Statistical image reconstruction methods for low-dose X-ray CT

Jeffrey A. Fessler

EECS Department University of Michigan

http://www.eecs.umich.edu/~fessler

Universitat Zu Lübeck July 8, 2011

Full disclosure

- Research support from GE Healthcare
- Research support to GE Global Research
- Work supported in part by NIH grant R01-HL-098686
- Research support from Intel

Credits

Current students / post-docs

- Jang Hwan Cho
- Se Young Chun
- Donghwan Kim
- Yong Long
- Madison McGaffin
- Sathish Ramani
- Stephen Schmitt

GE collaborators

- Jiang Hsieh
- Jean-Baptiste Thibault
- Bruno De Man

CT collaborators

- Mitch Goodsitt, UM
- Ella Kazerooni, UM
- Neal Clinthorne, UM
- Paul Kinahan, UW

Former PhD students (who did/do CT)

- Wonseok Huh, Bain & Company
- Hugo Shi, Enthought
- Joonki Noh, Emory
- Somesh Srivastava, JHU
- Rongping Zeng, FDA
- Yingying, Zhang-O'Connor, RGM Advisors
- Matthew Jacobson, Xoran
- Sangtae Ahn, GE
- Idris Elbakri, CancerCare / Univ. of Manitoba
- Saowapak Sotthivirat, NSTDA Thailand
- Web Stayman, JHU
- Feng Yu, Univ. Bristol
- Mehmet Yavuz, Qualcomm
- Hakan Erdoğan, Sabanci University

Former MS / undegraduate students

- Kevin Brown, Philips
- Meng Wu, Stanford

A picture is worth 1000 words

(and perhaps several 1000 seconds of computation?)

Thin-slice FBP

ASIR

Seconds

A bit longer

Statistical

Much longer

Why statistical methods for CT?

- Accurate physical models
 - X-ray spectrum, beam-hardening, scatter, ... reduced artifacts? quantitative CT?
 - X-ray detector spatial response, focal spot size, ... improved spatial resolution?
 - detector spectral response (*e.g.*, photon-counting detectors)
- Nonstandard geometries
 - transaxial truncation (big patients)
 - long-object problem in helical CT
 - irregular sampling in "next-generation" geometries
 - coarse angular sampling in image-guidance applications
 - limited angular range (tomosynthesis)
 - "missing" data, e.g., bad pixels in flat-panel systems
- Appropriate statistical models
 - weighting reduces influence of photon-starved rays (FBP treats all rays equally)
 - \circ reducing image noise or dose

and more...

- Object constraints
 - \circ nonnegativity
 - object support
 - piecewise smoothness
 - object sparsity (*e.g.*, angiography)
 - \circ sparsity in some basis
 - \circ motion models
 - dynamic models

```
0 ...
```

Disadvantages?

- Computation time (super computer)
- Must reconstruct entire FOV
- Model complexity
- Software complexity
- Algorithm nonlinearities
 - Difficult to analyze resolution/noise properties (*cf.* FBP)
 - Tuning parameters
 - Challenging to characterize performance

"Iterative" vs "Statistical"

- Traditional successive substitutions iterations
 - e.g., Joseph and Spital (JCAT, 1978) bone correction
 - usually only one or two "iterations"
 - not statistical

Algebraic reconstruction methods

• Given sinogram data y and system model A, reconstruct object x by

"solving"
$$y = Ax$$

- ART, SIRT, SART, ...
- iterative, but typically not statistical
- Iterative filtered back-projection (FBP):

- Statistical reconstruction methods
 - Image domain
 - Sinogram domain
 - Fully statistical (both)
 - Hybrid methods (*e.g.*, AIR, SPIE 7961-18, Bruder *et al.*)

"Statistical" methods: Image domain

Denoising methods

$$egin{array}{c} {
m sinogram} y &
ightarrow {
m FBP}
ightarrow {
m reconstruction}
ightarrow {
m iterative} {
m denoiser}
ightarrow {
m final} \ {
m denoiser}
ightarrow {
m image} {
m transform {
m sinogram} {
m sinogra$$

- Relatively fast, even if iterative
- Remarkable advances in denoising methods in last decade

Zhu & Milanfar, T-IP, Dec. 2010, using "steering kernel regression" (SKR) method Challenges:

- Typically assume white noise
- Streaks in low-dose FBP appear like edges (highly correlated noise)

• Image denoising methods "guided by data statistics"

- Image-domain methods are fast (thus practical)
- ASIR? IRIS? ...
- The technical details are often a mystery...

