best fits the sinogram data y according to the physics
model, the statistical model and prior information about the object”

Projection
Measurements

Parameters

e Repeatedly revisiting the sinogram data can use measurement statistics fully
e Repeatedly updating the image can exploit object properties
e .. greatest potential dose reduction, but repetition is expensive...



Example comparison

Thin-slice FBP ASIR

(Same sinogram, so all at same cose)

Statistical

NN



MBIR example: Routine chest CT

Helical chest CT study with dose = 0.09 mSv.
Typical CXR effective dose is about 0.06 mSv. Source: Health Physics Society.
http://www.hps.org/publicinformation/ate/g2372.html

FBP MBIR

Veo (MBIR) images courtesy of Jiang Hsieh, GE Healthcare



Five Choices for Statistical Image Reconstruction

1. Object model

2. System physical model

3. Measurement

4. Cost function: data-mismatch and
5. Algorithm / initialization

No perfect choices - one can critique all approaches!

Historically these choices are often left implicit in publications,
but being explicit facilitates reproducibility.



Choice 1. Object Parameterization

M. Continuous object: f(7) = u(7).

Finite measurements: {y;}
“All models are wrong but some models are useful.”

Linear series expansion approach. Represent f(¥) by x = (x,...,xy) where
N
f(?) = f(F) =Y x;b;(7) + “basis functions”
j=1
Reconstruction problem becomes “discrete-discrete:” estimate x from y

Numerous basis functions in literature. Two primary contenders:
e voxels
e blobs (Kaiser-Bessel functions)
+ Blobs are approximately band-limited (reduced aliasing?)
Blobs have larger footprints, increasing computation.

Open question: how small should the voxels be?

One practical compromise: wide FOV coarse-grid reconstruction followed
by fine-grid refinement over ROI, e.g., Ziegler et al., Med. Phys., Apr. 2008



Global reconstruction: An inconvenient truth

70-cm FQOV reconstruction

Thibault et al., Fully3D, 2007

For a statistical approach to interior tomography, see Xu et al., IEEE T-MI, May 2011.



Voxel size matters?

digital phantom

5122 grid 10242 grid

Unregularized OS reconstructions. Zbijewski & Beekman, PMB, Jan. 2004



Choice 2. System model / Physics model

scan geometry

e source intensity I

o spatial variations (air scan)

o intensity fluctuations

resolution effects

o finite detector size / detector spatial response
o finite X-ray spot size / anode angulation
o detector afterglow / gantry rotation
spectral effects

o X-ray source spectrum

o bowtie filters

o detector spectra response

scatter

/ trade-offs
e computation time
e accuracy/artifacts/resolution/contrast

e dose?



Detector size modeling matters

From (De Man and Basu, PMB, Jun. 2004) MLTR of rabbit heart
Ray-driven (idealized point detector)
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Forward- / Back-projector “Pairs”

Typically iterative algorithms require two key steps.
e forward projection (image domain to projection domain):

Y
y = Ax, yi= Zaijxj = [Ax],
j=1
e backprojection (projection domain to image domain):

M
/
z=AY, Zj:Zaijyi
i=1

The term “forward/backprojection pair” often refers to some implicit choices
for the object basis and the system model.

Sometimes A’y is implemented as By for some “backprojector” B # A’.
Especially in SPECT and sometimes in PET and CT.

Least-squares solutions (for example):

&% = argmin ||y — Ax||> = [A’A] "' A’y + [BA] ' By

X



Mismatched Backprojector B # A’

X % (PWLS-CG) % (PWLS-CG)

Matched Mismatched
cf. SPECT/PET reconstruction — usually unregularized



Choice 3. Statistical Model

The physical model describes measurement mean,
e.g., for a monoenergetic X-ray source and ignoring scatter etc.:

— N
I = Iye Li=1%i%

The raw noisy measurements {/;} are distributed around those means.
Statistical reconstruction methods require a model for that distribution.

/ Trade offs: using more accurate statistical models
e may lead to less noisy images
e may incur additional computation
e may involve higher algorithm complexity.

