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Outline

• Introduction to excitation in MRI
• Problems requiring sparsity
• Sparsity formulations
• Applications
• Summary

Image reconstruction toolbox:
http://www.eecs.umich.edu/∼fessler
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MRI Scans

www.magnet.fsu.edu

MRI scans alternate between excitation and readout (data acquisition)
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RF Excitation: Overview

Forward model:

Applied field
BBB(rrr, t) = BBB0︸︷︷︸

main
+BBB1(t)

︸ ︷︷ ︸

RF

+ rrr ·GGG(t)kkk
︸ ︷︷ ︸

gradients
→

Patient
(Bloch

equation)
→

magnetization
pattern
MMM(rrr, t)

Bloch equation:
d
dt

MMM(rrr, t) = MMM(rrr, t)×γBBB(rrr, t)−TTT [MMM(rrr, t)−MMM(rrr,0)]

where one often ignores the relaxation factors TTT =





1/T2(rrr) 0 0
0 1/T2(rrr) 0
0 0 1/T1(rrr)



 .

Excitation design goal:
find gradient waveforms GGG(t) and RF waveform b1(t), 0≤ t ≤ T that
induce some desired magnetization pattern MMMd(rrr,T) at pulse end.
This is a “noiseless” inverse problem.
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RF Excitation: Applications

(Exciting all spins is relatively easy, cf. NMR spectroscopy)

• slice selection (1D)
• spatially selective excitation (2D and 3D)

◦ imaging small regions
◦ compensating for nonuniform coil sensitivity (high field)
◦ compensating for undesired spin phase evolution (fMRI)

Constraints:
• RF amplitude, bandwidth (hardware)
• RF power deposition (patient safety)
• Gradient waveform amplitude, slew rate
• Excitation pulse duration
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Standard Slice Selection with RF Inhomogeneity
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Ideal Slab Excitation
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With B1 Nonuniformity

‖
‖

coil

Excitation coil inhomogeneity induces undesired image shading.

Solution: more sophisticated RF pulse design ... sparsity.



7

Small-tip Solution to Bloch Equation

Relate RF pulse envelope and induced field:

BBB1(rrr, t) = coil(rrr)
︸ ︷︷ ︸

coil
response

b1(t)
︸︷︷︸

RF pulse
envelope





cos(ω0t)
sin(ω0t)

0



 , ω0 = γB0︸ ︷︷ ︸

Larmor
frequency

.

Small-tip approximation to Bloch solution (Pauly, 1989):

M(rrr,T) , Mx(rrr,T)+ ıMy(rrr,T)

≈ ıγM0(rrr)coil(rrr)
︸ ︷︷ ︸

shading

Z T

0
b1(t)eı2π rrr ·kkk(t)(t−T) dt

︸ ︷︷ ︸

Fourier-like
where the excitation k-space trajectory is:

kkk(t) , −
γ

2π

Z T

t
GGG(t ′)dt ′ .
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1D Example: Slice Selection

0 4 8

0

1

Hann−Apodized Sinc

t

b(
t)

−1 0 1

0

1

FFT of RF pulse

z

−1 0 1

0

1

M
z

z

Before Excitation

−1 0 1

0

1

M
xy

z

Before Excitation

−1 0 1

0

1

M
z

z

After Excitation

−1 0 1

0

1

M
xy

z

After Excitation

(for uniform coil, with 30◦ tip)



9

1D Example: k-space Perspective
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From slice-selection to spatially selective excitation
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Choosing phase-encode locations?

• Select desired excitation pattern ddd

• Select number of (kx,ky)-space phase encodes Ne

• Optimize jointly the RF pulse parameters bbb and the (kx,ky)-space
phase encode locations φφφ ∈ R

Ne×2:
argmin

bbb,φφφ
‖ddd−AAA(φφφ)bbb‖2

WWW︸ ︷︷ ︸

excitation
fidelty

+ β ‖bbb‖2
︸︷︷︸

RF
energy

where, from discretization of small-tip approximation:
[AAA(φ)]nm= ıγcoil(rrrn)eı2π rrrn ·kkk(tm;φφφ)(tm−T) .