Challenges:

• FBP often does not use all data efficiently (*e.g.*, Parker weighting)

Low-dose CT statistics most naturally expressed in sinogram domain

"Statistical" methods: Sinogram domain

Sinogram restoration methods

noisy	adaptive	cleaned	final
sinogram \rightarrow	or iterative	\rightarrow sinogram \rightarrow	\rightarrow FBP \rightarrow image
У	denoiser	ŷ	\hat{x}

- Adaptive: J. Hsieh, Med. Phys., 1998; Kachelrieß, Med. Phys., 2001, ...
- Iterative: P. La Riviere, IEEE T-MI, 2000, 2005, 2006, 2008
- Relatively fast even if iterative

Challenges:

- $\circ\,$ Limited denoising without resolution loss
- $\circ\,$ Difficult to "preserve edges" in sinograms

FBP, 10 mA FBP from denoised sinogram Wang *et al.*, T-MI, Oct. 2006, using PWLS-GS on sinogram

(True? Fully? Slow?) Statistical reconstruction

- Object model
- Physics/system model
- Statistical model
- Cost function (log-likelihood + regularization)
- Iterative algorithm for minimization

"Find the image \hat{x} that best fits the sinogram data y according to the physics model, the statistical model and prior information about the object"

- Repeatedly revisiting the sinogram data can use statistics fully
- Repeatedly updating the image can exploit object properties
- .: greatest potential dose reduction, but repetition is expensive...

History: Statistical reconstruction for PET

 Iterative method for emission tomography 	(Kuhl, 1963)			
 Weighted least squares for 3D SPECT 	(Goitein, NIM, 1972)			
 Richardson/Lucy iteration for image restoration 	(1972, 1974)			
• Poisson likelihood (emission) (Rockmore and	Macovski, TNS, 1976)			
• Expectation-maximization (EM) algorithm (Shepp	and Vardi, TMI, 1982)			
 Regularized (aka Bayesian) Poisson emission reconstruction (Geman and McClure, ASA, 1985) 				
 Ordered-subsets EM (OSEM) algorithm (Hudson a 	and Larkin, TMI, 1994)			
 Commercial release of OSEM for PET scanners 	circa 1997			

Today, most commercial PET systems include *unregularized* OSEM.

15 years between key EM paper (1982) and commercial adoption (1997) (25 years if you count the R/L paper in 1972 which is the same as EM)

Key factors in PET

- OS algorithm accelerated convergence by order of magnitude
- Computers got faster (but problem size grew too)
- Key clinical validation papers?
- Key numerical observer studies?
- Nuclear medicine physicians grew accustomed to appearance of images reconstructed using statistical methods

History: Statistical reconstruction for CT*

- Iterative method for X-ray CT
- ART for tomography (Gordon, Bender, Herman, JTB, 1970)
- ...
- Roughness regularized LS for tomography (Kashyap & Mittal, 1975)
- Poisson likelihood (transmission) (Rockmore and Macovski, TNS, 1977)
- EM algorithm for Poisson transmission (Lange and Carson, JCAT, 1984)
- Iterative coordinate descent (ICD) (Sauer and Bouman, T-SP, 1993)
- Ordered-subsets algorithms

(Manglos *et al.*, PMB 1995) (Kamphuis & Beekman, T-MI, 1998) (Erdoğan & Fessler, PMB, 1999)

• ...

Commercial introduction for CT scanners

circa 2010

(Hounsfield, 1968)

RSNA 2010

Zhou Yu, Jean-Baptiste Thibault, Charles Bouman, Jiang Hsieh, Ken Sauer

Five Choices for Statistical Reconstruction

- 1. Object model
- 2. System physical model
- 3. Measurement statistical model
- 4. Cost function: data-mismatch and regularization
- 5. Algorithm / initialization

No perfect choices - one can critique all approaches!

Historically these choices are often left implicit in publications, but being explicit facilitates reproducibility

Choice 1. Object Parameterization

Finite measurements: $\{y_i\}_{i=1}^M$.

Continuous object: $f(\vec{r}) = \mu(\vec{r})$.

"All models are wrong but some models are useful."

