Sparsity in MRI parallel excitation

Daehyun Yoon¹, Ray Maleh², Anna Gilbert², Jeff Fessler^{1,3}, and Doug Noll³

¹EECS Department ²Math Department ³BME Department

University of Michigan

HSEMB Mar. 19, 2009

Outline

- Introduction to excitation in MRI
- Problems requiring sparsity
- Sparsity formulations
- Applications
- Summary

Image reconstruction toolbox:
http://www.eecs.umich.edu/~fessler

MRI Scans

www.magnet.fsu.edu

MRI scans alternate between excitation and readout (data acquisition)

RF Excitation: Overview

Forward model:

Bloch equation:

$$\frac{\mathrm{d}}{\mathrm{d}t}\boldsymbol{M}(\boldsymbol{r},t) = \boldsymbol{M}(\boldsymbol{r},t) \times \boldsymbol{\gamma}\boldsymbol{B}(\boldsymbol{r},t) - \boldsymbol{T}\left[\boldsymbol{M}(\boldsymbol{r},t) - \boldsymbol{M}(\boldsymbol{r},0)\right]$$

where one often ignores the relaxation factors $\boldsymbol{T} = \begin{bmatrix} 1/T_2(\boldsymbol{r}) & 0 & 0\\ 0 & 1/T_2(\boldsymbol{r}) & 0\\ 0 & 0 & 1/T_1(\boldsymbol{r}) \end{bmatrix}$

Excitation design goal:

find gradient waveforms G(t) and RF waveform $b_1(t)$, $0 \le t \le T$ that induce some desired magnetization pattern $M_d(r, T)$ at pulse end. This is a "noiseless" inverse problem.

RF Excitation: Applications

(Exciting all spins is relatively easy, *cf.* NMR spectroscopy)

- slice selection (1D)
- spatially selective excitation (2D and 3D)
 - imaging small regions
 - compensating for nonuniform coil sensitivity (high field)
 - compensating for undesired spin phase evolution (fMRI)

Constraints:

- RF amplitude, bandwidth (hardware)
- RF power deposition (patient safety)
- Gradient waveform amplitude, slew rate
- Excitation pulse duration

Standard Slice Selection with RF Inhomogeneity

Excitation coil inhomogeneity induces undesired image shading. Solution: more sophisticated RF pulse design ... sparsity.

Small-tip Solution to Bloch Equation

Relate RF pulse envelope and induced field:

Small-tip approximation to Bloch solution (Pauly, 1989): $M(\mathbf{r},T) \triangleq M_{\mathrm{x}}(\mathbf{r},T) + \iota M_{\mathrm{y}}(\mathbf{r},T)$ $\approx \iota \gamma \underbrace{M_{0}(\mathbf{r}) \operatorname{coil}(\mathbf{r})}_{\mathrm{shading}} \underbrace{\int_{0}^{T} b_{1}(t) e^{\iota 2\pi \mathbf{r} \cdot \mathbf{k}(t)(t-T)} dt}_{\mathrm{Fourier-like}}$

where the excitation *k*-space trajectory is:

$$\boldsymbol{k}(t) \triangleq -\frac{\gamma}{2\pi} \int_{t}^{T} \boldsymbol{G}(t') \,\mathrm{d}t'.$$

1D Example: Slice Selection

(for uniform coil, with 30° tip)

1D Example: k-space Perspective

From slice-selection to spatially selective excitation

Choosing phase-encode locations?

- Select desired excitation pattern *d*
- Select number of (k_x, k_y) -space phase encodes N_e
- Optimize jointly the RF pulse parameters *b* and the (k_x,k_y)-space phase encode locations **φ** ∈ ℝ^{N_e×2}:

$$\underset{\substack{\boldsymbol{b},\boldsymbol{\phi}\\\text{fidelty}}{\operatorname{arg\,min}} \underbrace{\|\boldsymbol{d} - \boldsymbol{A}(\boldsymbol{\phi})\boldsymbol{b}\|_{\boldsymbol{W}}^2}_{\operatorname{excitation}} + \beta \underbrace{\|\boldsymbol{b}\|^2}_{\operatorname{RF}}$$

where, from discretization of small-tip approximation:

$$[\boldsymbol{A}(\boldsymbol{\phi})]_{nm} = \iota \boldsymbol{\gamma} \operatorname{coil}(\boldsymbol{r}_n) \, \mathrm{e}^{\iota 2\pi \boldsymbol{r}_n \cdot \boldsymbol{k}(t_m; \boldsymbol{\phi})(t_m - T)} \, .$$

W allows ROI specification, a key benefit of model-based formulations

Alternating minimization. Minimizing over b is easy via CG. Minimizing over ϕ is challenging.