WWW allows ROI specification, a key benefit of model-based
formulations

Alternating minimization.
Minimizing over bbb is easy via CG. (Yip et al., MRM 54(4), Oct. 2005)

Minimizing over φφφ is challenging. (Yip et al., MRM 58(3), Sep. 2007)
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Sparsity-Constrained Formulation

Allow one (or more) pulse parameters xxx = (xxx1, . . . ,xxxNg) for every
(kx,ky) phase-encode location (on a discrete grid of Ng points).
Choose a sparse subset of possible phase-encode locations:

argmin
xxx

‖ddd−AAAxxx‖2
WWW subject to ‖xxx‖0 ≤ Ne

︸ ︷︷ ︸

sparsity

kx

ky

Alternate “sparse approximation” formulation:
argmin

xxx
‖xxx‖0 subject to ‖ddd−AAAxxx‖2

WWW ≤ δ.

Both formulations are non-convex and challenging (NP-complete).
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Convex Formulation (Single Coil)

Convex relaxation. Zelinski et al.: MRM 59(6), June 2008; T-MI Sep. 2008

For sparse approximation, replacing ‖xxx‖0 with ‖xxx‖1 usually works:
Tropp: IEEE T-IT, Mar. 2006

argmin
xxx

‖xxx‖1 subject to ‖ddd−AAAxxx‖2
WWW ≤ δ.

Lagrange multiplier or regularization approach:

argmin
xxx

‖ddd−AAAxxx‖2
WWW +β‖xxx‖1 ,

where one adjusts β to trade off sparsity (pulse length) and
approximation error (excitation accuracy).

• Solving second-order cone program (SOCP) can be slow
• Many minutes, depending on sampling, number of coils, etc.
• Want fast methods for on-line use!
• AAA and/or ddd are often patient dependent
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Greedy Approach: Orthogonal Matching Pursuit

OMP method attempts sparse signal approximation:
min

xxx
‖ddd−AAAxxx‖2

WWW sub. to ‖xxx‖0 ≤ Ne.

• Set Λ = {} (initial index set)
• Set rrr = ddd (initial residual vector)
• For each iteration (until desired sparsity):

◦ add column of AAA most correlated with residual:
Λ := Λ∪

{
argmax

j
|〈A(:, j), rrr〉WWW|

}

◦ Project residual onto columns of AAA indexed by Λ
◦ Update residual: rrr := rrr−PAAAΛ rrr = P ⊥AAAΛ

rrr

• Finally, solve for selected elements of xxx:
x̂xx = argmin

xxx∈XΛ

‖ddd−AAAxxx‖2
WWW

OMP is fast (FFT). It is nearly optimal under coherence conditions
on AAA that may not hold in MRI excitation. (Tropp, T-IT, Oct. 2004)
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Parallel Transmit: Multiple Coils
magnitude images of coil sensitivites

1 64

1

64

• Magnetic field is superposition of contribution of each coil
• Induced magnetization is too (under small-tip approximation):

ddd ≈ AAA1xxx1+ · · ·+AAAKxxxK

• AAAk includes excitation response (B1+ map) of kth coil
• xxxk parameterizes the RF signal into the kth coil
• Coil have individual RF signals but share the k-space trajectory

Parallel sparsity problem:

min
∥
∥ddd−∑K

k=1AAAkxxxk

∥
∥

2

WWW
sub. to “joint sparsity” of {xxx1, . . . ,xxxK}
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Simultaneous Sparsity Problems

• Conventional sparse approximation problem:

min‖yyy−AAAxxx‖ sub. to ‖xxx‖0 ≤ Ne

• Conventional simultaneous sparsity problem: Tropp et al., SigPro, 2006

min
K

∑
k=1

‖yyyk−AAAxxxk‖ sub. to ‖[xxx1, . . . ,xxxK]‖∞,0 ≤ Ne

where ‖X‖∞,0 counts the number of rows of X with nonzero entries.
(Use the same dictionary elements to approximate several signals.)
◦ Greedy algorithms (S-OMP) Tropp et al., SigPro, Mar. 2006

◦ Convex relaxation: Tropp, SigPro, Mar. 2006

replace ‖X‖∞,0 with ‖X‖2,1 , the sum of ℓ2 norm of each row.