Linear *series expansion* approach. Represent $f(\vec{r})$ by $\mathbf{x} = (x_1, \dots, x_N)$ where

$$f(\vec{r}) \approx \tilde{f}(\vec{r}) = \sum_{j=1}^{N} x_j b_j(\vec{r}) \leftarrow$$
 "basis functions"

Reconstruction problem becomes "discrete-discrete:" estimate x from y

Numerous basis functions in literature. Two primary contenders:

- voxels
- blobs (Kaiser-Bessel functions)
 - + Blobs are approximately band-limited (reduced aliasing?)
 - Blobs have larger footprints, increasing computation.

Open question: how small should the voxels be?

One practical compromise: wide FOV coarse-grid reconstruction followed by fine-grid refinement over ROI, *e.g.*, Ziegler *et al.*, Med. Phys., Apr. 2008

Global reconstruction: An inconvenient truth

70-cm FOV reconstruction

Thibault et al., Fully3D, 2007

Voxel size matters?

Unregularized OS reconstructions. Zbijewski & Beekman, PMB, Jan. 2004

Choice 2. System model / Physics model

- scan geometry
- source intensity *I*₀
 - spatial variations (air scan)
 - intensity fluctuations
- resolution effects
 - \circ finite detector size / detector spatial response
 - finite X-ray spot size / anode angulation Inhomogeneous
 - detector afterglow
- spectral effects
 - X-ray source spectrum
 - \circ bowtie filters
 - detector spectra response
- scatter
- ...

Challenges / trade-offs

- computation time versus
- accuracy/artifacts/resolution/contrast versus
- dose?

Exponential edge-gradient effect

Fundamental difference between emission tomography and CT:

Recorded intensity for *i*th ray:

(Joseph and Spital, PMB, May 1981)

$$I_{i} = \int_{\text{source}} \int_{\text{detector}} I_{0}(\vec{p}_{s}, \vec{p}_{d}) \exp\left(-\int_{\mathscr{L}(\vec{p}_{s}, \vec{p}_{d})} \mu(\vec{r}) d\ell\right) d\vec{p}_{d} d\vec{p}_{s}$$

$$\neq I_{0} \exp\left(-\int_{\text{source}} \int_{\text{detector}} \int_{\mathscr{L}(\vec{p}_{s}, \vec{p}_{d})} \mu(\vec{r}) d\ell d\vec{p}_{d} d\vec{p}_{s}\right).$$

Usual "linear" approximation:

$$I_i \approx I_0 \exp\left(-\sum_{j=1}^N a_{ij} x_j\right), \qquad \underbrace{a_{ij} \triangleq \int_{\text{source}} \int_{\text{detector}} \int_{\mathscr{L}(\vec{p}_s, \vec{p}_d)} b_j(\vec{r}) \, \mathrm{d}\ell \, \mathrm{d}\vec{p}_d \, \mathrm{d}\vec{p}_s}_{\text{elements of system matrix } A}$$

"Line Length" System Model

Assumes (implicitly?) that source is a point and detector is a point.

"Strip Area" System Model

Account for finite detector width. Ignores nonlinear partial-volume averaging.

Practical (?) implementations in 3D include

- Distance-driven method (De Man and Basu, PMB, Jun. 2004)
- Separable-footprint method (Long et al., T-MI, Nov. 2010)
- Further comparisons needed...

Lines versus strips

From (De Man and Basu, PMB, Jun. 2004)

MLTR of rabbit heart

Ray-driven (idealized point detector)

Distance-driven (models finite detector width)

Forward- / Back-projector "Pairs"

Typically iterative algorithms require two key steps.

• forward projection (image domain to projection domain):

$$\bar{\mathbf{y}} = \mathbf{A}\mathbf{x}, \qquad \bar{y}_i = \sum_{j=1}^N a_{ij}x_j = [\mathbf{A}\mathbf{x}]_i$$

• backprojection (projection domain to image domain):

$$\boldsymbol{z} = \boldsymbol{A}' \boldsymbol{y}, \qquad z_j = \sum_{i=1}^M a_{ij} y_i$$

The term "forward/backprojection pair" often refers to some implicit choices for the object basis and the system model.

Sometimes A'y is implemented as By for some "backprojector" $B \neq A'$. Especially in SPECT and sometimes in PET.

