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Introduction

Reasons for under-sampling:
• Static imaging: reduce scan time

• Dynamic imaging: inherent
◦ dynamic contrast studies (microscopic motion?)
◦ bulk motion

All such situations require assumptions / constraints / models.
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Under-Sampled K-space: Examples

K−space

kx

ky

Partial/Half Under−sampled by 2x

Variable density Random Radial
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Is This Under-Sampled K-space?

1/FOV

kx

ky

Note: k-space sample spacing is 1/FOV (Nyquist sample spacing).

Answers (audience response system):
1. No

2. Yes

3. Unsure

4. Will this be on the final exam?
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Is This Under-Sampled K-space?

1/FOV
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Basic MRI Signal Model

Ignoring many physical effects, the baseband signal in lth receive coil is
approximately:

sl(t) =
Z

f (~r)cl(~r)exp
(

−ı2π~k(t) ·~r
)

d~r . (1)

• ~r: spatial position

• cl(~r): receive sensitivity of the lth coil, l = 1, . . . ,L

• ~k(t): k-space trajectory

• f (~r): (unknown) transverse magnetization of the object

MR scan data is noisy samples thereof:

yli = sl(ti)+ εli, i = 1, . . . ,M, l = 1, . . . ,L (2)

• yli: ith sample of lth coil’s signal

• εεεli: additive complex white gaussian noise,

• M: number of k-space samples.

Goal: reconstruct object f (~r) from measurement vector yyy = (yyy1, . . . ,yyyL),
where yyyl = (yl1, . . . ,yl,M) is data from lth coil.
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MR Image Reconstruction is Ill-Posed

yli =

Z

f (~r)cl(~r)exp
(

−ı2π~k(ti) ·~r
)

d~r+εli

• Unknown object f (~r) is a continuous space function

• Measurement vector yyy is finite dimensional

... All MRI data is under-sampled

Uncountably infinitely many objects f (~r) fit the data yyy exactly,
even for “fully sampled” data, even if there were no noise.

For “fully sampled” Cartesian k-space data,
how shall we choose one reconstructed image f̂ (~r) from among those?
1. Impose some assumptions / constraints / models

2. Just take an inverse FFT of the data

3. Both of the above

4. None of the above
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Inverse FFT for MR Image Reconstruction

Using an inverse FFT for reconstruction from “fully sampled” single-coil data
is equivalent to assuming the object lies in a finite-dimensional subspace:

f (~r) = f (x,y) =
N−1

∑
n=0

M−1

∑
m=0

f [n,m]b(x−n△X)b(y−n△Y) .

What choice of basis function b(·) is implicit in IFFT reconstruction?
1. Dirac impulse

2. Rectangle (pixel)

3. Sinc

4. Dirichlet (periodic sinc)

... The use of assumptions / constraints / models is ubiquitous in MR.

In particular, constraining the estimate to lie in a finite-dimensional sub-
space is nearly ubiquitous.

(All models are wrong but some models are useful...)
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Conventional Approach: Partial K-space

Partial/Half

Conventional solution: Homodyning
Noll et al., IEEE T-MI, June 1991

Constraint: object phase is smooth

Related iterative methods
Fessler & Noll, ISBI 2004

Bydder & Robson, MRM, June 2005
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Conventional Approach: Decimation

Under−sampled by 2x

Conventional solutions: SENSE/GRAPPA
(parallel imaging)

Pruessmann et al., MRM, Nov. 1999

Griswold et al., MRM, June 2002

Constraint: object has finite support

00 FOV

Note: one can combine under-sampling strategies,
e.g., decimation and partial k-space
King & Angelos, ISMRM, 153. 2000
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Conventional Approach: Non-Cartesian (Under) Sampling

Radial

Conventional solution: gridding
Jackson et al., IEEE T-MI, Sep. 1991

Constraint??
1. object has finite support?

2. object has smooth phase?

3. object is band-limited?

