GPU acceleration of 3D forward and backward projection using separable footprints for X-ray CT image reconstruction

Meng Wu and Jeffrey A. Fessler
EECS Department
University of Michigan

Fully 3D Image Reconstruction Conference
Workshop on High-Performance Image Reconstruction (HPIR)

July 11, 2011

http://www.eecs.umich.edu/~fessler
Overview

- Forward / back-projection is primary bottleneck for iterative reconstruction
- Tradeoff between computational complexity and system model accuracy
- Separable footprint approximation for cone-beam X-ray CT
- Implementations
 - multi-core CPU (shared memory)
 - multi-GPU
Typical iteration for statistical image reconstruction in CT

Penalized weighted least-squares (PWLS) cost function:

\[
\hat{x} = \arg\min_x \Psi(x), \quad \Psi(x) = \sum_{i=1}^{n_d} \frac{w_i}{2} (y_i - [Ax]_i)^2 + R(x)
\]

- unknown 3D image \(x = (x_1, \ldots, x_{n_p}) \) with \(n_p \) voxels
- \(y = (y_1, \ldots, y_{n_d}) \) CT (log) projection data with \(n_d \) rays
- \(w_i \): statistical weighting for \(i \)th ray, \(i = 1, \ldots, n_d \)
- \(A: n_d \times n_p \) system matrix
- \(R(x) \): edge-preserving regularizer
- forward projector: \([Ax]_i = \sum_{j=1}^{n_p} a_{ij}x_j \).

OS-type iteration:

\[
x^{(n+1)} = x^{(n)} + D \left(A'W(y - Ax^{(n)}) - \nabla R(x^{(n)}) \right)
\]
Cone-beam geometry

- x, y, z image voxel coordinates
- s, t detector coordinates
- β source position
- Assume z and t axes are parallel
3D forward- / back- projectors for X-ray CT

Mathematically:

3D forward projector:
\[g(s, t, \beta) = \sum_{x,y,z} a(s, t, \beta; x, y, z) f(x, y, z) \] (1)

3D back-projector:
\[b(x, y, z) = \sum_{s,t,\beta} a(s, t, \beta; x, y, z) g(s, t, \beta) \]

- \(f(x, y, z) \): image voxel values at 3D spatial location \(x, y, z \)
- \(g(s, t, \beta) \): measured projection views
- \(a(s, t, \beta; x, y, z) \): system model that describes the footprints of the voxel centered at \(x, y, z \) blurred by the detector response
- Typical detector response corresponds to detector element size.
System model / voxel footprints

Line-integral footprint

\[q(s, t, \beta; x, y, z) \]

Blurred footprint (big!)

\[a(s, t, \beta; x, y, z) \]

Shift-invariant detector response \(h(s, t) \):

\[
a(s, t, \beta; x, y, z) = \int \int h(s - s', t - t') q(s', t', \beta; x, y, z) \, ds' \, dt'.
\]

Rectangular detector elements: \(h(s, t) = \frac{1}{r_s r_t} \text{rect} \left(\frac{s}{r_s} \right) \text{rect} \left(\frac{t}{r_t} \right) \).
Line-integral footprints

Profiles in s (transaxial)

Profiles in t (axial)
Separable footprint (SF) approach: Approximation 1

SF approximation for line-integral footprint function: (Yong et al., T-MI, 2010):

\[
q(s, t, \beta; x, y, z) \triangleq v(s, t, \beta) u(\beta; x, y) \tilde{F}_1(s, \beta; x, y) \tilde{F}_2(t, \beta; x, y, z).
\]

- \(\tilde{F}_1\): trapezoidal footprint function for **transaxial** direction (along det. row)
- \(\tilde{F}_2\): rectangular footprint function for **axial** direction (along det. column)
- \(u(\beta; x, y)\): voxel-dependent amplitude function
- \(v(s, t, \beta)\): ray-dependent amplitude function.

(The amplitude functions require minimal computation time.)