Least-squares solutions (for example):

$$\hat{\boldsymbol{x}} = \underset{\boldsymbol{x}}{\operatorname{arg\,min}} \|\boldsymbol{y} - \boldsymbol{A}\boldsymbol{x}\|^2 = [\boldsymbol{A}'\boldsymbol{A}]^{-1}\boldsymbol{A}'\boldsymbol{y} \neq [\boldsymbol{B}\boldsymbol{A}]^{-1}\boldsymbol{B}\boldsymbol{y}$$

Mismatched Backprojector $B \neq A'$

cf. SPECT/PET reconstruction – usually unregularized

Projector/back-projector bottleneck

Challenges

- Projector/backprojector algorithm design
 - Approximations (*e.g.*, transaxial/axial separability)
 - Symmetry
- Hardware / software implementation
 GPU, CUDA, OpenCL, FPGA, SIMD, pthread, OpenMP, MPI, ...
- Further "wholistic" approaches?
 - e.g., Basu & De Man, "Branchless distance driven projection ...," SPIE 2006

• ...

Forward projector parallelization (Fully3D 2011)

Choice 3. Statistical Model

The physical model describes measurement mean, *e.g.*, for a monoenergetic X-ray source and ignoring scatter etc.:

$$\overline{I}_i([\mathbf{A}\mathbf{x}]_i) = I_0 e^{-\sum_{j=1}^N a_{ij} x_j}$$

The raw noisy measurements $\{I_i\}$ are distributed around those means. Statistical reconstruction methods require a model for that distribution.

Challenges / Trade offs: using more accurate statistical models

- may lead to less noisy images
- may incur additional computation
- may involve higher algorithm complexity.

CT measurement statistics are very complicated, more so at low doses

- incident photon flux variations (Poisson)
- X-ray photon absorption/scattering (Bernoulli)
- energy-dependent light production in scintillator (?)
- shot noise in photodiodes (Poisson?)
- electronic noise in readout electronics (Gaussian?)
 Whiting, SPIE 4682, 2002; Lasio *et al.*, PMB, Apr. 2007
- Inaccessibility of raw sinogram data

To log() or not to log() – That is the question

Models for "raw" data I_i (before logarithm)

- compound Poisson (complicated) Whiting, SPIE 4682, 2002; Elbakri & Fessler, SPIE 5032, 2003; Lasio *et al.*, PMB, Apr. 2007
- Poisson + Gaussian (photon variability and electronic readout noise):

 $I_i \sim \mathsf{Poisson}\{\overline{I}_i\} + \mathsf{N}(0, \sigma^2)$

Snyder et al., JOSAA, May 1993 & Feb. 1995.

• Shifted Poisson approximation (matches first two moments):

 $\tilde{I}_i \triangleq \left[I_i + \sigma^2\right]_+ \sim \mathsf{Poisson}\left\{\bar{I}_i + \sigma^2\right\}$

Yavuz & Fessler, MIA, Dec. 1998

• Ordinary Poisson (ignore electronic noise):

 $I_i \sim \mathsf{Poisson}\{\bar{I}_i\}$

Rockmore and Macovski, TNS, Jun. 1977; Lange and Carson, JCAT, Apr. 1984

Photon-counting detectors would simplify statistical modeling

All are somewhat complicated by the nonlinearity of the physics: $\bar{I}_i = e^{-[Ax]_i}$ 30

After taking the log()

Taking the log leads to a linear model (ignoring beam hardening):

$$y_i \triangleq -\log\left(\frac{I_i}{I_0}\right) \approx \left[\boldsymbol{A}\boldsymbol{x}\right]_i + \boldsymbol{\varepsilon}_i$$

Drawbacks:

- Undefined if $I_i \leq 0$ (*e.g.*, due to electronic noise)
- It is *biased* (by Jensen's inequality): $E[y_i] \ge -\log(\bar{I}_i/I_0) = [Ax]_i$
- Exact distribution of noise ε_i intractable

Practical approach: assume Gaussian noise model: $\varepsilon_i \sim N(0, \sigma_i^2)$

Options for modeling noise variance $\sigma_i^2 = Var\{\varepsilon_i\}$

- consider both Poisson and Gaussian noise effects: $\sigma_i^2 = \frac{\bar{I}_i + \sigma^2}{\bar{I}_i^2}$ Thibault *et al.*, SPIE 6065, 2006
- consider just Poisson effect: $\sigma_i^2 = \frac{1}{\overline{I_i}}$ (Sauer & Bouman, T-SP, Feb. 1993)
- pretend it is white noise: $\sigma_i^2 = \sigma_0^2$
- ignore noise altogether and "solve" y = Ax

Whether using pre-log data is better than post-log data is an open question.