Gridding alone is insufficient for “severely” under-sampled data.
For moderate amounts of under-sampling, consider non-Cartesian SENSE.

Pruessmann et al., MRM, 2001

Or non-Cartesian GRAPPA. Seiberlich et al., MRM, 2007

For “severely” under-sampled data, stronger constraints are needed.



13

Conventional Approach: Non-Cartesian Sampling

What about these sampling patterns?

Variable density Random

Again, for “severely” under-sampled data, stronger constraints are needed.
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Finite-dimensional subspace constraint

f (~r) =
N

∑
j=1

x j b j(~r) =
N

∑
j=1

x j b(~r−~r j) (3)

• b(·): user-selected object basis function(s) (e.g., rect function)

• ~r j: center of jth basis function translate

• N: number of parameters (e.g., pixels)

• xxx = (x1, . . . ,xN) : vector of unknown parameters (e.g., pixel values).

Substituting this basis expansion into the signal model (1) yields:

yyyl = AAAlxxx+ εεεl.

The elements {ali j} of the system matrix AAAl for with the lth coil are:

ali j =

Z

b(~r−~r j)cl(~r)e−ı2π~k(ti)·~r d~r, (4)

Stacking up all L vectors and defining the ML×N matrix AAA = (AAA1, . . . ,AAAL)
yields the “usual” linear model

yyy = AAAxxx+ εεε.
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Parameterization alone is not enough

The finite-dimensional subspace constraint leads to the linear model

yyy = AAAxxx+ εεε.

• yyy: measured data

• AAA: known system model (k-space sampling and coil sensitivities)

• xxx: unknown object

• εεε: additive noise

For severe under-sampling, AAA usually has fewer rows than columns.
In such under-determined situations, least-squares estimation is not unique:

argmin
xxx

‖yyy−AAAxxx‖2 = {xxx : yyy = AAAxxx} .

There may still be (uncountably) infinitely many solutions to yyy = AAAxxx.

Need stronger assumptions / constraints to select a single estimate x̂xx.
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Application-specific basis images

Instead of generic basis functions like rect, sinc, Dirac,
choose specialized basis functions b j(~r), j = 1, . . . ,N, with N “small.”

Constraint: f (~r) lies in a parsimonious subspace:

f (~r) =
N

∑
j=1

x j b j(~r) .

If N is less than the number of k-space samples,
then the problem is over-determined and LS estimation is feasible:

x̂xx = argmin
xxx

‖yyy−AAAxxx‖ =
[
AAA′AAA

]−1
AAA′yyy.

Challenges
• choice of basis functions – preserving pathology?

• unstructured data-driven basis functions =⇒ lack of fast transforms

PCA of training data to design basis functions (and k-space samples)
Cao and Levin, MRM, Sep. 1993

Cao and Levin, IEEE T-MI, June 1995



17

Reference image?

In some applications, a “related” image xxx0 may be available.
Assume: unknown xxx is somehow “similar” to the reference image xxx0.

Regularization approach:

x̂xx = argmin
xxx

‖yyy−AAAxxx‖2

︸ ︷︷ ︸

data fit

+β‖LLL(xxx− xxx0)‖
p
p

︸ ︷︷ ︸

prior

,

where LLL is an optional weighting matrix.
For p = 2 and LLL = III:

x̂xx =
[
AAA′AAA+βIII

]−1 (
AAA′yyy+βxxx0

)
= xxx0 +

[
AAA′AAA+βIII

]−1
AAA′(yyy−AAAxxx0)

Constrained approach:

x̂xx = argmin
xxx

‖xxx− xxx0‖p sub. to yyy = AAAxxx.

Sometimes equivalent to simply replacing the missing k-space samples with
the spectrum of xxx0.

cf. “prior image constrained compressed sensing (PICCS)” approach
G H Chen et al., Med. Phys., Feb. 2008. François et al., ISMRM 3808, 2009.