CT measurement statistics are very complicated, particularly at low doses.
e incident photon flux variations (Poisson)
e X-ray photon absorption/scattering (Bernoulli)
e energy-dependent light production in scintillator (?)
e shot noise in photodiodes (Poisson?)
e electronic noise in readout electronics (Gaussian?)
Whiting, SPIE 4682, 2002; Lasio et al., PMB, 2007; Massoumzadeh et al., PMB 2009
e Inaccessibility of raw sinogram data



To log() or not to log() — That is the question

Models for “raw” data I; (before logarithm)

e compound Poisson (complicated) Whiting, SPIE 4682, 2002;
Elbakri & Fessler, SPIE 5032, 2003; Lasio et al., PMB, Apr. 2007

e Poisson + Gaussian (photon variability and electronic readout noise):
I; ~ Poisson{I;} + N(0,7)

Snyder et al., JOSAA, May 1993 & Feb. 1995 .

e Shifted Poisson approximation (matches first two moments):
= I+ 62]+ ~ Poisson{; + 62}

Yavuz & Fessler, MIA, Dec. 1998

e Ordinary Poisson (ignore electronic noise):
I; ~ Poisson{[;}

Rockmore and Macovski, TNS, Jun. 1977; Lange and Carson, JCAT, Apr. 1984

e Photon-counting detectors would simplify statistical modeling

All are somewhat complicated by the of the physics: I; = e 144



After taking the log()
Taking the log leads to a simpler linear model (ignoring beam hardening):

I;
y; = —log (—) ~ |Ax|. + &
Iy

Drawbacks:

e Undefined if I; <0 (due to electronic noise); bad for very scans
o ltis biased (by Jensen’s inequality): E[y;] > —log(;/1) = [Ax],

e Exact distribution of log-domain noise ¢; is intractable.

Practical approach: assume Gaussian noise model: & ~ N(0, 57)

Options for modeling noise variance 67 = Var{g;}
. . . . T 2
» consider both Poisson and Gaussian noise effects: o? = 4t

Ii
(Thibault et al., SPIE 6065, 2006)
o consider just Poisson effect: 67 = 7 (Sauer & Bouman, T-SP, Feb. 1993)

e pretend it is white noise: 67 = o
e ignore noise altogether and “solve” y = Ax

Whether using pre-log data is better than post-log data is an open question,
especially for very scans (cf. experience with PET rod scans).



Choice 4. Cost Functions

Components:

e 4.1 Data-mismatch term

e 4.2 Reqgularization term (and regularization parameter 3)

e 4.3 Constraints (e.g., nonnegativity: minor effect on noise /

Reconstruct image x by finding minimizer of a cost function:
¥ = argmin ¥(x)
x>0

\,—l/
Constraints

¥ (x) = DataMismatch(y,Ax) + 8 Regularizer(x)
Forcing too much “data fit” alone would give noisy images.

Equivalent to a Bayesian MAP (maximum a posteriori) estimator.

Distinguishes “statistical methods” from “algebraic methods” for “y = Ax.

Such optimization-based formulation appears to be key to

Theoretically optimizes bias-variance trade-off (Eldar, IEEE T-SP, Jul. 2004)

tH]



Choice 4.1: Data-Mismatch Term

Standard choice is the negative log-likelihood of statistical model:
M

DataMismatch = —L(x;y) = —logp(y|x) = Z —logp(yi|x) .
i=1

e For pre-log data I with shifted Poisson model:
M
—L(x;I) = Z (I + 62) — L+ 62] . log (I + 62), [, = [ye™ A4
i=1
This can be non-convex if o> > 0;
it is convex if we ignore electronic noise o = 0. Trade-off ...
e For post-log data y with Gaussian model:
1

M

|

—L(x;y) = Zwii(yi — [Ax]i)2 = E(y —Ax)W (y — Ax), w; = 1/61-2
i—1

This is a kind of (data-based) weighted least squares (WLS).
It is always convex in x. Quadratic functions are “easy” to minimize.

e Effect on IS related to statistical model accuracy



Choice 4.2: Regularization

How to control noise due to ill-conditioning in tomography?
Perhaps the most important factor influencing “how low can we go’

J

Noise-control methods (used in clinical PET reconstruction today):
e Stop an unregularized algorithm before convergence
e Over-iterate an unregularized algorithm then post-filter

Other possible “simple” solutions:

e Modify the raw data (pre-filter / denoise)
o Filter between iterations

o ...