Choice 4. Cost Functions

Components:

- Data-mismatch term
- *Regularization* term (and regularization parameter β)
- Constraints (*e.g.*, nonnegativity)

Reconstruct image \hat{x} by minimizing a cost function:

 $\hat{\boldsymbol{x}} \triangleq \underset{\boldsymbol{x} \ge \boldsymbol{0}}{\operatorname{arg\,min}\,\Psi(\boldsymbol{x})}$ $\Psi(\boldsymbol{x}) = \operatorname{DataMismatch}(\boldsymbol{y}, \boldsymbol{A}\boldsymbol{x}) + \beta \operatorname{Regularizer}(\boldsymbol{x})$

Forcing too much "data fit" alone would give noisy images.

Equivalent to a Bayesian MAP (maximum *a posteriori*) estimator.

Distinguishes "statistical methods" from "algebraic methods" for "y = Ax."

Choice 4.1: Data-Mismatch Term

Standard choice is the negative log-likelihood of statistical model:

DataMismatch =
$$-L(\boldsymbol{x}; \boldsymbol{y}) = -\log p(\boldsymbol{y}|\boldsymbol{x}) = \sum_{i=1}^{M} -\log p(y_i|\boldsymbol{x}).$$

• For pre-log data *I* with shifted Poisson model:

$$-L(\boldsymbol{x};\boldsymbol{I}) = \sum_{i=1}^{M} \left(\bar{I}_i + \sigma^2 \right) - \left[I_i + \sigma^2 \right]_+ \log \left(\bar{I}_i + \sigma^2 \right), \qquad \bar{I}_i = I_0 e^{-[\boldsymbol{A}\boldsymbol{x}]_i}$$

This can be non-convex if $\sigma^2 > 0$; it is convex if we ignore electronic noise $\sigma^2 = 0$. Trade-off ...

• For post-log data y with Gaussian model:

$$-L(\mathbf{x};\mathbf{y}) = \sum_{i=1}^{M} w_i \frac{1}{2} (y_i - [\mathbf{A}\mathbf{x}]_i)^2 = \frac{1}{2} (\mathbf{y} - \mathbf{A}\mathbf{x})' \mathbf{W} (\mathbf{y} - \mathbf{A}\mathbf{x}), \qquad w_i = 1/\sigma_i^2$$

This is a kind of (data-based) weighted least squares (WLS). It is always convex in x. Quadratic functions are "easy" to minimize.

Choice 4.2: Regularization

How to control noise due to ill-conditioning?

Noise-control methods in clinical use in PET reconstruction today:

- Stop an unregularized algorithm before convergence
- Over-iterate an unregularized algorithm then post-filter

Other possible "simple" solutions:

- Modify the raw data (pre-filter / denoise)
- Filter between iterations
- ...

Appeal:

- simple / familiar
- filter parameters have intuitive units (*e.g.*, FWHM), unlike a regularization parameter β
- Changing a post-filter does not require re-iterating, unlike changing a regularization parameter β

Dozens of papers on regularized methods for PET, but little clinical impact. (USC MAP method is available in mouse scanners.)

Edge-Preserving Reconstruction: PET Example

Quantification vs qualitative vs tasks...

More "Edge Preserving" PET Regularization

FBP	ML-EM	
Median-root	Huber	
prior	regularizer	

Chlewicki *et al.*, PMB, Oct. 2004; "Noise reduction and convergence of Bayesian algorithms with blobs based on the Huber function and median root prior"

Regularization in PET

Nuyts et al., T-MI, Jan. 2009:

MAP method outperformed post-filtered ML for lesion detection in simulation

Noiseless images:

PhantomML-EM filteredRegularized

Regularization options

Options for regularizer $R(\mathbf{x})$ in increasing complexity:

- quadratic roughness
- convex, non-quadratic roughness
- non-convex roughness
- total variation
- convex sparsity
- non-convex sparsity

Challenges

- Reducing noise without degrading spatial resolution
- Balancing regularization strength between and within slices
- Parameter selection
- Computational complexity (voxels have 26 neighbors in 3D)
- Preserving "familiar" noise texture
- Optimizing clinical task performance

Many open questions...