18

Bayesian approach

Assume: xxx is a gaussian random field with mean µµµ, covariance matrix KKK.

MAP / MMSE estimate:

x̂xx = argmax
xxx

p(xxx |yyy) = argmin
xxx

1

2σ2
‖yyy−AAAxxx‖2 +

1

2
(xxx−µµµ)′KKK−1(xxx−µµµ)

= µµµ+
[
AAA′AAA+σ2KKK−1

]−1
AAA′(yyy−AAAµµµ)

Challenges
• Requires training data for µµµ and KKK.

• gaussian prior distribution is questionable

• Computation of x̂xx if KKK is unstructured

Abandon training data and seek more “generic” constraints.
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Sparsity / Compressibility

Start with the usual finite-dimensional subspace model:

f (~r) =
N

∑
j=1

x j b j(~r) .

Usually generic image basis functions like rect or sinc are used here,
so x j is just the jth pixel value.

Again, often N exceeds the number of measurements (under-determined).

Now constrain the coefficient vector xxx = (x1, . . . ,xN) somehow, as follows.
• 1. Synthesis approach

• 2. Analysis approach

Preliminaries:
• ‖xxx‖0 = ∑k1{xk 6=0}. We say xxx is “sparse” if ‖xxx‖0 is “small.”

• ‖xxx‖1 = ∑k |xk| . We say xxx is “compressible” if ‖xxx‖1 ≈ ‖x̃xx‖1 ,

where x̃xx retains only the “large” elements of xxx.
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1. Synthesis approach

For some N ×K matrix BBB and K-dimensional coefficient vector θθθ:

xxx = BBBθθθ.

Usual choices:
• K = N and BBB is an orthonormal basis (e.g., wavelet synthesis)

• K ≫ N (!!) and BBB is an over-complete “dictionary”

Assume that the coefficient vector θθθ is sparse or compressible.

Estimation strategies for synthesis approach use x̂xx = BBBθ̂θθ where:

(sparsest possible)θ̂θθ = argmin
θθθ

‖θθθ‖0 sub. to yyy = AAABBBθθθ

or θ̂θθ = argmin
θθθ

‖θθθ‖0 sub. to ‖yyy−AAABBBθθθ‖ < δ

or θ̂θθ = argmin
θθθ

‖yyy−AAABBBθθθ‖ sub. to ‖θθθ‖0 ≤ L

or θ̂θθ = argmin
θθθ

‖yyy−AAABBBθθθ‖2 +β‖θθθ‖0 .

In all formulations, ‖θθθ‖0 often replaced by ‖θθθ‖1 to make problem convex.
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2. Analysis approach

For some K ×N analysis matrix TTT , assume that the matrix-vector product

TTTxxx

is sparse or compressible.
Usual choices:
• K = N and TTT is an orthonormal basis (e.g., wavelet transform)

• K ≫ N and TTT includes wavelet transforms and finite-differences, aka total
variation (TV), along various directions.

Estimation strategies for analysis approach:

x̂xx = argmin
xxx

‖TTTxxx‖0 sub. to yyy = AAAxxx

or x̂xx = argmin
xxx

‖TTTxxx‖0 sub. to ‖yyy−AAAxxx‖ < δ

or x̂xx = argmin
xxx

‖yyy−AAAxxx‖2 +β‖TTT xxx‖0 .

In all formulations, ‖θθθ‖0 often replaced by ‖θθθ‖1 to make problem convex.
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Illustration of compressibility

Lustig et al., IEEE Sig. Proc. Mag., Mar. 2008
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Illustration of compressibility

Lustig et al., MRM, Dec. 2007
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Challenges with using sparsity constraints

• Choice of transform TTT or basis BBB

(These may affect image quality significantly.)

