Two-Material Decomposition From a Single CT Scan Using Statistical Image Reconstruction

Yong Long and Jeffrey A. Fessler
EECS Department

James M. Balter
Radiation Oncology Department
The University of Michigan

AAPM 2011
August 3, 2011
Introduction: DECT

- Motivation: Provide information about material composition for
 - Radiotherapy, dose calculation and anatomy segmentation
 - PET/CT, attenuation correction
 - Virtual nonenhanced images

- Popular methods: Dual-energy CT (DECT)

- Disadvantage: Require two scans or specialized scanners (e.g.,
 fast kVp-switching, dual source-detector CT)
Propose a penalized weighted least-squares (PWLS) method
 - Edge-preserving regularization
 - Reconstruct two basis materials (e.g., soft tissue and bone)
 - Single energy CT scan acquired with X-ray filters

Using a split or bow-tie filter
 - Create incident spectra differences among detector channels
 - Require only attachment and alignment of metal filters between the X-ray tube and the patient
A fan-beam CT scanner with a split filter

Sample spectra at two half filters

The effective energies are 49 and 58 keV.

[Rutt and Fenster, J. Comp. Assisted Tomo., 1980] [Taschereau et al., PMB, 2010]
A fan-beam CT scanner with a bow-tie filter

Sample spectra at four fan angles (γ)

The effective energies are 49, 51, 53 and 56 keV.
Object Model

\[\mu(\vec{x}, \mathcal{E}) = \sum_{l=1}^{2} \sum_{j=1}^{N_p} \beta_l(\mathcal{E}) \ b_j(\vec{x}) \ x_{lj} \]

- \(\beta_l(\mathcal{E}) \): the energy-dependent mass attenuation coefficient of the \(l \)th material type (\(e.g., \) soft tissue and bone) (\textit{known})
- \(\{ b_j(\vec{x}) \} \): spatial basis functions (\(e.g., \) pixels)
- \(x_{lj} \): density of the \(l \)th material at the \(j \)th location (\textit{unknown})
Polyenergetic Measurement Model

\[\bar{y}_i(x) = l_i e^{-f(s_i(x))} + r_i \quad \text{noisy measurement} \]

\[f_i(s_i) \triangleq - \log \left(\frac{1}{l_i} \int l_i(\mathcal{E}) e^{-\sum_{l=1}^{2} \beta(\mathcal{E}) s_{il}(x)} d\mathcal{E} \right) \]

\[s_{il}(x) \triangleq \int_{\mathcal{L}_i} \sum_{j=1}^{N_p} b_j(\vec{x}) x_{lj} d\ell \quad \text{component line integrals} \]

\[l_i \triangleq \int l_i(\mathcal{E}) d\mathcal{E} \quad \text{total source intensity} \]

- \(i \) indexes rays and \(l = 1, 2 \) indexes basis materials.
- Incident intensity \(l_i(\mathcal{E}) \) varies among rays depending on filtration types.
Penalized Weighted Least-Squares (PWLS) Reconstruction

- Logarithm sinogram estimates \hat{f}_i

$$\hat{f}_i \triangleq -\log\left(\frac{Y_i - r_i}{l_i}\right)$$

- PWLS reconstruction

$$\hat{x} = \arg \min_{x \succeq 0} \psi(x)$$

$$\psi(x) \triangleq \sum_{i=1}^{N_d} \frac{1}{2} w_i \left(\hat{f}_i - f_i(s_i(x))\right)^2 + \beta R(x)$$

where $w_i = Y_i$ values are statistical weighting factors.
The units are physical density (g/cm3)

NCAT phantom: [Segars Tsui, IEEE TNS, 2002]
Split Filter Results: Soft Tissue | Error |

RMS error: 4.0×10^{-2} g/cm3
RMS error: 3.0×10^{-2} g/cm3
PWLS produced lower noise, similar edge sharpness.

PWLS reduced RMS error from 3.4×10^{-2} g/cm3 to 2.0×10^{-2} g/cm3.

PWLS exhibits ≈ 0.03 g/cm3 bias.
JS-FBP: [Joseph and Spital, J. Comp. Assisted Tomo., 1978]

PWLS reduced beam-hardening artifacts more effectively
Profiles and bow-tie filtration methods had similar results.
Summary

- **Statistical PWLS method**
 - Two basis materials
 - Single energy CT scan
 - Differential filtration creates spectral differences among rays

- Require only attachment and alignment of metal filters between the X-ray tube and the patient

- Optimizing materials and thickness or filtration type needed
Discussion

- Inevitable overlap of the filtered spectra
- Practical issues of using filters
 - Precisely align the filters and rotational center
 - Split filters for tilted rays in 3D CT geometries
 - Adjust radiation dose according to X-ray tube voltages
 - Sensitivity to model mismatch: Compton scatter or imperfect spectral models
- Investigate choosing regularizers and optimizing their parameters
- Extend to three material reconstruction using dual-energy CT
Split Filter Results: Soft Tissue Images

JS-FBP

PWLS

16 / 15
PWLS produced lower noise, similar edge sharpness.
PWLS exhibits $\approx 0.05\text{g/cm}^3$ bias.
Split Filter Results: Attenuation at 70 KeV

JS-FBP

RWLS

RMS error: 36 HU

RMS error: 8 HU
Bow-tie Filter Results: Density

RMS error: \(3.0 \times 10^{-2}\) g/cm\(^3\)
RMS error: \(1.2 \times 10^{-2}\) g/cm\(^3\)

- **JS-FBP**: [Joseph and Spital, J. Comp. Assisted Tomo., 1978]
- **PWLS** reduced beam-hardening artifacts more effectively
Bow-tie Filter Results: Soft Tissue

<table>
<thead>
<tr>
<th></th>
<th>JS-FBP</th>
<th>PWLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>RMS error:</td>
<td>4.0×10^{-2} g/cm3</td>
<td>3.0×10^{-2} g/cm3</td>
</tr>
</tbody>
</table>
• PWLS produced lower noise, similar edge sharpness.
• PWLS reduced RMS error from $3.3 \times 10^{-2} \text{ g/cm}^3$ to $2.0 \times 10^{-2} \text{ g/cm}^3$.
• PWLS exhibits $\approx 0.03\text{g/cm}^3$ bias.
Bow-tie Filter Results: Soft Tissue Images

JS-FBP

PWLS
Bow-tie Filter Results: Soft Tissue Profiles

- PWLS produced lower noise, similar edge sharpness.
- PWLS exhibits $\approx 0.05\text{g/cm}^3$ bias.
Bow-tie Filter Results: Attenuation at 70 KeV

JS-FBP

PWLS

RMS error: 34 HU

RMS error: 9 HU