Roughness Penalty Functions

$$\mathsf{R}(\boldsymbol{x}) = \sum_{j=1}^{N} \frac{1}{2} \sum_{k \in \mathcal{N}_j} \boldsymbol{\psi}(x_j - x_k)$$

 $\mathcal{N}_j \triangleq$ *neighborhood* of *j*th pixel (*e.g.*, left, right, up, down) ψ called the *potential function*

quadratic: $\psi(t) = t^2$ hyperbola: $\psi(t) = \sqrt{1 + (t/\delta)^2}$ (edge preservation)

Regularization parameters: Dramatic effects

Thibault et al., Med. Phys., Nov. 2007

"q generalized gaussian" potential function with tuning parameters: β , δ , p, q:

$$\beta \psi(t) = \beta \frac{\frac{1}{2} |t|^p}{1 + |t/\delta|^{p-q}}$$

p = 2, q = 1	$1.2, \delta$:	= 10	ΗU
--------------	-----------------	------	----

p = q = 1.1

noise:	11.1	10.9	10.8
(#lp/cm):	4.2	7.2	8.2

Summary thus far

- 1. Object parameterization
- 2. System physical model
- 3. Measurement statistical model
- 4. Cost function: data-mismatch / regularization / constraints

Reconstruction Method Algorithm

5. Minimization algorithms:

$$\hat{x} = \operatorname*{arg\,min}_{x} \Psi(x)$$

Choice 5: Minimization algorithms

Conjugate gradients

- Converges slowly for CT
- Difficult to precondition due to weighting and regularization
- Difficult to enforce nonnegativity constraint
- Very easily parallelized

Ordered subsets

- Initially converges faster than CG if many subsets used
- Does not converge without relaxation etc., but those slow it down
- \circ Computes regularizer gradient $\nabla R(\mathbf{x})$ for every subset expensive?
- Easily enforces nonnegativity constraint
- Easily parallelized
- Coordinate descent (Sauer and Bouman, T-SP, 1993)
 - Converges high spatial frequencies rapidly, but low frequencies slowly
 - Easily enforces nonnegativity constraint
 - Challenging to parallelize
- Block coordinate descent
 - (Benson et al., NSS/MIC, 2010) Spatial frequency convergence properties depend...
 - Easily enforces nonnegativity constraint
 - More opportunity to parallelize than CD

Convergence rates

(De Man et al., NSS/MIC 2005)

In terms of iterations: CD < OS < CG < Convergent OS In terms of compute time? (it depends...)

Ordered subsets convergence

Theoretically OS does not converge, but it may get "close enough," even with regularization.

display: 930 HU \pm 58 HU

(De Man et al., NSS/MIC 2005)

Ongoing saga...

(SPIE, ISBI, Fully 3D, ...) 44

Optimization algorithms

Challenges:

- theoretical convergence (to establish gold standards)
- practical: near convergence in few iterations
- highly parallelizable
- efficient use of hardware: memory bandwidth, cache, ...
- predictable stopping rules
- partitioning of helical CT data across multiple compute nodes

Axial block coordinate descent (ABCD) (Fully3D 2011)

82-subset OS with two different (but similar) edge-preserving regularizers. One frame per every 10th iteration.

Resolution characterization: 2D CT

Challenge:

Shape of edge response depends on contrast for edge-preserving regularization.

Assessing image quality

Challenges:

- Resolution (PSF, edge response, MTF)
- Noise (predictions)
- Task-based performance measures Known-location versus unknown-location tasks

• ...

"How low can the dose go" - quite challenging to answer

Some open problems

Modeling

- $\circ\,$ Statistical modeling for very low-dose CT
- Resolution effects
- Spectral CT
- Object motion
- Parameter selection / performance characterization
 - Performance prediction for nonquadratic regularization
 - Effect of nonquadratic regularization on detection tasks
 - Choice of regularization parameters for nonquadratic regularization

• Algorithms

- optimization algorithm design
- software/hardware implementation
- Moore's law alone will not suffice
 - (dual energy, dual source, motion, dynamic, smaller voxels ...)
- Clinical evaluation
- ...

