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e Introduction to excitation in MRI
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e Sparsity formulations
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e SumMmmary

Image reconstruction toolbox:
http://ww. eecs. um ch. edu/ ~f essl er



MRI Scans

MRI Scanner Cutaway

Radio Patient

Frequency
oil

Patient
Table

Gradient
Coils

Magnet

Scanner

www. magnet . f su. edu

MRI scans alternate between excitation and readout (data acquisition)



RF Excitation: Overview

Forward model:

Applied field Patient magnetization
B(r,t) = Bq +Ba(t) + ,T'G_(t)k — (Bloch |—  pattern
main RF gradients | e€quation) M(r,t)

Bloch equation:
DM(r,t) = M(r.t) xyB(r.t) — T [M(r.t) — M(r,0)]

at
1/To(r) O 0
where one often ignores the relaxation factors T = 0 1/To(r) 0 :
0 0  1/Ty(r)

Excitation design goal:
find gradient waveforms G(t) and RF waveform by(t), 0 <t < T that

induce some desired magnetization pattern M (r, T) at pulse end.
This is a “noiseless” inverse problem.



RF Excitation: Applications
(Exciting all spins is relatively easy, cf. NMR spectroscopy)

e slice selection (1D)

e spatially selective excitation (2D and 3D)
o Imaging small regions
o compensating for nonuniform coil sensitivity (high field)
o compensating for undesired spin phase evolution (fMRI)

Constraints:
o RF amplitude, bandwidth (hardware)

e RF power deposition (patient safety)
e Gradient waveform amplitude, slew rate
e Excitation pulse duration



sparsity.

Before Excitation (Equilibrium)
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Excitation coil inhomogeneity induces undesired image shading.

Solution: more sophisticated RF pulse design ...




Small-tip Solution to Bloch Equation

Relate RF pulse envelope and induced field:

- co ot ) |
B,(r,t) = coil(r) ba(t) sin(wot) |, W =VYBg .
ofe]| RF pulse L 0 . Larmor
response envelope frequency

Small-tip approximation to Bloch solution (Pauly, 1989):
M(r,T) = My(r,T) -+ 1My(r, T)

~ 1yMo(r) coil(r /b ) @2 kHA=T) gt
shading ©

J/

Fourier-like
where the excitation k-space trajectory Is:

o Y [T apn
k(t) £ —- | G(t')dt'.



1D Example: Slice Selection

After Excitation

Before Excitation Hann-Apodized Sinc
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(for uniform coil, with 30° tip)



1D Example: k-space Perspective




From slice-selection to spatially selective excitation




Choosing phase-encode locations?

e Select desired excitation pattern d
o Select number of (k«,ky)-space phase encodes N

o Optimize jointly the RF pulse parameters b and the (ky,ky)-space
phase encode locations @ € RNex?:

argmlan A( @)blly, + P HbH

excitation RF
fidelty energy
where, from discretization of small-tip approximation:
[A((P)] IyCOll(rn) I21Trn K(tm; @) (tm—T) .

W allows ROI specification, a key benefit of model-based
formulations

Alternating minimization.
Minimizing over b is easy via CG. (Yip et al., MRM 54(4), Oct. 2005)
Minimizing over @ is challenging. (Yip et al., MRM 58(3), Sep. 2007)



Sparsity-Constrained Formulation

Allow one (or more) pulse parameters X = (Xy, ...,Xy,) for every
(kx,ky) phase-encode location (on a discrete grid of Ny points).
Choose a sparse subset of possible phase-encode locations:
. 2 .
argxmlan — AX|lyy subject to ||x||, g- Ne
sparsity

Alternate “sparse approximation” formulation:
argmin||x||, subject to ||d — Ax||q, < .
X

Both formulations are non-convex and challenging (NP-complete).



Convex Formulation (Single Coill)
Convex relaxation. Zelinski et al.: MRM 59(6), June 2008; T-MI Sep. 2008

For sparse approximation, replacing ||x||, with ||x||; usually works:
Tropp: IEEE T-IT, Mar. 2006

argmin||x||, subject to ||d — Ax||q, < 5.
X

Lagrange multiplier or regularization approach:
- 2
argmin(|d — Ax(fy +B{|x]|;
X

where one adjusts [3 to trade off sparsity (pulse length) and
approximation error (excitation accuracy).

e Solving second-order cone program (SOCP) can be slow

e Many minutes, depending on sampling, number of colls, etc.
e Want fast methods for on-line use!

e A and/or d are often patient dependent



Greedy Approach: Orthogonal Matching Pursuit

OMP method attempts sparse signal approximation:
mXian—AxH\ZN sub. to [|x]|, < Ne.

e Set A = {} (initial index set)
e Set r = d (initial residual vector)

e For each iteration (until desired sparsity):
o add column of A most correlated with residual'

= /\U{argma>4 Dwl |

o Project residual onto columns of A indexed by A
o Update residual: r:=r—2p 1 =2, 1
e Finally, solve for selected elements of Xx:
% = argmin||d — AX||¢,

XeXn

OMP is fast (FFT). It is nearly optimal under coherence conditions
on A that may not hold in MRI excitation. (Tropp, T-IT, Oct. 2004)



Parallel Transmit: Multiple Coils

e Magnetic field is superposition of contribution of each coill
e Induced magnetization is too (under small-tip approximation):

d~ AiXg+ -+ AcX
e A includes excitation response (B1+ map) of kth coll

e Xy parameterizes the RF signal into the kth coll
e Coil have individual RF signals but share the k-space trajectory

Parallel sparsity problem:

min ||d — ZE:lAkaHSV sub. to “joint sparsity” of {Xi,..., Xk}



Simultaneous Sparsity Problems

e Conventional sparse approximation problem:
min ||y — Ax|| sub. to ||x||; < Ne

e Conventional simultaneous sparsity problem: Tropp et al., SigPro, 2006

o< Ne

K
minz |y, — AX¢|| sub. to [|[Xq,...,Xk]|
k=1

where ||X||, o counts the number of rows of X with nonzero entries.