• MRI “parallel sparsity” approximation problem:

min
∥
∥yyy−∑K

k=1AAAkxxxk

∥
∥ sub. to ‖[xxx1, . . . ,xxxK]‖∞,0 ≤ Ne

SOCP slow...
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Proposed Parallel OMP (P-OMP)

Theory: Maleh et al., SPARS, Apr. 2009

MRI application: Yoon et al., ISMRM, Apr. 2009

• Set Λ = {} (initial index set)
• Set rrr = ddd (initial residual vector)
• For each iteration (until desired sparsity):

◦ add column index of {AAAk} “most correlated” with residual:

Λ := Λ∪
{

argmax
j

K

∑
k=1

|〈Ak(:, j), rrr〉WWW|
}

◦ Project residual onto columns of {AAAk} indexed by Λ
◦ Update residual:

rrr := rrr−PSrrr = P ⊥S rrr, S= {Ak(:, j), k = 1, . . . ,Ne, j ∈ Λ}
• Finally, solve for selected elements of xxx:

x̂xx = argmin
xxx∈XΛ

∥
∥ddd−∑K

k=1AAAkxxxk

∥
∥

2

WWW
.

Variations: ∑K
k=1 |·|

p for p = 2 or p→ ∞, or projection onto span of {A1(:, j), . . . ,AK(:, j)}.

Theoretical correctness guarantees for certain conditions, not quite satisfied in MRI...
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Application:
B0 Inhomogeneity “Precompensation”

in BOLD fMRI imaging
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B0 inhomogeneity compensation: Overview

1 64

1

64

Anatomy Standard excitation Proposed 8 coil excitation

short TE T∗
2 weighted T∗

2 weighted

• Signal loss due to through-plane B0 inhomogeneity
• Severe near susceptibility gradients in BOLD fMRI
• Solution: iteratively designed, tailored RF pulses that

precompensate for through-plane field variations
Glover & Lai, ISMRM 1998; Yip et al., MRM 56(5), Nov. 2006
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B0 inhomogeneity compensation: Sub. 1 Anatomy

anatomical images of 1mm−thick slices
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1 mm slices
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B0 inhomogeneity compensation: Sub. 1 Mask

support mask
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“do not care” outside mask
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B0 inhomogeneity compensation: Sub. 1 Fieldmap

B0 fieldmap in Hz
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B0 inhomogeneity compensation: Design

• 5 mm thick slice to be excited
• 3D desired excitation pattern over five 1 mm slices:

uniform magnitude, phase from B0 map: d(rrr) = e−ıω(rrr)TE

• 1≤ Ne≤ 30 phase-encode locations in (kx,ky) plane
• P-OMP algorithm for joint trajectory / RF pulse design
• Simulation based on acquired images and field maps.
• Two cases:

◦ Single uniform transmit coil
◦ 8-coil array with calculated transmit sensitivity patterns:

magnitude images of coil sensitivites

1 64

1

64
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B0 inhomogeneity compensation: Results
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ideal standard
1-coil

correction
8-coil

correction

12 phase encoding locations. Total pulse length 7-9 msec. 8-coil design time ≈ 2 min.
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B0 inhomogeneity compensation: Results
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(From 4th row of preceding slide)
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B0 inhomogeneity compensation: NRMSE
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Application:
B1 Inhomogeneity Correction
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B1 Nonuniformity Correction: Coil Sensitivities

magnitude images of coil sensitivites
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8 head coils
Simulation with 24 cm FOV, 64×64 sampling grid
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B1 Nonuniformity Correction: Desired Pattern

masked desired excitation pattern
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1

64

2D disk with diameter 20.25 cm. “Don’t care” outside mask.
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B1 Nonuniformity Correction: Excitation Results
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ideal correction no correction with correction

Ne = 4 phase encoding locations. P-OMP
(2.2 sec)
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Phase-Encode Locations
20 phase encoding locations chosen by convex optimization
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Convex optimization P-OMP

Ne = 20
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B1 Nonuniformity Correction Results: Accuracy
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Tradeoff between pulse length and excitation error (residual nonuniformity).

P-OMP provides reasonable uniformity (1-2%) with 4-5 phase encodes, quickly.
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Summary

• Sparsity everywhere, even in MRI excitation
• Applications:

◦ B0 correction
◦ B1 correction
◦ Cases requiring slice-selection and within-plane variations

• Using greedy algorithms like OMP accelerate computation
• P-OMP extends OMP to the problem of “parallel sparsity”