Current CT research in my group

Recent work

- Y. Long, J. A. Fessler, and J. M. Balter. 3D forward and back-projection for X-ray CT using separable footprints. *IEEE Trans. Med. Imag.*, 29(11):1839–50, Nov. 2010.
- Y. Lu, H-P. Chan, J. A. Fessler, L. Hadjiiski, J. Wei, M. Goodsitt, A. Schmitz, B. E. H. Claus, and F. W. Wheeler. Adaptive diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis (DBT) reconstruction. In *Proc. SPIE* 7961, 2011.
- Y. Lu, H-P. Chan, J. A. Fessler, L. Hadjiiski, J. Wei, M. Goodsitt, A. Schmitz, B. E. H. Claus, and F. W. Wheeler. Adaptive diffusion regularization for enhancement of microcalcifications in digital breast tomosynthesis (DBT) reconstruction. In *Proc. SPIE* 7961, 2011.
- W. Huh and J. A. Fessler. Iterative image reconstruction for dual-energy x-ray CT using regularized material sinogram estimates. ISBI 2011.
- D. Kim and J. A. Fessler. Accelerated ordered-subsets algorithm based on separable quadratic surrogates for regularized image reconstruction in X-ray CT. ISBI 2011.
- J-K. Kim, Z. Zhang, and J. A. Fessler. Hardware acceleration of iterative image reconstruction for X-ray computed tomography. ICASSP, 2011.

Forthcoming work

- J. A. Fessler and D. Kim. Axial block coordinate descent (ABCD) algorithm for X-ray CT image reconstruction. *Fully 3D*, 2011.
- S. Ramani and J. A. Fessler. Convergent iterative CT reconstruction with sparsitybased regularization. *Fully 3D*, 2011.
- M. Wu and J. A. Fessler. GPU acceleration of 3D forward and backward projection using separable footprints for X-ray CT image reconstruction. *Fully 3D (workshop)*, 2011.

Work in progress

- Spectral CT from a single sinogram using bow-tie filter
- Motion-compensated cardiac CT reconstruction
- Noise predictions for iterative CT reconstruction
- Application to lung CT (NIH R01 with GE GRC)
 - \circ lung nodule quantification
 - airway quantification
 - o observer studies?

Bibliography

References

- [1] P. M. Joseph and R. D. Spital. A method for correcting bone induced artifacts in computed tomography scanners. *J. Comp. Assisted Tomo.*, 2(1):100–8, January 1978.
- [2] H. K. Bruder, R. Raupach, M. Sedlmair, J. Sunnegardh, K. Stierstorfer, and T. Flohr. Adaptive iterative reconstruction (AIR). In *spie-7691*, page 76910J, 2011.
- [3] X. Zhu and P. Milanfar. Automatic parameter selection for denoising algorithms using a no-reference measure of image content. *IEEE Trans. Im. Proc.*, 19(12):3116–32, December 2010.
- [4] D. L. Parker. Optimal short scan convolution reconstruction for fan beam CT. Med. Phys., 9(2):254–7, March 1982.
- [5] J. Hsieh. Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise. *Med. Phys.*, 25(11):2139–47, November 1998.
- [6] P. J. La Riviere and X. Pan. Nonparametric regression sinogram smoothing using a roughness-penalized Poisson likelihood objective function. *IEEE Trans. Med. Imag.*, 19(8):773–86, August 2000.
- [7] P. J. La Riviere and D. M. Billmire. Reduction of noise-induced streak artifacts in X-ray computed tomography through splinebased penalized-likelihood sinogram smoothing. *IEEE Trans. Med. Imag.*, 24(1):105–11, January 2005.
- [8] P. J. La Riviere, J. Bian, and P. A. Vargas. Penalized-likelihood sinogram restoration for computed tomography. *IEEE Trans. Med. Imag.*, 25(8):1022–36, August 2006.
- [9] P. J. La Rivière and P. Vargas. Correction for resolution nonuniformities caused by anode angulation in computed tomography. *IEEE Trans. Med. Imag.*, 27(9):1333–41, September 2008.
- [10] J. Wang, T. Li, H. Lu, and Z. Liang. Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography. *IEEE Trans. Med. Imag.*, 25(10):1272–83, October 2006.
- [11] D. E. Kuhl and R. Q. Edwards. Image separation radioisotope scanning. *Radiology*, 80:653–62, 1963.
- [12] M. Goitein. Three-dimensional density reconstruction from a series of two-dimensional projections. *Nucl. Instr. Meth.*, 101(3):509–18, June 1972.
- [13] W. H. Richardson. Bayesian-based iterative method of image restoration. J. Opt. Soc. Am., 62(1):55–9, January 1972.
- [14] L. Lucy. An iterative technique for the rectification of observed distributions. *The Astronomical Journal*, 79(6):745–54, June 1974.
- [15] A. J. Rockmore and A. Macovski. A maximum likelihood approach to emission image reconstruction from projections. *IEEE Trans. Nuc. Sci.*, 23:1428–32, 1976.
- [16] L. A. Shepp and Y. Vardi. Maximum likelihood reconstruction for emission tomography. *IEEE Trans. Med. Imag.*, 1(2):113–22, October 1982.