(Yip *et al.*, MRM 54(4), Oct. 2005) (Yip *et al.*, MRM 58(3), Sep. 2007)

Sparsity-Constrained Formulation

Allow one (or more) pulse parameters $\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_{N_g})$ for *every* (k_x, k_y) phase-encode location (on a discrete grid of N_g points). Choose a sparse subset of possible phase-encode locations:

Alternate "sparse approximation" formulation: $\underset{x}{\operatorname{arg\,min}} \|x\|_{0}$ subject to $\|d - Ax\|_{W}^{2} \leq \delta$. Both formulations are non-convex and challenging (NP-complete).

Convex Formulation (Single Coil)

Convex relaxation.

Zelinski et al.: MRM 59(6), June 2008; T-MI Sep. 2008

For sparse approximation, replacing $||x||_0$ with $||x||_1$ usually works: Tropp: IEEE T-IT, Mar. 2006

$$\underset{x}{\operatorname{arg\,min}} \| x \|_{1} \text{ subject to } \| \boldsymbol{d} - \boldsymbol{A} x \|_{\boldsymbol{W}}^{2} \leq \boldsymbol{\delta}.$$

Lagrange multiplier or regularization approach:

$$\underset{\boldsymbol{x}}{\arg\min} \|\boldsymbol{d} - \boldsymbol{A}\boldsymbol{x}\|_{\boldsymbol{W}}^2 + \beta \|\boldsymbol{x}\|_1,$$

where one adjusts β to trade off sparsity (pulse length) and approximation error (excitation accuracy).

- Solving second-order cone program (SOCP) can be slow
- Many minutes, depending on sampling, number of coils, etc.
- Want fast methods for on-line use!
- A and/or d are often patient dependent

Greedy Approach: Orthogonal Matching Pursuit

OMP method attempts sparse signal approximation:

 $\min_{\mathbf{x}} \|\boldsymbol{d} - \boldsymbol{A}\boldsymbol{x}\|_{\boldsymbol{W}}^2 \text{ sub. to } \|\boldsymbol{x}\|_0 \leq N_{\rm e}.$

- Set $\Lambda = \{\}$ (initial index set)
- Set r = d (initial residual vector)
- For each iteration (until desired sparsity):
 add column of *A* most correlated with residual:

 $\Lambda := \Lambda \cup \left\{ \arg \max_{i} |\langle A(:,j), \boldsymbol{r} \rangle_{\boldsymbol{W}}| \right\}$

• Project residual onto columns of A indexed by Λ • Update residual: $r := r - \mathcal{P}_{A_{\Lambda}} r = \mathcal{P}_{A_{\Lambda}}^{\perp} r$

• Finally, solve for selected elements of *x*:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}\in X_{\Lambda}} \|\boldsymbol{d} - \boldsymbol{A}\boldsymbol{x}\|_{\boldsymbol{W}}^2$$

OMP is fast (FFT). It is nearly optimal under coherence conditions on *A* that may not hold in MRI excitation. (Tropp, T-IT, Oct. 2004)

Parallel Transmit: Multiple Coils

- Magnetic field is superposition of contribution of each coil
- Induced magnetization is too (under small-tip approximation):

$$\boldsymbol{d} \approx \boldsymbol{A}_1 \boldsymbol{x}_1 + \cdots + \boldsymbol{A}_K \boldsymbol{x}_K$$

- A_k includes excitation response (B1+ map) of kth coil
- x_k parameterizes the RF signal into the *k*th coil
- Coil have individual RF signals but share the k-space trajectory

Parallel sparsity problem:

 $\min \left\| \boldsymbol{d} - \sum_{k=1}^{K} \boldsymbol{A}_{k} \boldsymbol{x}_{k} \right\|_{\boldsymbol{W}}^{2} \text{ sub. to "joint sparsity" of } \{\boldsymbol{x}_{1}, \ldots, \boldsymbol{x}_{K}\}$

Simultaneous Sparsity Problems

Conventional sparse approximation problem:

 $\min \|\mathbf{y} - \mathbf{A}\mathbf{x}\|$ sub. to $\|\mathbf{x}\|_0 \le N_{\rm e}$

• Conventional simultaneous sparsity problem: Tropp et al., SigPro, 2006

$$\min \sum_{k=1}^{K} \|\boldsymbol{y}_k - \boldsymbol{A}\boldsymbol{x}_k\| \text{ sub. to } \|[\boldsymbol{x}_1, \dots, \boldsymbol{x}_K]\|_{\infty, 0} \leq N_e$$

where $||X||_{\infty,0}$ counts the number of *rows* of *X* with nonzero entries. (Use the same dictionary elements to approximate several signals.) \circ Greedy algorithms (S-OMP) \circ Convex relaxation: replace $||X||_{\infty,0}$ with $||X||_{2,1}$, the sum of ℓ_2 norm of each row.

• MRI "parallel sparsity" approximation problem:

$$\min \left\| \boldsymbol{y} - \sum_{k=1}^{K} \boldsymbol{A}_{k} \boldsymbol{x}_{k} \right\| \text{ sub. to } \| [\boldsymbol{x}_{1}, \dots, \boldsymbol{x}_{K}] \|_{\infty, 0} \leq N_{e}$$

SOCP slow...