Trapezoid vertices match exactly the projections of voxel boundaries.
Separable footprint (SF) approach: Approximation 2

Combining with separable model for detector blur \(h(s,t) \) yields SF approximation for (blurred) footprint function:

\[
a(s,t,\beta;x,y,z) \triangleq v(s,t,\beta) u(\beta;x,y) F_1(s,\beta;x,y) F_2(t,\beta;x,y,z).
\]

(2)

- \(F_1(s) \triangleq \frac{1}{r_s} \text{rect} \left(\frac{s}{r_s} \right) \ast \tilde{F}_1(s) \), \(F_2(t) \triangleq \frac{1}{r_t} \text{rect} \left(\frac{t}{r_t} \right) \ast \tilde{F}_2(t) \)

- Closely approximates the true blurred footprint for small cone angles.
- More accurate than distance-driven (DD) approximation.
- (Self-consistent across resolution scales.)
- The main computational work is related to \(F_1 \) and \(F_2 \).
- Separability simplifies implementation.
Blurred footprint approximations: near $z = 0$

$q(s, t; \beta; \vec{n})$

$q(s, t; \beta; \vec{n})$

$\vec{n} = (100, 150, 15)$, $\beta = 0$, Azimuthal angle through voxel center: 14.3°. Polar angle: 2.1°.
Blurred footprint approximations: off center

\[q(s, t; \beta; \vec{n}) \]

\[q(s, t; \beta; \vec{n}) \]

\[\vec{n} = (100, 150, -100). \beta = 135^\circ. \text{Azimuthal angle through voxel center: } 138^\circ. \text{Polar angle: } 7.8^\circ. \]
SF projector maximum error (single voxel)

Worst-case error between exact blurred footprint and an approximation:

\[e(\beta; \vec{n}) \triangleq \max_{s,t \in \mathbb{R}} |F(s, t; \beta; \vec{n}) - F_{\text{approximation}}(s, t; \beta; \vec{n})| \]

Maximum errors on a logarithmic scale for a 1mm\(^3\) size voxel.
SF implementation

Efficient implementation of forward projection (1) using separability (2):

\[
g(s, t, \beta) = \sum_{x,y,z} a(s, t, \beta; x, y, z) f(x, y, z)
\]

\[
= v(s, t, \beta) \sum_{x,y} F'_1(s, \beta; x, y) \left[\sum_{z} F_2(t, \beta; x, y, z) f(x, y, z) \right],
\]

(3)

for modified transaxial footprint function:

\[
F'_1(s, \beta; x, y) \triangleq u(\beta; x, y) F_1(s, \beta; x, y).
\]

(4)

Back-projector:

\[
b(x, y, z) = \sum_{\beta} \sum_{t} F_2(t, \beta; x, y, z) \left[\sum_{s} F'_1(s, \beta; x, y) g'(s, t, \beta) \right],
\]

(5)

view-dependent scaling of projection views:

\[
g'(s, t, \beta) \triangleq v(s, t, \beta) g(s, t, \beta).
\]
SF projector implementation on multi-core CPU

\[g(s, t, \beta) = v(s, t, \beta) \sum_{x,y} F'_1(s, \beta; x, y) \left[\sum_z F_2(t, \beta; x, y, z) f(x, y, z) \right] \]

- each core/thread handles a distinct set of projection views
 - for each \(\beta \) in set
 - initialize working projection view array to zero: \(g'(s, t; \beta) := 0 \)
 - for each \(x, y \)
 - compute \(F'_1(s, \beta; x, y) \) (trapezoid \(*\) rect; typically 2-10 samples)
 - for each \(t \) (\(\sum_z \) is 1-3 terms so unroll):
 \[p(t; x, y, \beta) := \sum_z F_2(t, \beta; x, y, z) f(x, y, z) \]
 - accumulate into working projection view array
 \[g'(s, t; \beta) += F'_1(s, \beta; x, y) p(t; x, y, \beta) \]
 - scale view and write to main memory:
 \[g(s, t, \beta) := v(s, t, \beta) g'(s, t; \beta). \]

Parallelization by view is easy on multi-core CPU, but speedup can be limited by memory bandwidth.
SF projector implementation on CPU: Wall time

64-slice CT, one helix turn.