Appeal:
e simple / familiar
e filter parameters have intuitive units (e.g., FWHM),
unlike a regularization parameter 3
e Changing a post-filter does not require re-iterating,
unlike changing a regularization parameter 3



Regularization options

Options for regularizer R(x) in increasing complexity:
e quadratic roughness

e convex, non-quadratic roughness

e non-convex roughness

e total variation

e convex sparsity

e Non-convex sparsity

e Reducing noise without degrading spatial resolution

e Balancing regularization strength between and within slices

e Parameter selection

o Computational complexity (voxels have 26 immediate neighbors in 3D)
e Preserving “familiar” noise texture

e Optimizing clinical task performance

Many open questions...
Which regularization method can enable the scans?



Roughness Penalty Functions

ZZW

kEJV

o ;= neighborhood of jth pixel
(e.g., left, right, up, down in 2D; 26 neighbors in 3D)
o  called the potential function

Quadratic vs Non—quadratic Potential Functions

—— Parabola (quadratic)
- - Huber, 6=1
- Hyperbola, 8=1

quadratic: y(z ) =1?

hyperbola: y(t) = \/1+
(edge preservatlon)

(t/8)?



Regularization parameters: Dramatic effects on 1Q

“qg generalized gaussian” potential function with tuning parameters: 8,6, p,g:

1|4|P
5 |t
1 (Thibault et al., Med. Phys., Nov. 2007)

Byl(r)= 61+ GG

p— p=2,g=12,6—=10HU  p=g—1.1
noise: 11.1 10.9 10.8
(#lp/cm): 4.2 7.2 8.2

Which parameter choice enables the scan?



Piecewise constant phantoms

Phantom: FBP:

MLEM: MAP:

Lee et al., IEEE T-NS, 2002, 300K counts
non-convex “broken parabola” potential function and deterministic annealing



Summary of statistical image reconstruction choices

1. Object parameterization

2. System physical model

3. Measurement statistical model

4. Cost function: data-mismatch / regularization / constraints

Reconstruction Method = Models + Cost Function + Algorithm

5. Minimization algorithms: x = argmin ¥(x)

b

o The minimization algorithm has no affect on image quality /
if we iterate “until convergence.”

o For convergent algorithms, 1Q determined entirely by cost function ¥
including the models within it.

o What happens we stop iterating “before convergence?” Affects ?
(Depends on algorithm and initial image...)

o Finding fast algorithms for arg min is key to ubiquitous low-dose CT.
e.g., alternating direction method of multipliers (ADMM)
(Ramani & Fessler, IEEE T-MI, Mar. 2012)




Summary: Factors that affect dose reduction

In conjectured order from most important to least:

1. Regularizer

2. Statistical model / data-mismatch term
3. System model

4. Object model / non-negativity constraint
5. lterative minimization algorithm



Other considerations that affect dose reduction

e 2D versus 3D reconstruction
o 8 immediate neighbors in 2D versus 26 neighbors in 3D
o transaxial versus axial relationships

e axial versus helical scans

e angular sampling: fine versus sparse

e dual energy / spectral CT versus single kVp



Recent dose figures for statistical image reconstruction

Yadava et al., AAPM 2010, AAPM 2011

“average-probability-of-detection and average-detection-score of full dose
FBP and 1/4th dose Veo [MBIR] are comparable.”

Cohen et al., AAPM 2011
[Phantom] “measurement differences between full dose FBP and 1/4th dose
Veo were found to be statistically insignificant, indicating similar image qual-

ity.”

Katsura et al., Eur. Radiol. Aug. 2012 (hot off the press)
Compared FBP, ASIR, and “MBIR” (with no almost description);
concluded MBIR can work with “80% less radiation.”



How low (dose) can you go?

0% LOVEN) JOY GOz http://laidoffinnyc.wordpress.com/2009/03/04/

e Depends on where you start
e Depends on many reconstruction method choices
o all of which affect 1Q
(which is harder to assess for nonlinear reconstruction methods)
e See next symposium...
e Conjecture: sub-mSv exams are achievable
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