Low-Dose Dual-Energy CT for PET Attenuation Correction with Statistical Sinogram Restoration

Joonki Noh, Jeffrey A. Fessler

EECS Department, The University of Michigan

Paul E. Kinahan

Radiology Department, The University of Washington

SPIE Medical Imaging Feb. 19, 2008

Outline

- Introduction
 - PET/CT background
 - CT-based attenuation correction for PET
- Conventional sinogram decomposition in DE-CT
- Statistically motivated sinogram restoration in DE-CT
 - Penalized weighted least squares method
 - Penalized likelihood method
- Simulations
- Conclusions and future works

Noh et al.

PET/CT Background I

• For the *i* th ray, PET measurement is typically modeled as

 Transmission scans are necessary for PET attenuation correction. For this purpose, the attenuation correction factor (ACF) is defined as follows:

• The ACF can be obtained from PET transmission scan or X-ray CT scan.

PET/CT Background II

Benefits and a challenge of CT-based attenuation correction (CTAC):

PET Transmission (511keV)

High noise Long scan time Emission contamination Energy (511keV) matches PET X-ray Transmission (~30-140keV)

Low noise Short scan time No emission contamination Energies do not match PET

Challenge: We need to transform LACs in the range of CT energies (~30–140 keV) to LACs at the PET energy (511keV). However, there is no exact way for this transform.

Conventional CTAC

- Conventional method for CTAC is bilinear scaling (with a single-kVp source spectrum) [Blankespoor *et al.*, IEEE TNS, '94].
- Drawback: ambiguity between bone and non-bone materials with high atomic numbers, e.g., iodine contrast agent.

This may cause biases in ACFs and errors can propagate from ACFs to PET images [Kinahan *et al.,* TCRT, '06].

Proposed Approaches

- We propose two statistically motivated approaches for DE-CT sinogram restoration, PWLS and PL methods.
- Why DE-CT instead of bilinear scaling? [Kinahan *et al.*, TCRT, '06]
 To avoid the ambiguity between bone and iodine contrast agent
- Why sinogram domain instead of image domain?
 To compute ACF, we do not have to compute LACs directly.
 (To avoid potential sources of errors and to reduce computational cost)
- Why statistical methods?

For low radiation dose, statistical methods yield more accurate ACFs.

Therefore DE-CT sinogram restoration is promising for better attenuation corrected PET images !!

Noh et al.

Measurement Model in DE-CT

 For the *m*th source spectrum and *i*th ray, sinogram measurement is modeled as a random variable whose mean is

$$\begin{split} \mathbf{E}[y_{mi}] &= \bar{y}_{mi} = \int I_m(\mathcal{E}) \exp\left(-\int_{\mathcal{L}_i} \mu(\vec{x}, \mathcal{E}) \, \mathrm{d}\ell\right) \mathrm{d}\mathcal{E} \ + \ r_{mi}, \quad \end{split} \\ \begin{array}{l} \mathsf{Known additive contributions} \\ \mathsf{Sinogram} \\ \mathsf{measurement} \\ \mathsf{Polychromatic source spectrum} \\ \mathsf{where } m = 1, 2. \end{split}$$

LAC can be decomposed with component material basis functions,

$$\mu(\vec{x}, \mathcal{E}) = \sum_{l=1}^{2} \beta_l(\mathcal{E}) \rho_l(\vec{x})$$
 Spatial distribution of the *l* th material density
Mass attenuation coefficient

A simplification gives

$$\bar{y}_{mi} = I_m e^{-f_{im}(s_i)} + r_{mi},$$

$$f_{im}(s_i) \triangleq -\log\left(\int \frac{I_m(\mathcal{E})}{I_m} e^{-\sum_{l=1}^{L_0} \beta_l(\mathcal{E}) s_{li}} \, \mathrm{d}\mathcal{E}\right), \qquad s_{li} \triangleq \int_{\mathcal{L}_i} \rho_l(\vec{x}) \, \mathrm{d}\ell, \qquad I_m \triangleq \int I_m(\mathcal{E}) \, \mathrm{d}\mathcal{E}.$$

Conventional Sinogram Decomposition

• By Ignoring measurement noise and inverting the simplified expression for \bar{y}_{mi} , we have the following estimate of f_{im} :

Thus, we have a system of nonlinear equations

$$\widehat{f}_i = f_i(s_i), \qquad i = 1, \dots, N_d$$

where, e.g., $f_i \triangleq (f_{i1}, f_{i2})$ and $s_i \triangleq (s_{1i}, s_{2i})$.

Solving nonlinear equations numerically produces the estimates of component sinograms,

$$\widehat{m{s}}_{i} riangleq m{f}_{i}^{-1}\left(\widehat{m{f}}_{i}
ight),$$

 This conventional sinogram decomposition involves noise amplifying step and yields very noisy restored component sinograms and reconstructed images with streaks after performing FBP.