Shortest time: 5.5 sec for 64 (or 96) threads on Intel 32-core.
SF projector implementation on CPU: Speedup

Speedup saturates at about $20 \times$ on 48-core AMD Opteron system, with parallelization across views. Memory bandwidth even more of an issue on GPU \rightarrow not view based.
SF back-projector implementation on CPU: Wall time

64-slice CT, one helix turn.
Shortest time: 10.3 sec for 94 threads on Intel 32-core.
SF back-projector implementation on CPU: Speedup

Speedup saturates at about $16 \times$ on 48-core AMD Opteron system, with parallelization across x,y locations.
$g(s,t,\beta) = v(s,t,\beta) \sum_{x,y} F'_1(s,\beta;x,y) \left[\sum_z F_2(t,\beta;x,y,z) f(x,y,z) \right]$

For each view: (All threads work on a single view.)

- $p(t,x,y;\beta) := 0$ [64,512,512]
- Kernel 1
 - parfor each x,y: compute and store $F'_1(s,\beta;x,y)$ [10,512,512]
- Kernel 2
 - parfor each x,y,z: $p(t,x,y;\beta) += F_2(t,\beta;x,y,z) f(x,y,z)$ [64,512,512]
 (Typically each voxel contributes to at most 3 detector rows, i.e., values of t.)
- Kernel 3
 - parfor each x,y and t: $g'(s,t;\beta) += F'_1(s,\beta;x,y) p(t,x,y;\beta)$ [888,64]
 (Typically each voxel contributes to 2-10 detector columns, i.e., values of s.)
- Kernel 4
 - parfor each s and t: $g(s,t,\beta) = v(s,t,\beta)g'(s,t;\beta)$

- More intermediate storage than CPU version.
- Read-modify-write errors. Synchronization impractical.
Disjoint footprint decomposition

Footprints of different voxels overlap \Rightarrow parallelization across arbitrary (x, y) values causes read-modify-write errors.

Solution: identify sets of voxel strips having *disjoint footprints*.

- Loop over sets
- Parallelize across strips.
- Loop over voxels within strips
Parallelization with disjoint footprints

- Typical number of transaxial detector channels: \(N_s = 888 \)
- Typical largest footprint size: 10
- \(\implies \) 88-way parallelization within each voxel set

Further parallelization:
- Across detector rows \(N_t = 64 \)
- Across helix turns for same angles
- Across projection views (if memory / bandwidth permits)

Details

voxel set: \(\mathcal{V}_s \triangleq \{(x, y) : s_{\text{min}}(\beta, x, y) = s\} \).

- \(\mathcal{V}_0, \mathcal{V}_{10}, \mathcal{V}_{20}, \ldots \)
- \(\mathcal{V}_1, \mathcal{V}_{11}, \mathcal{V}_{21}, \ldots \)
- \(\vdots \)
- \(\mathcal{V}_9, \mathcal{V}_{19}, \mathcal{V}_{29}, \ldots \)
SF implementation on GPU: Version 4

\[g(s,t,\beta) = v(s,t,\beta) \sum_{x,y} F'_1(s,\beta;x,y) \left[\sum_z F_2(t,\beta;x,y,z) f(x,y,z) \right] \]

For each view \(\beta \):