Proposed Parallel OMP (P-OMP)

Theory: Maleh et al., SPARS, Apr. 2009

MRI application: Yoon et al., ISMRM, Apr. 2009

- Set $\Lambda = \{\}$ (initial index set)
- Set r = d (initial residual vector)
- For each iteration (until desired sparsity):
 - \circ add column index of $\{A_k\}$ "most correlated" with residual:

$$\Lambda := \Lambda \cup \left\{ \arg \max_{j} \sum_{k=1}^{K} |\langle A_{k}(:,j), \boldsymbol{r} \rangle_{\boldsymbol{W}} | \right\}$$

- Project residual onto columns of $\{A_k\}$ indexed by Λ
- Update residual:

$$\boldsymbol{r} := \boldsymbol{r} - \mathcal{P}_S \boldsymbol{r} = \mathcal{P}_S^{\perp} \boldsymbol{r}, \quad S = \{A_k(:,j), \ k = 1, \dots, N_e, \ j \in \Lambda\}$$

• Finally, solve for selected elements of *x*:

$$\hat{\boldsymbol{x}} = \operatorname*{arg\,min}_{\boldsymbol{x}\in X_{\Lambda}} \|\boldsymbol{d} - \sum_{k=1}^{K} \boldsymbol{A}_{k} \boldsymbol{x}_{k} \|_{\boldsymbol{W}}^{2}.$$

Variations: $\sum_{k=1}^{K} |\cdot|^{p}$ for p = 2 or $p \to \infty$, or projection onto span of $\{A_{1}(:, j), \dots, A_{K}(:, j)\}$. Theoretical correctness guarantees for certain conditions, not quite satisfied in MRI...

Application: B₀ Inhomogeneity "Precompensation" in BOLD fMRI imaging

B₀ inhomogeneity compensation: Overview

short TE

T₂^{*} weighted

T₂^{*} weighted

- Signal loss due to through-plane B_0 inhomogeneity
- Severe near susceptibility gradients in BOLD fMRI
- Solution: iteratively designed, tailored RF pulses that precompensate for through-plane field variations
 Glover & Lai, ISMRM 1998; Yip *et al.*, MRM 56(5), Nov. 2006

B₀ inhomogeneity compensation: Sub. 1 Anatomy

1 .	anatomical images of 1mm-thick slices									
64	(Free	(* 10)			() ***	(). 	() ***			
04 -		Ser.	Ser.			9	1. A.	1		
	0									R
					Co.					
				(K)				Č,	Ś	
		Ò	Ô	Ì	Ì			Ô		0
	1 6	4								

64

1 mm slices

B₀ inhomogeneity compensation: Sub. 1 Mask

"do not care" outside mask

B₀ inhomogeneity compensation: Sub. 1 Fieldmap

These 1 mm slices determine phase of desired pattern d

B₀ inhomogeneity compensation: Design

- 5 mm thick slice to be excited
- 3D desired excitation pattern over five 1 mm slices: uniform magnitude, phase from B_0 map: $d(\mathbf{r}) = e^{-\iota \omega(\mathbf{r})T_E}$
- $1 \le N_e \le 30$ phase-encode locations in (k_x, k_y) plane
- P-OMP algorithm for joint trajectory / RF pulse design
- Simulation based on acquired images and field maps.
- Two cases:
 - Single uniform transmit coil
 - 8-coil array with calculated transmit sensitivity patterns:

B₀ inhomogeneity compensation: Results

12 phase encoding locations. Total pulse length 7-9 msec. 8-coil design time \approx 2 min.

B₀ inhomogeneity compensation: Results

(From 4th row of preceding slide)

B₀ inhomogeneity compensation: NRMSE

(magnitude-nrmse is at echo time)

Application: B₁ Inhomogeneity Correction

B1 Nonuniformity Correction: Coil Sensitivities

magnitude images of coil sensitivites

8 head coils Simulation with 24 cm FOV, 64×64 sampling grid

B1 Nonuniformity Correction: Desired Pattern

2D disk with diameter 20.25 cm. "Don't care" outside mask.

B1 Nonuniformity Correction: Excitation Results

(2.2 sec)

Phase-Encode Locations

Convex optimization

P-OMP

 $\overline{N_{\rm e}} = 20$

B1 Nonuniformity Correction Results: Accuracy

Tradeoff between pulse length and excitation error (residual nonuniformity). P-OMP provides reasonable uniformity (1-2%) with 4-5 phase encodes, quickly.

Summary

- Sparsity everywhere, even in MRI excitation
- Applications:
 - \circ *B*⁰ correction
 - $\circ B_1$ correction
 - Cases requiring slice-selection and within-plane variations
- Using greedy algorithms like OMP accelerate computation
- P-OMP extends OMP to the problem of "parallel sparsity"