• Choice of β or δ

• Optimization algorithms / computation time

ISMRM 2011 Poster 2873, Wed. 1:30. S. Ramani & J. Fessler: “An augmented

Lagrangian method for regularized MRI reconstruction using SENSE”

See also IEEE T-MI Mar. 2011: “Parallel MR image reconstruction using augmented

Lagrangian methods”

• Cost function complexity
◦ ‖x‖0 is non-convex ( ... local minimizers)
◦ ‖x‖1 is non-differentiable, not strictly convex

( ... global minimizer may not be unique)

• Object phase variations

ISMRM 2011 Poster 2841, Thu. 1:30. Zhao et al., “Separate magnitude and phase

regularization via compressed sensing”

• Efficacy of results depends on sampling pattern
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Patch-wise sparsity

“Traditional” synthesis approach to sparsity uses bases for entire image:

xxx = BBBθθθ.

An alternative approach is to consider image a numerous small patches:

xxx = {xxx1, . . . ,xxxP} ,

and represent each patch using a common basis or “dictionary” DDD:

xxxp = DDDθθθp, p = 1, . . . ,P

and assume that the coefficients θθθp for each patch are sparse.

The patch basis or dictionary DDD can be
• predefined (e.g., DCT)

• learned from training data

• estimated jointly during reconstruction
(“adaptive” or “dictionary learning”).

argmin
xxx,θθθ,DDD

‖yyy−AAAxxx‖2
2 +β1∑

p

‖xxxp−DDDθθθp‖
2

2
+β2∑

p

‖θθθp‖1

Ravishankar & Bresler, IEEE T-MI, May 2011 (and many references therein)
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Adaptive Patch-Based Sparsity Example

(a) true. (b) sampling. (c) CS with wavelets/TV. (d) patch-based sparsity. (e),(f) errors.

20-fold under-sampling. Ravishankar & Bresler, IEEE T-MI, May 2011
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Example of Adaptive Patch Dictionary

7×7 patches, cf. K-SVD Ravishankar & Bresler, IEEE T-MI, May 2011

cf. K-SVD Aharon et al., IEEE T-SP, Nov. 2006

How many basis patches would conventional SVD produce?
1. 7

2. 14

3. 49

4. 98
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Comparison of Priors

Adaptive patch-based sparsity dictionary:

Gauss-Markov random field prior:
White Noise

n
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Challenges: non-convexity, choosing β1 and β2, ...
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Nonlocal (patch-based) regularization

Based on success of nonlocal means (NLM) image denoising algorithm
Buades et al., SIAM MMS 2005

Adapted to image reconstructions problems:

argmin
xxx

‖yyy−AAAxxx‖2
2 +∑

n,m

ψ(Pn(xxx),Pm(xxx))

• Pn(xxx) : nth patch of image

• ψ(P1,P2): measures dissimilarity of two patches

• generalization of traditional edge-preserving regularization

Quite active research area:
Adluru et al., JMRI, Nov. 2010

Manjón et al., Med. Im. An., Dec. 2010

Yang & Jacob, ISBI 2011

Wang & Qi, ISBI 2011
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Summary

Numerous possible assumptions / constraints / models
for image reconstruction from under-sampled k-space data:
• Using fewer basis functions

• Using reference image(s)

• Statistical priors

• Sparsity / compressibility

• Patch-based sparsity

• Patch-based regularization

• ...
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Dynamic imaging

• same general principles apply

• even more variations / combinations possible

• space and/or time and/or Fourier transforms thereof
◦ e.g., dynamic cardiac imaging is pseudo-periodic
◦ DCE MRI is amenable to small number of temporal basis components

(innumerable references)
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Conclusion

Because all MRI is under-sampled, the key question is not:
should we under-sample?

but rather how shall we under sample?

1/FOV 1/FOV

Caution: both produce “wrong” reconstructed images, but in different ways.

All MRI reconstruction methods involve constraints.
So the key question is:

which constraints are most appropriate for a given application?
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Resources

Talk and code available online at
http://www.eecs.umich.edu/∼fessler
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