- \(g'(s,t;\beta) := 0 \)
- GPU Kernel 1
 - parfor each \(x,y \): compute and store \(F'_1(s,\beta;x,y) \)
- CPU function 2: form voxel set lists \(V_s \) for this view \(\beta \)
- CPU loop: for \(k=0:9 \)
 - GPU Kernel 3
 - parfor each \(t \) and \(s' \in \{s : \text{mod}(s,10) = k\} \):
 - \(p(s,t,s';k,\beta) := 0 \)
 - loop over \(x,y \) in \(V_{s'} \):
 - \(p(s,t,s';k,\beta) += F'_1(s,\beta;x,y) \sum_z F_2(t,\beta;x,y,z) f(x,y,z) \)
 - accumulate: \(g'(s,t;\beta) += p(s,t,s';k,\beta) \)
 - GPU Kernel 4
 - parfor each \(s \) and \(t \):
 - \(g(s,t,\beta) = v(s,t,\beta) g'(s,t;\beta) \)

(Parallelization across helix turns and views omitted for simplicity.)
GPU vs CPU results

- NVDIA CUDA
- Tedious manual optimization of number of blocks/threads
- GE LightSpeed X-ray CT geometry: \(N_s = 888 \) detector channels, \(N_t = 64 \) detector rows, \(N_\beta = 984 \) views over 360\(^\circ\).
- 3D object size: \(512 \times 512 \times 640 \).
- Times averaged over 5 runs.
- CPU: 12-core (two 2.66 GHz Intel Xeon X5650 processors); 24 threads
- GPU: four 1.15 GHz NVDIA Tesla C2050
Single helix turn results

Forward projection computation time for 1 helical turn, single GPU.

<table>
<thead>
<tr>
<th>GPU kernel 1</th>
<th>CPU function 2</th>
<th>GPU kernel 3</th>
<th>GPU kernel 4</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.8 s</td>
<td>9.9 s</td>
<td>2.1 s</td>
<td>1.1 s</td>
<td>20.9 s</td>
</tr>
</tbody>
</table>

Footprint F'_1 and voxel set construction dominates execution time. Footprints and voxel sets can be re-used across helix turns. Only GPU kernel 3 and 4 are needed for subsequent turns.
GPU memory use

- 640 MB for 3D image
- 2 MB for 8 projection views
- 10 MB for F_1', F_2, u, v etc.

Total less than 1 GB.
Tesla C2050 has 3 GB.

Global memory accesses:
- $12N_xN_y$ in kernel 1,
- $22N_sN_t$ in kernels 3 and 4.
Results for 8-turn helix: Multiple GPUs

Multiple GPU parallelization
- forward projection: distribute views
- back projection: partition \(x, y\) plane

Forward and back-projection computation times
24-thread CPU version and GPU version for 8-turn helix

<table>
<thead>
<tr>
<th></th>
<th>CPU</th>
<th>single GPU</th>
<th>dual GPU</th>
<th>quad GPU</th>
<th>when</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forward projection</td>
<td>145 s</td>
<td>52 s</td>
<td>45 s</td>
<td>45 s</td>
<td>abstract</td>
</tr>
<tr>
<td>Back projection</td>
<td>156 s</td>
<td>114 s</td>
<td>71 s</td>
<td>50 s</td>
<td>abstract</td>
</tr>
<tr>
<td></td>
<td>100 s</td>
<td>44 s</td>
<td>26 s</td>
<td>33 s</td>
<td>new</td>
</tr>
</tbody>
</table>

Dual-GPU version is 3-4 \(\times\) faster than 12-core (24-thread) CPU version, for 8-turn helix.

Limited by memory bandwidth? Lack of experience? More investigation needed...
Summary

- Separable footprint method amenable to parallelization with multi-core CPU or GPU
- CPU parallelization across views was trivial. 42× speedup over single CPU-core on expensive 32-core system
- GPU implementation provided modest acceleration factors with substantial programming pain. *
- Perhaps (much?) greater acceleration possible with further optimization.

- Tesla C2050: $2400
- Intel Xeon x7560: $4000

Possible improvements to CPU version based on GPU experience
- Use disjoint voxel sets so that multiple cores work on same view?
- Exploit symmetry between helix turns (re-using footprints and voxel sets).

* perhaps more so for the student than for the professor...