- [17] S. Geman and D. E. McClure. Bayesian image analysis: an application to single photon emission tomography. In *Proc. of Stat. Comp. Sect. of Amer. Stat. Assoc.*, pages 12–8, 1985.
- [18] H. M. Hudson and R. S. Larkin. Accelerated image reconstruction using ordered subsets of projection data. *IEEE Trans. Med. Imag.*, 13(4):601–9, December 1994.
- [19] G. Hounsfield. A method of apparatus for examination of a body by radiation such as x-ray or gamma radiation, 1972. US Patent 1283915. British patent 1283915, London.
- [20] R. Gordon, R. Bender, and G. T. Herman. Algebraic reconstruction techniques (ART) for the three-dimensional electron microscopy and X-ray photography. *J. Theor. Biol.*, 29(3):471–81, December 1970.
- [21] R. Gordon and G. T. Herman. Reconstruction of pictures from their projections. *Comm. ACM*, 14(12):759–68, December 1971.
- [22] G. T. Herman, A. Lent, and S. W. Rowland. ART: mathematics and applications (a report on the mathematical foundations and on the applicability to real data of the algebraic reconstruction techniques). *J. Theor. Biol.*, 42(1):1–32, November 1973.
- [23] R. Gordon. A tutorial on ART (algebraic reconstruction techniques). *IEEE Trans. Nuc. Sci.*, 21(3):78–93, June 1974.
- [24] R. L. Kashyap and M. C. Mittal. Picture reconstruction from projections. *IEEE Trans. Comp.*, 24(9):915–23, September 1975.
- [25] A. J. Rockmore and A. Macovski. A maximum likelihood approach to transmission image reconstruction from projections. *IEEE Trans. Nuc. Sci.*, 24(3):1929–35, June 1977.
- [26] K. Lange and R. Carson. EM reconstruction algorithms for emission and transmission tomography. *J. Comp. Assisted Tomo.*, 8(2):306–16, April 1984.
- [27] K. Sauer and C. Bouman. A local update strategy for iterative reconstruction from projections. *IEEE Trans. Sig. Proc.*, 41(2):534–48, February 1993.
- [28] S. H. Manglos, G. M. Gagne, A. Krol, F. D. Thomas, and R. Narayanaswamy. Transmission maximum-likelihood reconstruction with ordered subsets for cone beam CT. *Phys. Med. Biol.*, 40(7):1225–41, July 1995.
- [29] C. Kamphuis and F. J. Beekman. Accelerated iterative transmission CT reconstruction using an ordered subsets convex algorithm. *IEEE Trans. Med. Imag.*, 17(6):1001–5, December 1998.
- [30] H. Erdoğan and J. A. Fessler. Ordered subsets algorithms for transmission tomography. *Phys. Med. Biol.*, 44(11):2835–51, November 1999.
- [31] B. R. Whiting. Signal statistics in x-ray computed tomography. In *Proc. SPIE 4682, Medical Imaging 2002: Med. Phys.*, pages 53–60, 2002.
- [32] I. A. Elbakri and J. A. Fessler. Efficient and accurate likelihood for iterative image reconstruction in X-ray computed tomography. In *Proc. SPIE 5032, Medical Imaging 2003: Image Proc.*, pages 1839–50, 2003.
- [33] G. M. Lasio, B. R. Whiting, and J. F. Williamson. Statistical reconstruction for x-ray computed tomography using energyintegrating detectors. *Phys. Med. Biol.*, 52(8):2247–66, April 2007.
- [34] D. L. Snyder, A. M. Hammoud, and R. L. White. Image recovery from data acquired with a charge-coupled-device camera. *J. Opt. Soc. Am. A*, 10(5):1014–23, May 1993.
- [35] D. L. Snyder, C. W. Helstrom, A. D. Lanterman, M. Faisal, and R. L. White. Compensation for readout noise in CCD images. *J. Opt. Soc. Am. A*, 12(2):272–83, February 1995.

[36] M. Yavuz and J. A. Fessler. Statistical image reconstruction methods for randoms-precorrected PET scans. *Med. Im. Anal.*, 2(4):369–78, December 1998.