(Use the same dictionary elements to approximate several signals.)
o Greedy algorithms (S-OMP) Tropp et al., SigPro, Mar. 2006
o Convex relaxation: Tropp, SigPro, Mar. 2006

replace || X, o with [[X[], 1, the sum of /> norm of each row.

e MRI “parallel sparsity” approximation problem:
min||y — Y1 AXq|| sub. to [[[X1,.... X[l o < Ne
SOCP slow...




Proposed Parallel OMP (P-OMP)

Theory: Maleh et al., SPARS, Apr. 2009
MRI application: Yoon et al., ISMRM, Apr. 2009
e Set A ={} (initial index set)

e Set r = d (initial residual vector)

e For each iteration (until desired sparsity):
o add column index of {A«} “most correlated” with residual:

K
N =AU/ arg_maxz (AT, Dwl |
i k=1
o Project residual onto columns of { Ay} indexed by A

o Update residual:
r.=r—osr=25r, S={A(,j), k=1...,Ng, j €A}

e Finally, solve for selected elements of Xx:
A . K 2
X =argmin||d — i A\ -
XEX/\

Variations: S ,|-|P for p=2or p — oo, or projection onto span of {Ay(:, j),...,Ac(:, })}.
Theoretical correctness guarantees for certain conditions, not quite satisfied in MRI...



Application:
Bo Inhomogeneity “Precompensation”
in BOLD fMRI imaging



Bo Inhomogeneity compensation: Overview

Standard excitation Proposed 8 coil excitation

short TE T3 weighted T5 weighted
e Signal loss due to through-plane By inhomogeneity

e Severe near susceptibility gradients in BOLD fMRI

e Solution: iteratively designed, tailored RF pulses that
precompensate for through-plane field variations
Glover & Lai, ISMRM 1998; Yip et al., MRM 56(5), Nov. 2006



Bo Inhomogeneity compensation: Sub. 1 Anatomy

anatomical images of 1Imm-thick slices
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Bo Inhomogeneity compensation: Sub. 1 Mask

support mask
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“do not care” outside mask



Bo Inhomogeneity compensation: Sub. 1 Fieldmap

BO fieldmap in Hz
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These 1 mm slices determine phase of desired pattern d




Bo N

e 5 mm thic

nomogeneity compensation: Design

k slice to be excited

e 3D desired excitation pattern over five 1 mm slices:
uniform magnitude, phase from By map: d(r) = e '®"Te

e 1 < N, < 30phase-encode locations in (ky,ky) plane
e P-OMP algorithm for joint trajectory / RF pulse design
e Simulation based on acquired images and field maps.

e Two cases:
o Single uniform transmit coill
o 8-coll array with calculated transmlt sensitivity patterns:




Bo INnhomogeneity compensation: Results

1-coill 8-coil
correction correction

ideal standard

12 phase encoding locations. Total pulse length 7-9 msec. 8-coil design time =~ 2 min.



Bo INnhomogeneity compensation: Results

histogram of voxel intensities : 5 is the ideal intensity

B ideal recovery
[ ]norecovery

[ ]single coil recovery
I S coil recovery

(From 4th row of preceding slide)




Bo Inhomogeneity compensation: NRMSE

nrmse and magnitude—nrmse along the number of PE

T T T T T
single coil nrmse
single coil m—nrmse
8 coil nrmse
8 coil m—nrmse
no recovery m—-nrmse
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(magnitude-nrmse is at echo time)




Application:
B, Inhomogeneity Correction



B1 Nonuniformity Correction: Coll Sensitivities

magnitude images of coil sensitivites

8 head colls
Simulation with 24 cm FOV, 64 x 64 sampling grid



B1 Nonuniformity Correction: Desired Pattern

masked desired excitation pattern

2D disk with diameter 20.25 cm. “Don’t care” outside mask.



B1 Nonuniformity Correction: Excitation Results

ideal correction Nno correction with correction

Ne = 4 phase encoding locations. P-OMP
(2.2 sec)



Phase-Encode Locations

20 phase encoding locations chosen by convex optimization 20 phase encoding locations chosen by P-OMP_1
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Convex optimization P-OMP



B1 Nonuniformity Correction Results: Accuracy

nrmse vs number of phase encoding locations — single coil(gaussian sensitivity)
10" ¢ . . . .
3 convex optimization | |
P-OMP
P—OMP2
P-OMP_
proj
2% error
1% error

5 10
number of phase encoding locations

Tradeoff between pulse length and excitation error (residual nonuniformity).
P-OMP provides reasonable uniformity (1-2%) with 4-5 phase encodes, quickly.




Summary

e Sparsity everywhere, even in MRI excitation

e Applications:
o Bg correction
o B4 correction
o Cases requiring slice-selection and within-plane variations

e Using greedy algorithms like OMP accelerate computation
e P-OMP extends OMP to the problem of “parallel sparsity”