Penalized Weighted Least Squares (PWLS) I

 To obtain better component sinogram estimates, we use a statistically motivated method. We jointly fit the bone and soft tissue sinograms to the low and high energy log-scans.

where the sinogram matrix is defined as $\mathbf{s} \triangleq (s_1, \dots, s_{N_d})$, # of total rays

• The weight matrix D_i (2 x 2 in DECT) are determined based on an approximate variance of \hat{f}_{im} . For Poisson distributed measurements and small r_{mi} [Fessler, IEEE TIP, '96],

$$\operatorname{var}\left(\widehat{f}_{im}
ight) \ pprox \ rac{\operatorname{var}(y_{mi})}{\left(\overline{y}_{mi}-r_{mi}
ight)^2} \ pprox \ rac{1}{y_{mi}}.$$

From this, we define the weight matrix for each ray as follows:

$$D_i \triangleq \operatorname{diag}_{m=1}^{M_0} \{y_{mi}\}.$$

Noh et al.

Penalized Weighted Least Squares (PWLS) II

The roughness penalty function is defined as

where the regularization parameters (γ_1 and γ_2) control resolution/noise tradeoff.

 We use the optimization transfer principle to perform PWLS minimization. Using a sequence of separable quadratic surrogates, we arrive at the following equation for update:

$$s_{li}^{(n+1)} = \left[s_{li}^{(n)} - \frac{1}{h_{li}^{(n)}} \frac{\partial \Phi\left(s_{li}^{(n)}\right)}{\partial s_{li}} \right]_{+}$$
 Due to the non-negativity constraint on sinogram matrix

where we precompute the curvature $h_{li}^{(n)}$ that monotonically decreases the PWLS cost function.

Noh et al.

Penalized Likelihood (PL) Approach

- PWLS uses the logarithmic transform to obtain \hat{f}_{im} , so it is suboptimal in terms of noise. To improve ACFs, we propose a PL approach that is fully based on a statistical model.
- Assuming Poisson distributed raw sinogram measurements leads to the PL cost function: . .

$$\Psi(\mathbf{s}) \triangleq \sum_{m=1}^{M_0} \sum_{i=1}^{N_d} \bar{y}_{mi}(s_i) - y_{mi} \log \bar{y}_{mi}(s_i) + R(\mathbf{s}),$$

Nega

log-

With the same penalty function as in PWLS, we minimize the PL cost function.

$$\widehat{\mathbf{s}}_{PL} = \mathop{\mathrm{arg\,min}}_{\mathbf{s}\in\mathbf{R}^{L_0 imes N_d}\geq 0} \Psi(\mathbf{s})$$

Applying the optimization transfer principle yields

$$s_{li}^{(n+1)} = \left[s_{li}^{(n)} - \frac{1}{d_{li}^{(n)}} \frac{\partial \Psi\left(s_{li}^{(n)}\right)}{\partial s_{li}} \right]_{+},$$

where we precompute the curvature $d_{li}^{(n)}$ that monotonically decreases the PL cost function.

Simulations I

• We simulate two incident source spectra with 80kVp and 140kVp:

To simulate low radiation doses, we use 5 x 10⁴ photons per ray for the 140kVp spectrum. The total number of rays is 140 (radius) x 128 (angle). Noh et al. Univ. of Michigan & Univ. of Washington 12/17

Simulations II

 NRMS errors obtained from the conventional sinogram decomposition with post smoothing in the radial direction, PWLS decomposition, and PL restoration

	Sinogram restoration method $(\gamma_1 = \gamma_2 = 2^{-5})$		
NRMS error	Conventional decomp	PWLS decomp	PL restoration
Sinogram of soft tissue	21%	13%	12%
Sinogram of bone	56%	34%	30%
Image of soft tissue	54%	33%	31%
Image of bone	64%	42%	41%
ACFs	22%	9%	8%
PET image	33%	19%	18%

ACF is defined as

$$\mathsf{ACF}_{i} \triangleq \exp\left(\sum_{l=1}^{2} \beta_{l}(\mathcal{E}) \widehat{s}_{li}\right) \Big|_{\mathcal{E}=511 \text{ keV}} \mathsf{Restored component sinogram}$$

PET image is reconstructed as follows:

$$\widehat{\lambda} = \mathsf{FBP}\left\{\mathsf{ACF}_i \; \left(\int_{\mathcal{L}_i} \lambda(\vec{x}) \; \mathrm{d}\ell\right) \exp\left(-\int_{\mathcal{L}_i} \mu(\vec{x}, \mathcal{E}) \; \mathrm{d}\ell\right) \bigg|_{\mathcal{E}=511 keV}\right\}.$$

Noh et al.

PWLS vs PL

For a given iteration number, PL provides lower NRMS error than PWLS.

Noh et al.

Restored Component Sinograms

Reconstructed Component CT Images I

Noh et al.

16/17

Reconstructed Component CT Images II

17/17

Reconstructed PET Images with CTAC

Conclusions and Future Works

- For low-dose DE-CT, two statistically motivated sinogram restoration methods were proposed for attenuation correction of PET images.
- The proposed PWLS and PL methods provided lower NRMS errors than the conventional sinogram decomposition in the sinogram domain, in the image domain, and in terms of ACFs. The PL approach had the lowest NRMS errors.
- Future works will include
 - experiments with real data.
 - analysis for approximately uniform spatial resolution in sinograms.
 - comparison with bilinear scaling using iodine contrast agents.

Backup Slides

Noh et al.

Univ. of Michigan & Univ. of Washington

20/17